
PR-OWL Decision: Toward Reusable Ontology
Language for Decision Making under Uncertainty

Shou Matsumoto, Kathryn B. Laskey, Paulo C. G. Costa
Department of Systems Engineering and Operations Research

George Mason University
Fairfax, VA

[smatsum2, klaskey, pcosta]@gmu.edu

Abstract—Decision making is a big topic in Intelligence,
Defense, and Security fields. However, very little work can be
found in the literature about ontology languages that
simultaneously support decision making under uncertainty,
abstractions/generalizations with first-order expressiveness, and
forward/backward compatibility with OWL—a standard
language for ontologies. This work proposes PR-OWL Decision, a
language which extends PR-OWL—an extension of OWL to
support uncertainty—to support first-order expressiveness,
decision making under uncertainty, and backward/forward
compatibility with OWL and PR-OWL.

Keywords—ontology, decision making, uncertainty, OWL

I. INTRODUCTION
Ontologies are engineering artifacts which consist of formal

vocabularies of terms, usually describing specific domain
knowledge and accessed by persons or computers sharing a
common view or domain application. Various interdisciplinary
works addressing the engineering aspects of this field have been
held in the recent years by the information systems—in a
broader sense—community [1, 2, 3, 4, 5]. The Web Ontology
Language (OWL) is a standard ontology language which
represents classes, properties, and individuals in Semantic Web
documents [6]. In 2005, Probabilistic Web Ontology Language
(PR-OWL) [7] was formulated to address OWL’s lack of
support for uncertainty—a ubiquitous factor in complex real-
world problems. As a continuing effort, version 2 of PR-OWL
[8] was formulated in order to address some backward
compatibility issues with its predecessor OWL.

Nevertheless, continuous efforts have been performed in the
field of decision support, especially with models supporting
uncertainty [9, 10, 11, 12, 13, 14, 15]. Decision making is the
process of selecting a course of action among several
possibilities, based on values or preferences of some decision
maker. Values and preferences play a very important role here,
because they represent the desirability of an outcome, in a
manner that is different from the likelihood or probability that
the outcome will happen.

For example, one’s probabilistic model may state that the
probability of failing some exam is 20% if you do not study. The
decision maker may consider this is an acceptable probability
for choosing not to study, given that the impact of failing is
nothing more than minor embarrassment. However, if the

decision maker may lose his/her job as a consequence of failing
the exam, the decision maker would definitely study hard. This
well illustrates how difficult it would be for someone to make
decisions based only on metrics of uncertainty (e.g. probabilities
or likelihoods of events), and how important values and
preferences are in actually taking some action. Consequently,
ontologies for decision making need to support both uncertainty
and values (or preferences of decision makers). Unfortunately,
current ontology tools and languages often do not have
standardized constructs for representing preferences.

On the other hand, there are models that were not originally
designed for ontologies, but can be used for decision making
under uncertainty with explicit representation of values. For
instance, classic probabilistic decision models like Influence
Diagrams (ID) [16] can be enough to just represent and solve
decision-making problems—with representation of actions and
values or preferences of a decision maker—with support for
uncertainty. However, IDs perform probabilistic reasoning
about propositional (as in propositional logic) statements, which
is not expressive enough to capture many important situations;
thus we would like to have first-order expressiveness (as in First-
Order Logic), with functions, predicates, and quantification.

OWL direct semantics [6, 17]—mainstream in ontology
languages—offer first-order expressiveness, but they do not
natively support uncertainty and decisions (i.e. support for
efficiently representing and treating actions, values and
preferences of decision makers). PR-OWL, being an extension
of OWL, also offers first-order expressiveness, and it also offers
support for uncertainty, but it lacks support for decisions. It was
already stated that IDs offer support for decision and
uncertainty, but have only propositional expressiveness. It thus
becomes of interest to extend the results we have for the
propositional cases to the first-order case. Therefore, there is a
need to extend the syntax of PR-OWL and its underlying
logic—Multi-Entity Bayesian Network (MEBN) [18]—to
include elements of IDs. PR-OWL Decision, the extension
proposed in this work, addresses this issue.

Reuse receives special attention, because it is a common, yet
powerful way to drastically reduce the development effort. This
is why special care is taken for backward and forward
compatibility (with OWL). Backward compatibility can be
achieved by designing the new language so that systems meant
for the new language will automatically function with the older
language, due to syntactical similarities. This offers incentives

STIDS 2016 Proceedings Page 37

for legacy system users to migrate to new solutions. Forward
compatibility can be achieved by composing the new language’s
syntax with valid constructions of the older language. Legacy
systems may not be able to handle the new portions perfectly,
but it ought to be guaranteed that the new construction will not
cause legacy systems to fail catastrophically. This increases the
practical usefulness of a new solution, because part of new
models can be built on well tested legacy systems.

Examples of kinds of decision problems (and related tasks)
that could particularly benefit from the new solution are:

• Those which the number of decisions and available actions
(choices) are not known in advance. For instance, we can
have decisions that repeat over time and the number of
choices may increase/decrease for each decision. Other types
of repetitions (in probabilistic dependency, or on utility
functions) can also be treated by PR-OWL Decision.

• Those using abstractions/concretizations from OWL class
hierarchy. For instance, an OWL ontology may indicate that
a “Tablet” is a subclass of “Computer”, thus a decision
making model developed for a “Computer” might work well
with a “Tablet” (e.g. decision models about information theft
involving computers/tablets). PR-OWL Decision handles
such inheritance natively.

