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Abstract—Decision making is a big topic in Intelligence, 
Defense, and Security fields. However, very little work can be 
found in the literature about ontology languages that 
simultaneously support decision making under uncertainty, 
abstractions/generalizations with first-order expressiveness, and 
forward/backward compatibility with OWL—a standard 
language for ontologies. This work proposes PR-OWL Decision, a 
language which extends PR-OWL—an extension of OWL to 
support uncertainty—to support first-order expressiveness, 
decision making under uncertainty, and backward/forward 
compatibility with OWL and PR-OWL. 
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I. INTRODUCTION 
Ontologies are engineering artifacts which consist of formal 

vocabularies of terms, usually describing specific domain 
knowledge and accessed by persons or computers sharing a 
common view or domain application. Various interdisciplinary 
works addressing the engineering aspects of this field have been 
held in the recent years by the information systems—in a 
broader sense—community [1, 2, 3, 4, 5]. The Web Ontology 
Language (OWL) is a standard ontology language which 
represents classes, properties, and individuals in Semantic Web 
documents [6]. In 2005, Probabilistic Web Ontology Language 
(PR-OWL)  [7] was formulated to address OWL’s lack of 
support for uncertainty—a ubiquitous factor in complex real-
world problems. As a continuing effort, version 2 of PR-OWL 
[8] was formulated in order to address some backward 
compatibility issues with its predecessor OWL. 

Nevertheless, continuous efforts have been performed in the 
field of decision support, especially with models supporting 
uncertainty [9, 10, 11, 12, 13, 14, 15]. Decision making is the 
process of selecting a course of action among several 
possibilities, based on values or preferences of some decision 
maker. Values and preferences play a very important role here, 
because they represent the desirability of an outcome, in a 
manner that is different from the likelihood or probability that 
the outcome will happen. 

For example, one’s probabilistic model may state that the 
probability of failing some exam is 20% if you do not study. The 
decision maker may consider this is an acceptable probability 
for choosing not to study, given that the impact of failing is 
nothing more than minor embarrassment. However, if the 

decision maker may lose his/her job as a consequence of failing 
the exam, the decision maker would definitely study hard. This 
well illustrates how difficult it would be for someone to make 
decisions based only on metrics of uncertainty (e.g. probabilities 
or likelihoods of events), and how important values and 
preferences are in actually taking some action. Consequently, 
ontologies for decision making need to support both uncertainty 
and values (or preferences of decision makers). Unfortunately, 
current ontology tools and languages often do not have 
standardized constructs for representing preferences. 

On the other hand, there are models that were not originally 
designed for ontologies, but can be used for decision making 
under uncertainty with explicit representation of values. For 
instance, classic probabilistic decision models like Influence 
Diagrams (ID) [16] can be enough to just represent and solve 
decision-making problems—with representation of actions and 
values or preferences of a decision maker—with support for 
uncertainty. However, IDs perform probabilistic reasoning 
about propositional (as in propositional logic) statements, which 
is not expressive enough to capture many important situations; 
thus we would like to have first-order expressiveness (as in First-
Order Logic), with functions, predicates, and quantification. 

OWL direct semantics [6, 17]—mainstream in ontology 
languages—offer first-order expressiveness, but they do not 
natively support uncertainty and decisions (i.e. support for 
efficiently representing and treating actions, values and 
preferences of decision makers). PR-OWL, being an extension 
of OWL, also offers first-order expressiveness, and it also offers 
support for uncertainty, but it lacks support for decisions. It was 
already stated that IDs offer support for decision and 
uncertainty, but have only propositional expressiveness. It thus 
becomes of interest to extend the results we have for the 
propositional cases to the first-order case. Therefore, there is a 
need to extend the syntax of PR-OWL and its underlying 
logic—Multi-Entity Bayesian Network (MEBN) [18]—to 
include elements of IDs. PR-OWL Decision, the extension 
proposed in this work, addresses this issue. 

Reuse receives special attention, because it is a common, yet 
powerful way to drastically reduce the development effort. This 
is why special care is taken for backward and forward 
compatibility (with OWL). Backward compatibility can be 
achieved by designing the new language so that systems meant 
for the new language will automatically function with the older 
language, due to syntactical similarities. This offers incentives 
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for legacy system users to migrate to new solutions. Forward 
compatibility can be achieved by composing the new language’s 
syntax with valid constructions of the older language. Legacy 
systems may not be able to handle the new portions perfectly, 
but it ought to be guaranteed that the new construction will not 
cause legacy systems to fail catastrophically. This increases the 
practical usefulness of a new solution, because part of new 
models can be built on well tested legacy systems. 

Examples of kinds of decision problems (and related tasks) 
that could particularly benefit from the new solution are: 

• Those which the number of decisions and available actions 
(choices) are not known in advance. For instance, we can 
have decisions that repeat over time and the number of 
choices may increase/decrease for each decision. Other types 
of repetitions (in probabilistic dependency, or on utility 
functions) can also be treated by PR-OWL Decision. 

• Those using abstractions/concretizations from OWL class 
hierarchy. For instance, an OWL ontology may indicate that 
a “Tablet” is a subclass of “Computer”, thus a decision 
making model developed for a “Computer” might work well 
with a “Tablet” (e.g. decision models about information theft 
involving computers/tablets). PR-OWL Decision handles 
such inheritance natively. 

• When the process involving decision making itself is 
performed or aided by multiple software systems, 
interoperability plays a major role. OWL has strong support 
for interoperability, so does PR-OWL Decision. 

• Iterative/incremental model development process may 
benefit from PR-OWL Decision, due to its aim in reuse. A 
PR-OWL Decision ontology can be developed 
incrementally, starting from a well-tested deterministic 
ontology, then creating a PR-OWL ontology which imports 
the deterministic ontology (so that the original ontology is 
kept unchanged), and finally a PR-OWL Decision ontology 
can import the PR-OWL ontology. Cost of verification and 
validation is reduced, because previously tested artifacts are 
reused in “as-is” basis. An example in Software Product Line 
domain is discussed in the following sub-section. 

A. Software Product Line (SPL) Domain 

Examples presented throughout this paper are based on a 
Software Product Line (SPL) ontology, which was developed as 
a Proof of Concept for PR-OWL Decision [19]. SPL is a “family” 
of software-intensive systems