• When the process involving decision making itself is
performed or aided by multiple software systems,
interoperability plays a major role. OWL has strong support
for interoperability, so does PR-OWL Decision.

• Iterative/incremental model development process may
benefit from PR-OWL Decision, due to its aim in reuse. A
PR-OWL Decision ontology can be developed
incrementally, starting from a well-tested deterministic
ontology, then creating a PR-OWL ontology which imports
the deterministic ontology (so that the original ontology is
kept unchanged), and finally a PR-OWL Decision ontology
can import the PR-OWL ontology. Cost of verification and
validation is reduced, because previously tested artifacts are
reused in “as-is” basis. An example in Software Product Line
domain is discussed in the following sub-section.

A. Software Product Line (SPL) Domain

Examples presented throughout this paper are based on a
Software Product Line (SPL) ontology, which was developed as
a Proof of Concept for PR-OWL Decision [19]. SPL is a “family”
of software-intensive systems that share a common set of
characteristics satisfying specific needs of a particular domain,
and are developed from a common set of software assets [20].
The engineering process of SPL is often divided into two phases:
domain engineering (the process of analyzing, architecting and
developing reusable components among the family) and
application engineering (process of producing a single product
by integrating and/or customizing reusable components). Proper
SPL practices enable fast production and customization.

Quickly developing a series of configurable/customizable
software systems is important not only because software is
ubiquitous in any current intelligence, defense or security
system, but also because such systems are becoming

increasingly complex and competitive, both in terms of pricing
and available functionalities. Problems in intelligence, defense,
and security are diverse, thus it’s natural to think that not all
clients will use of the entire set of available system features.
Quickly—and automatically—offering a proper set of features
to the client, given their particular needs, would help in
establishing a competitive price, and also to avoid unnecessary
use of computational resources caused by unused features (the
latter may become rather critical in embedded systems). Our
Proof of Concept model mainly addresses this issue.

The following list summarizes some important concepts of
SPL that are referenced throughout this paper:

• Features are common and variant characteristics among a
set of software systems. These are related to (or originated
from) a set of domain requirements, and can be mapped to a
set of software assets, so it can be thought as an abstraction
that maps requirements to reusable components.

• Configuration can be thought as a set of features which
jointly satisfies constraints of consistency (e.g. dependency
and compatibility). We can move from a configuration to
another by adding, removing, or substituting features, of
course, without breaking consistency rules.

• Domain requirements are requirements identified and
treated in the domain engineering process (i.e. “inter-
system” requirements that will derive features and related
reusable components).

• Application requirements are requirements treated in the
application engineering process (i.e. emerging requirements
that will result in a single product). A “requirement” in SPL
can be either a domain or application requirement.
The Proof of Concept ontology was developed in a

iterative/evolving manner, starting from a simple, deterministic
OWL ontology, which captured the features and their
constraints. Then, a PR-OWL ontology which encodes some
probabilistic relationships between the features, requirements,
and assets was developed by reusing (importing) the original
ontology. Finally, a PR-OWL Decision ontology was developed
in order to represent the costs and profits (with associated risks)
of incorporating new features to some configuration given
emerging requirements. The resulting ontology is able to solve,
for example, a decision problem of choosing the set of features
to (re)use during application engineering, under maximum
expected profit (or minimum expected cost) criteria.

II. PR-OWL
Traditional ontologies have no built-in mechanism for

representing or drawing inferences under uncertainty. The
Probabilistic Web Ontology Language (PR-OWL) consists of a
set of classes and properties (relationships) that collectively
form a framework for building and reasoning with probabilistic
ontologies, yet keeping syntactical compatibility with OWL.
The purpose of a probabilistic ontology is to describe knowledge
about a domain and its associated uncertainty in a principled,
structured, and sharable way, so that it can be applied to support
semantic applications working in complex open-world
environments. PR-OWL 2 is an extension of OWL 2 with

STIDS 2016 Proceedings Page 38

enhanced meta-level 1 support for specifying probability
distributions of OWL properties [8]. Constructs of PR-OWL
basically follow an abstraction inherent from Multi-Entity

Bayesian network, which is explained in next sub-section.

A. Multi-Entity Bayesian Network

Multi-Entity Bayesian Network (MEBN) [18] is the
underlying logic of PR-OWL (and its version 2). For this reason,
a PR-OWL specification can be informally seen as a scheme for
describing a MEBN model in OWL.

MEBN extends BN [21] by combining the expressiveness of
First-Order Logic and the inference power of BN. MEBN
represents the world as a collection of inter-related entities, their
respective attributes, and relations among them. Knowledge
about attributes of entities and their relationships is represented
as a collection of repeatable patterns, known as MEBN
Fragments (MFrags). A set of well-defined MFrags that
collectively satisfies first-order logical constraints ensuring a
unique joint probability distribution is a MEBN Theory
(MTheory). The probabilistic portion of a consistent PR-OWL
2 ontology represents an MTheory.

An MFrag represents uncertain knowledge about a
collection of related random variables (RVs). RVs, also known
as “nodes” of an MFrag, represent the attributes and properties
of a set of entities. A directed graph represents dependencies
among the RVs. Since an MFrag is in fact a template that can be
repeatedly instantiated to form Situation-Specific Bayesian

Networks (SSBNs), their RVs usually contain as arguments one
or more ordinary variables, which are variables that are
substituted by instances of entities during the instantiation
process. SSBNs are regular BNs that are formed, usually in
response to a query, to address a particular situation that may
occur in the domain. Since a SSBN is just a regular BN,
traditional BN algorithms, like junction tree algorithm [22], can
be applied to it with no special adaptations. Usually, a SSBN
would look like a collection of “similar” nodes, differing only
by their arguments’ values.

MEBN provides a compact way to represent repeated
structures in a Bayesian Network. An important advantage of
MEBN is that there is no fixed limit on the number of random
variable instances, which can be dynamically instantiated as
needed. Some may see MFrags as tiny “chunks of knowledge”
of a given domain. Since a MTheory is a consistent composition
of such “chunks”, MEBN (as a formalism) is suitable for use
cases addressing reuse of information. This property is used in
this work in order to achieve efficient reuse of ontology.

Finally, MEBN categorizes random variables into three
different types. See Figure Fig 1 for a graphical representation.
Directed arrows going from parent to child variables represent
dependencies. The list of arguments in parenthesis are replaced
by unique individuals when the SSBN instantiation process is
triggered. The following list describes the elements presented in
Fig 1:

1 The language offers means for specifying or extending information
or rules about other elements in the ontology.

• Resident nodes (rounded yellow rectangles) are predicates
(as in First-Order Logic) which represent the actual random
variables that form the core subject of an MFrag. MEBN
logic requires that the local probabilistic distribution of each
resident node should be uniquely and explicitly defined in its
home MFrag. The possible values of a resident node can be
instances of entities (e.g. individuals of an OWL class). In
this example, the resident node “fulfills” represents a
relationship between a feature and a set of requirements (of
any type) that the feature satisfies/fulfills.

• Context nodes (green pentagons) are Boolean (i.e. logical
datatype) random variables representing conditions that
must be satisfied to make a distribution in an MFrag valid.
First-Order Logic formula (which may reference predicates
in other MFrags) can be used in order to express complex
conditions. For instance, the context node
is_derived_from(req,domReq) indicates that the MFrag is
only valid if req (a requirement) is derived from domReq (a
domain requirement). Any combination of req and domReq
not satisfying the context node will cause the instances of the
nodes in that MFrag to be marked as invalid and thus some
default probability distribution (instead of the distribution
specified in the MFrag) will be applied.

• Input nodes (grey trapezoids) are basically “pointers”
referencing to some resident node. Input nodes also provide
a mechanism to allow resident nodes’ re-usage between
MFrags. In the example, the input node fulfills(feature,

domReq) is a reference to the resident node fulfills in the
same MFrag. The arc from fulfills input node to fulfills
resident node (i.e. the recursive dependency) indicates that
whether a feature fulfills or not some requirement depends
on whether the feature fulfills or not a domain requirement
which derived the requirement in question.

• Ordinary variables appear as arguments of nodes in the
example (see labels feature, req, and domReq). They are
“non-random” variables that can be replaced with instances

Fig 1. Structure of MEBN Fragment.

STIDS 2016 Proceedings Page 39

of entities in order to fill the arguments of nodes. Constraints
about the type of ordinary variables are declared in “isA”
context nodes, whose first argument is an ordinary variable
and the second argument is a name of some entity (e.g. some
OWL class).

III. MULTI-ENTITY DECISION GRAPH
Multi-Entity Decision Graph (MEDG) provides a

framework for modeling and solving decision problems which
require both first-order expressiveness and handling of
uncertainty; and it forms the semantics, mathematical
formalism, and a graphical abstraction of documents written in
PR-OWL Decision. Consequently, in a technical view, PR-
OWL Decision documents can be seen as a computer-readable
representation of MEDG models that can be persisted in storage
media or streamed to a network.

MEDG extends MEBN by combining the expressiveness of
a probabilistic First-Order Logic—MEBN—with the ability to
represent decisions and values (utilities) and to perform decision
making under uncertainty, with maximum expected utility
criterion, of Influence Diagrams (ID) [16]. IDs are a
generalization of Bayesian Networks (BN) [21] which consist of
a directed acyclic graph of probabilistic nodes (just like nodes
in BN, it corresponds to random variables), decision nodes (they
correspond to decisions to be made, and represent available
actions), utility nodes (corresponds to utility functions, which
quantifies values or preferences of a decision maker),
conditional arcs (arcs that points to a probabilistic node and
represent probabilistic dependence), information arcs (arcs that
points to decision nodes and represent information that have to
be available at the time of the decision), and functional arcs (arcs
that points to utility nodes and represent inputs for the utility
function). The main idea of MEDG is, therefore, to augment
MEBN with decision nodes, utility nodes, information arcs and
functional arcs.

Following the convention of MEBN, the world is
represented in MEDG as a collection of inter-related entities,
their respective attributes, and relations among them.
Knowledge about attributes of entities and their relationships is
represented as a collection of network fragments that represent
repeatable patterns, known as MFrags (now, this name stands
for MEDG Fragments instead of MEBN Fragments). A set of
well-defined MFrags that collectively satisfies logical
constraints is called MTheory (similarly, this name now stands
for MEDG Theory). A consistent PR-OWL Decision ontology
represents an MTheory. Fig 2 shows the components of a
MEDG Fragment, and the following list is a description of such
components:

• Decision resident node: this orange rectangular node is a
new type of node in MEDG and it represents the class of
decision nodes. It can be used in input nodes or context
nodes, and just like resident nodes it needs to be uniquely
and explicitly defined in some home MFrag. As in IDs, arcs
pointing to these nodes are information arcs that represent
information that are assumed to be known at the time of
taking the action. In the example, incorporateFeature
represents the decision of whether to add or not some feature
“feat” to the current configuration “config”, given

information of hasSuggestion (whether such feature can be
suggested to the configuration or not).

• Utility resident node: this blue diamond node is a new type
of node in MEDG which represents the class of utility nodes.
MEDG logic requires that the utility function of a utility
resident node must be uniquely and explicitly defined in
some home MFrag. Utility resident nodes cannot be parents
of resident nodes or decision resident nodes, and cannot be
used in context nodes. Arcs pointing to these nodes are
functional arcs and represent inputs of the utility function.
Under the multi-attribute utility criteria, we can represent the
“global” utility function as a combination of sub-functions
(i.e. the utility function can be decomposed to multiple sub-
functions involving only a smaller subset of variables, and
each of such sub-functions can be represented by utility
resident nodes). In such context, when some utility resident
node is a child of utility resident nodes, it represents the
combining function over the parents. If no such combining
function is specified, then the unweighted additive function
(i.e. a simple sum over the sub-functions) is implicitly
assumed by default. In Fig 2, transitionCost represents the
cost of adding the feature “feat” to the current configuration
“config” (given the decision about whether to actually add or
not such feature).

• Resident node (or “probabilistic” resident node), input
node, context node, and ordinary variables: these
elements play the same role as in MEBN. However, input
and context nodes can now have references to Decision
resident nodes. The three context nodes in Fig 2 are declaring
that the type of the ordinary variable config and feat are
respectively the Configuration and Feature entities, and the
values of these ordinary variables must not be equal. The
input node hasSuggestion is a reference to a resident node in
another MFrag (not shown in the figure, though). The
resident node hasError is the probability of the new feature
feat to cause error to current configuration config, and it has
direct impact on the utility.

Fig 2. Structure of MEDG Fragment.

STIDS 2016 Proceedings Page 40

From a semantic viewpoint, backward compatibility (i.e.
tools that support MEDG should also support MEBN) is only
possible if MEDG models without presence of decision and
utility nodes are equivalent to the respective MEBN model. This
explains why components of MEBN (e.g. resident nodes, input
nodes, context nodes) are fully reused in MEDG. It is worth
noting that these approaches for backward compatibility are
directly applicable to PR-OWL Decision as well, because PR-
OWL Decision ontologies semantically represent MEDG
models, and they share the same abstractions (i.e. nodes, entities,
states, etc.).

On the other hand, forward compatibility (i.e. tools that
support MEBN should be able to open MEDG models) is not
directly guaranteed at the logic level, obviously because MEBN
semantics cannot handle decision and utility nodes. Instead,
forward compatibility is achieved at the syntactical level in PR-
OWL Decision by asserting that decision resident nodes and
utility resident nodes in PR-OWL Decision are subclasses of
resident nodes of PR-OWL. This shall enable tools compatible
with PR-OWL to open PR-OWL Decision ontologies, and allow
decision and utility nodes to be displayed and edited as if they
were just resident nodes. This is why decision resident nodes and
utility resident nodes in PR-OWL Decision are defined
respectively as resident nodes with no probability distribution,
and single-valued resident nodes in PR-OWL Decision.

A. Entailments of PR-OWL Decision: MEDG Inference

Entailments of PR-OWL Decision are information that can
be inferred from a PR-OWL Decision ontology document, based
on its underlying semantics—MEDG. This includes anything
that can be deterministically inferred (by First-Order Logic or its
subsets), anything that can be inferred by first-order
probabilistic reasoning (which requires combination of First-
Order Logic and probabilistic inference), and anything that can
be inferred by combining the previous inference with decisions
and utility functions. The former two can be achieved with
MEBN and PR-OWL (actually, the first one can even be
achieved with OWL direct semantics and description logic
reasoning), so they are not important in the context of this
document. The last one is our focus, because it requires
inference in MEDG semantics.

Namely, the tasks of calculating expected utility, and to find
optimal policy under maximum expected utility criterion are
important entailments of PR-OWL Decision that will be
considered in this research. We propose an algorithm (described
in Listing 1) adapted from [23] for grounding a MEDG Theory
based on entity information and evidence currently available in
the knowledge/data base (in the context of PR-OWL Decision,
the knowledge/data base is the ontology itself, or it can be a
separate ontology, but consistent with PR-OWL Decision) to
generate a Situation-Specific Influence Diagram (SSID) in order
to solve the above tasks.

Fig 3 illustrates grounded inference of MEDG in the context
of PR-OWL Decision. In the figure, data/evidences retrieved
without probabilistic inference (e.g. OWL individuals or OWL
property assertions) will be combined with elements of MEDG
in order to instantiate the SSID. Once SSIDs are generated, they
are equal to ordinary IDs, so any algorithm for solving (e.g.

calculate expected utility or find optimal policy) IDs can be used
to solve SSIDs.

Fig 3. Grounded inference of MEDG.

Inputs:

• Queries: a list of nodes (instances of decision or resident nodes)

that will be guaranteed to be present in SSID.

• Instances of entities: collection of all known instances of entities.

These can be OWL individuals in PR-OWL Decision.

• Evidence: list of all random variables and decision nodes with

known values (and their respective values as well).

1 Include all nodes in evidence and queries in SSID.

2 Include all possible instantiations of utility nodes (by instantiating all

possible values of arguments of utility resident nodes) to SSID.

3 Mark all nodes in SSID as “unfinished”.

4 For each “unfinished” node “n” in SSID, do:

4.1 Find the resident node (or decision/utility resident node) “res”

whose “n” is its instance.

4.2 If the MFrag of “res” is marked as “unsatisfiable”, set “n” to use

default distribution, mark “n” as “finished”, and continue at line 4.

4.3 For each context node “cx” in the same MFrag

4.3.1 If “cx” is unsatisfiable (i.e. 100% false), then mark the

MFrag as “unsatisfiable”, set “n” to use default distribution,

mark “n” as “finished”, and continue at line 4.

4.3.2 Else if “cx” is unknown (i.e. neither 100% true or 100%

false), then:

4.3.2.1 Virtually transform the context “cx” to input node.

4.3.2.2 Create arcs from new input node to all resident

nodes (and decision nodes) in same MFrag.

4.4 For each parent “p_res” of “res”, do:

4.4.1 Instantiate arguments (ordinary variables) of “p_res” that

match the formulae in context nodes in the same MFrag.

4.4.2 Instantiate “p_res” with the combination of arguments

found in previous step.

4.4.3 For each instance “p_n” of “p_res”, do:

4.4.3.1 Mark “p_n” as “unfinished”, and add it to SSID (if not

already there).

4.4.3.2 Add arcs from “p_n” to “n” in the SSID.

4.5 Mark “n” as “finished”.

5 Prune (remove) from SSID all nodes that are d-separated or

disconnected from queries and utility nodes.

6 Compile the LPD/utility scripts of all probabilistic and utility nodes, so

that the scripts are translated to actual probability distributions/tables

or actual utility functions/tables.

7 Return (output) SSID.

Listing 1: pseudocode for generating SSID.

STIDS 2016 Proceedings Page 41

B. A Script Language for Utility and Probability Distribution

A resident node in MEDG specifies a Local Probability

Distribution (LPD), a generic specification of conditional
probabilities of random variables that can be instantiated from
that resident node, given their parents. However, since MEDG
represents generalizations, LPDs cannot be specified in a
“propositional” manner, like a table of conditional probabilities
for all possible combinations of parents’ states. Similarly, utility
functions of utility resident nodes also cannot be specified in a
“propositional” manner.

We propose a scripting language for specifying LPDs and
utility functions in MEDG in a uniform and “non-propositional”
manner, by extending the scripting language of [23, pp. 17-18]
with more support for first-order syntax, such as support for
ordinary variables in conditions, support for arguments in nodes,
more support for nodes with states dynamically instantiated, and
support for non-normalized values (for utilities, which do not
necessarily sum up to 1). Special care was taken for backward
compatibility, so that old scripts are also valid in the new
grammar.

Listing 2 shows a tentative version of the new grammar in
Backus–Naur Form [24] for a script for specifying utility and
LPD. Listing 3 is an example of LPD script that complies with
the proposed LPD grammar (it specifies the probability
distribution of node fulfills of Fig 1).

Table I is an example of a conditional probability table that
can be generated from Listing 3, when SSID is instantiated. In
this example, the ordinary variable “feature” was substituted by
an entity instance called “F1”, and the ordinary variable
“domReq” (i.e. a domain requirement) was substituted by entity
instances “R1” and “R2”. We can see in the table that if at least
one parent is true, then the probabilities are set to true = 0.7, and
false = 0.3. When no parent is true, but at least one parent is
false, then the probabilities are set to true = 0.1, and false = 0.9.
Otherwise, the probability of absurd is set to 1. This complies
with Listing 3.

Scripts for specifying LPDs are not formally part of PR-
OWL, so such scripts are directly stored as literal data
properties. We will follow the same approach and store scripts
in the new grammar as literal (text) data properties in PR-OWL
Decision as well. Consequently, the new LPD scripting
language is not formally a part of the specification of PR-OWL
Decision.

IV. PR-OWL DECISION
PR-OWL Decision, the language proposed in this research,

extends PR-OWL in order to support decision variables (i.e.

actions that a decision maker can take) and utility variables (i.e.
values and preferences) in probabilistic ontologies.

The new language provides definitions of special classes and
properties (relationships) that collectively form a framework for
building and reasoning with decision problems expressed as
probabilistic ontologies. These new components are defined in
terms of existing PR-OWL and OWL elements, so that
syntactical compatibility with PR-OWL (and OWL) is achieved.
In this chapter we define such new components and how they
relate to PR-OWL and OWL.

We primarily extend PR-OWL version 2 (PR-OWL 2),
because it offers enhanced meta-level features—not present in
version 1—that allows us to represent probability distributions

<distribution> ::= <statement> | <if_statement>

 <if_statement> ::=

 "if" <allop> <varsetname>

 "have" "(" <b_expression> ")" <statement>

 "else" <else_statement>

 <allop> ::= "any" | "all"

 <varsetname> ::= <ident>[["."|","]<ident>]*

 <b_expression> ::= <b_term> ["|" <b_term>]*

 <b_term> ::= <not_factor> ["&" <not_factor>]*

 <not_factor> ::= ["~"] <b_factor>

 <b_factor> ::= "(" <b_expression> ")"

 | <ident> ["(" <arguments> ")"]

 "=" <ident> ["(" <arguments> ")"]

 <arguments> ::= <ident>[["."|","]<ident>]*

 <else_statement> ::= <statement> | <if_statement>

 <statement> ::= "[" <assignment_or_if> "]"

 <assignment_or_if> ::= <assignment> | <if_statement>

 <assignment> ::= <ident> "=" <expression> ["," <assignment>]*

 <expression> ::= <term> [<addop> <term>]*

 <term> ::= <signed_factor> [<mulop> <signed_factor>]*

 <signed_factor> ::= [<addop>] <factor>

 <factor> ::= <number> | <function> | "(" <expression> ")"

 <function> ::= <possibleVal>

 | "CARDINALITY" "(" [<varsetname>] ")"

 | "MIN" "(" <expression> ";" <expression>")"

 | "MAX" "(" <expression>";" <expression>")"

 | <external_function>

 <possibleVal> ::= <ident>

 <addop> ::= "+" | "-"

 <mulop> ::= "*" | "/"

 <ident> ::= <letter> [<letter> | <digit>]*
Listing 2: BNF grammar of LPD/utility script.

TABLE I. EXAMPLE OF CONDITIONAL PROBABILITY TABLE THAT CAN BE OBTAINED FROM SCRIPT IN LISTING 3.

if any feature,domReq have (fulfills(feature,domReq) = true) [

 true = .7, false = .3

] else if any feature,domReq have (fulfills = false) [

 true = 0.1, false = 0.9

] else [absurd = 1]
Listing 3: Example of LPD script.

STIDS 2016 Proceedings Page 42

of existing OWL properties [8]. These features are necessary
conditions for semantic-level compatibility with OWL, because
they enable entailments of OWL ontologies to be also contained
in the entailments of PR-OWL 2. We also offer an alternative
extension of PR-OWL version 1 (PR-OWL 1) for decision
support in ontologies originally written in this older version as
well. However, this is only kept for backward compatibility, and
is superseded by the extension of PR-OWL 2. The version of
PR-OWL Decision which extends PR-OWL 2 is called PR-
OWL 2 Decision, and the version that extends PR-OWL 1 is
called PR-OWL 1 Decision; but for simplicity, in this document
We’ll simply use “PR-OWL Decision” to refer to the one that
extends PR-OWL 2.

A. PR-OWL Decision Schema Vocabulary

Just like any OWL and PR-OWL document, a PR-OWL
Decision document needs to be built by combining a set of pre-
defined building blocks. A PR-OWL Decision document is said
to be syntactically valid if the document is validated against a
schema vocabulary. A schema vocabulary is a document that
partially defines another document’s structure with a list of legal
elements, attributes, built-in classes and properties.

Fig 4 illustrates how the PR-OWL Decision schema
vocabulary relates to other vocabularies. The vocabulary
(schema) files of PR-OWL 1 Decision and PR-OWL 2 Decision
reuses constructs from PR-OWL 1 and PR-OWL 2 respectively.
While the vocabularies of PR-OWL are valid ontologies in
OWL direct semantics (thus, we can use the OWL “import”
mechanism to reuse the entire document), the OWL RDF/XML
syntax vocabulary file/document has some constructs that are
not defined in OWL direct semantics, so only a subset of OWL
vocabulary document is used in PR-OWL vocabulary. Finally,
as the name implies, the OWL RDF/XML syntax document
combines syntaxes from XML (and XML Schema) and
Resource Description Framework (RDF) and its schema
(RDFS) [25].

From the foundation of OWL, any ontology component is
identified by an Internationalized Resource Identifier (IRI), a
standard defined by the Internet Engineering Task Force to
extend the Uniform Resource Identifier (URI) scheme. URIs
and IRIs are both text identifiers that resemble web addresses,
but URIs are limited to ASCII characters, while IRIs allow

Unicode characters to be used. The stereotype <<owl:imports>>
in arcs represents a property that is used for importing other
OWL ontologies entirely. The World Wide Web Consortium
(W3C) recommends not to import the OWL schema vocabulary
directly to ontologies using direct semantics of OWL, because it
will break some compatibility with Description Logic.
Therefore, the stereotype <<uses>> indicates that only a subset
of features are referenced. The stereotype <<Definition>> is
used instead of <<Vocabulary>> in XML Schema Definition
(XSD) simply because the word “definition” is part of its official
name.

In the syntax viewpoint, backward compatibility with PR-
OWL is forced because we explicitly import the PR-OWL
schema vocabulary into the new schema (thus, tools compatible
with PR-OWL Decision are forced to handle PR-OWL schema
as well). Forward compatibility (i.e. tools compatible with OWL
or PR-OWL will be able to open PR-OWL Decision
documents—but not necessarily execute some reasoning
process) is achieved because PR-OWL Decision schema
vocabulary only uses building blocks of OWL and PR-OWL,
and the PR-OWL schema vocabulary only uses building blocks
compatible with OWL’s RDF/XML syntax and vocabulary—
thus the entire import closure is forward compatible.

B. Syntactical Differences with PR-OWL

PR-OWL Decision introduces the concept of decision nodes
and utility nodes to PR-OWL. No changes will be made to
existing syntactical blocks of PR-OWL, which will be fully
reused—imported—by the PR-OWL Decision. Fig 5 illustrates
the classes of PR-OWL 2 Decision and their relationships to PR-
OWL 2 classes. Fig 6 illustrates the classes of PR-OWL 1
Decision and their relationships to PR-OWL 1 classes. The
remaining paragraphs of this section basically discusses about
the contents of the figures.

The prefixes of IRIs of classes in PR-OWL 2 Decision are
the IRIs of its schema vocabulary (i.e. IRIs of these classes starts
with the IRI of the schema vocabulary of PR-OWL 2 Decision,
and the IRI fragment—suffix after “#”—is the name of the
class). Similarly, prefixes of IRIs of classes in PR-OWL 1
Decision are the IRIs of the schema vocabulary of PR-OWL 1
Decision. For example, the IRI of class DomainDecisionNode
of PR-OWL 2 Decision is <http://www.pr-owl.org/pr-owl2-

Fig 4. IRI/URI of vocabularies.

STIDS 2016 Proceedings Page 43

decision.owl#DomainDecisionNode>. The IRIs of the other
classes follow the same pattern, so IRIs are omitted in the figures
for sake of visibility. These classes can be mapped to
components of its underlying logic—Multi-Entity Decision
Graph (MEDG)—which is presented in later section.

The following list describes the main elements of PR-OWL
2 Decision in Fig 5—again, please refer to the section about
Multi-Entity Decision Graph for the semantics of these
elements:

• DomainDecisionNode: this class represents decision
resident nodes of MEDG (see next section for descriptions
about MEDG). It extends DomainResidentNode, a class
which represents resident nodes in PR-OWL, because all
properties that are valid for the DomainResidentNode (for
instance, it should be associated with possible values, can
have parents and children, and can be used as arguments of
other nodes) are also valid for DomainDecisionNode, except
for the fact that LPDs are not used in DomainDecisionNode.

• DomainUtilityNode: this class represents utility functions
(utility resident nodes in MEDG). This is represented as
subclass of DomainResidentNode for forward compatibility,
so that tools compatible with PR-OWL can open utility
nodes as if they were resident nodes with a single possible
value (the utility instance).

• UtilityMExpression: this is an extension of MExpression of
PR-OWL 2 for DomainUtilityNode. The MExpression
connects Node to its arguments, types, or possible values,
and UtilityMExpression specifies some restrictions that force

DomainUtilityNode not to be used in arguments of context
nodes (this is achieved by “isTypeOfArgumentIn exactly 0

MExpressionArgument” restriction), and by forcing the type
of DomainUtilityNode to be always UtilityVariable.

• UtilityVariable: this is an extension of RandomVariable, a
class which describes the type of MExpression.
UtilityVariable is used to force DomainUtilityNode to be
associated with only a single possible value: the utility. This
asserts that tools compatible with PR-OWL will see
instances of DomainUtilityNode as being resident nodes with
a single value.

• utility: this OWL individual is a possible state of
DomainUtilityNode created for compatibility with PR-OWL
(thus, this OWL individual does not actually represent the
“concept” of utility), because constraints in PR-OWL forces
any node to have at least one possible state. Please, notice
that numerical values of utilities in PR-OWL Decision are
represented in terms of utility functions, not by some OWL
individual or literal called “utility”. This is similar to the
approach in PR-OWL for probabilities, because such values
are represented as probability distributions, not by some
individual or literal called “probability”.
The following list describes the elements of PR-OWL 1

Decision (Fig 6) and compares them with PR-OWL 2 Decision:

• Domain_Decision: same of DomainDecisionNode of PR-
OWL 2 Decision.

• Domain_Utility: same of DomainUtilityNode of PR-OWL 2
Decision. The “isArgTermIn exactly 0 ArgRelationship”
forces Domain_Utility not to be used as arguments in context

Fig 5. PR-OWL 2 Decision classes and relations to PR-OWL 2.

Fig 6. PR-OWL 1 Decision classes and relations to PR-OWL 1.

STIDS 2016 Proceedings Page 44

nodes; and the restriction “hasPossibleValues utility”
enables tools compatible with PR-OWL 1 to see
Domain_Utility as a resident node with single value.

• UtilityLabel: this is the same of utility in PR-OWL 2
Decision. The difference is that a constraint in PR-OWL 1
forces a possible state of a node to be an individual of Entity,
while in PR-OWL 2 this constraint is relaxed. For this
reason, utility in PR-OWL 1 Decision is an individual of
MetaEntity—subclass of Entity.

V. CONCLUSION AND FUTURE WORK
PR-OWL Decision was formulated as an extension to PR-

OWL in order to support decision making under uncertainty.
Backward and forward compatibility was ensured by reusing
both syntax and semantic elements from PR-OWL. MEDG, the
underlying logic of PR-OWL Decision, augments MEBN with
decision and utility variables, so that entailments of PR-OWL
Decision can be obtained with MEDG inference. An example of
grounded inference/solving algorithm and a script for specifying
probabilities and utilities in MEDG was described in this
document. This work is part of an ongoing Ph.D. research, thus
further details on MEDG, related algorithms, and software
implementations will be coming in future works.

ACKNOWLEDGMENT
We thank UnBBayes development team of Universidade de

Brasília, especially professor Marcelo Ladeira, M.S. student
Laécio Santos, undergraduate students Guilherme Torres, Diego
Marques, Rafael Martins, and Pedro Abreu for their insights and
assistance with software development.

REFERENCES

[1] R. N. Carvalho, P. C. G. Costa, K. B. Laskey and K. C. Chang,
"PROGNOS: predictive situational awareness with probabilistic
ontologies," in In Proceedings of the 13th International Conference on

Information Fusion, Edinburgh, UK, July 2010.

[2] P. Mitra, N. F. Noy and A. R. Jaiswal, "Omen: A probabilistic ontology
mapping tool," in In The Semantic Web–ISWC 2005, 2005.

[3] T. Tudorache, "Employing ontologies for an improved development
process in collaborative engineering," 2006.

[4] H. H. Wang, Y. F. Li, J. Sun, H. Zhang and J. Pan, "Verifying feature
models using OWL," In Journal of Web Semantics, vol. 5, no. 2, p. 117–
129, June 2007.

[5] O. Udrea, D. Yu, E. Hung and V. S. Subrahmanian, "Probabilistic
ontologies and relational databases," in On the Move to Meaningful

Internet Systems, 2005.

[6] J. Carroll, I. Herman and P. F. Patel-Schneider, "OWL 2 Web Ontology
Language (Second Edition)," 11 December 2012. [Online]. Available:
https://www.w3.org/TR/owl2-rdf-based-semantics/. [Accessed 20 July
2016].

[7] P. C. G. Costa, "Bayesian Semantics for the Semantic Web," 2005.

[8] R. N. Carvalho, K. B. Laskey and P. C. G. Costa, "PR-OWL 2.0-bridging
the gap to OWL semantics," in In Proceedings of the 6th International

Conference on Uncertainty Reasoning for the Semantic Web, November
2010.

[9] E. Acar, C. Thorne and H. Stuckenschmidt, "Towards Decision Making
via Expressive Probabilistic Ontologies," in In Proceedings of the 4th

International Conference, ADT 2015, Lexington, KY, USA, 2015.

[10] C. Guestrin, D. Koller, C. Gearhart and N. Kanodia, "Generalizing plans
to new environments in relational MDPs," in In Proceedings of the 18th

international joint conference on Artificial intelligence, 2003.

[11] S. Joshi, K. Kersting and R. Khardon, "Generalized First Order Decision
Diagrams for First Order Markov Decision Processes," in In

International Joint Conference on Artificial Intelligence, 2009.

[12] S. Sanner, "Relational dynamic influence diagram language (RDDL):
Language description," Australian National University, 2010.

[13] C. Wang, S. Joshi and R. Khardon, "First order decision diagrams for
relational MDPs," in Journal of Artificial Intelligence Research, 2008.

[14] H. L. Younes and M. L. Littman, "PPDDL1. 0: An extension to PDDL
for expressing planning domains with probabilistic effects," Technical
report. CMU-CS-04-162, 2004.

[15] D. Poole, "The independent choice logic for modelling multiple agents
under uncertainty," Artificial Intelligence, vol. 94, no. 1, pp. 7-56, 1997.

[16] R. A. Howard and J. E. Matheson, "Influence diagrams," in In Readings

on the Principles and Applications of Decision Analysis II, 1984/2005.

[17] I. Horrocks, B. Parsia and U. Sattler, "OWL 2 Web Ontology Language
Direct Semantics (Second Edition)," 11 December 2012. [Online].
Available: https://www.w3.org/TR/owl2-direct-semantics/. [Accessed
20 July 2016].

[18] K. B. Laskey, "MEBN: A language for first-order Bayesian knowledge
bases," Artificial intelligence, vol. 172, no. 2, pp. 140-178, 2008.

[19] S. Matsumoto, K. B. Laskey and P. C. G. Costa, Probabilistic Ontologies

in Domain Engineering, Washington DC: presented at the Systems
Engineering in DC Conference (SEDC), 2016.

[20] K. Pohl, G. Böckle and F. J. van Der Linden, Software product line
engineering: foundations, principles and techniques, Springer Science &
Business Media, 2005.

[21] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference, Revised second printing. Morgan Kaufmann,
1988/2014.

[22] F. Jensen, F. V. Jensen and S. L. Dittmer, "From influence diagrams to
junction trees," in In Proceedings of the Tenth international conference

on Uncertainty in artificial intelligence, 1994.

[23] S. Matsumoto, R. N. Carvalho, P. C. Costa, K. B. Laskey, L. L. Santos
and M. Ladeira, "There’s No More Need to be a Night OWL: on the PR-
OWL for a MEBN Tool Before Nightfall," in Introduction to the

Semantic Web: Concepts, Technologies and Applications, G. P. C. Fung,
Ed., iConceptPress, 2011, pp. 267-290.

[24] J. Backus, F. Bauer, J. Green, C. Katz, J. McCarthy, P. Naur, A. J. Perlis,
H. Rutishauser, K. Sameison, B. Vauquois, J. H. Wegstein, A. van
Wijngaarden and M. Woodger, "Revised report on the algorithmic
language Algol 60," The Computer Journal, vol. 5, no. 4, pp. 349-367,
1963.

[25] P. Hayes and B. McBride, "RDF Semantics.," 10 February 2004.
[Online]. Available: https://www.w3.org/TR/2004/REC-rdf-mt-
20040210/. [Accessed 13 May 2016].

[26] D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso,
D. Weld and D. Wilkins, "PDDL-the planning domain definition
language.," Technical report. Yale Center for Computational Vision and
Control, 1998.

STIDS 2016 Proceedings Page 45

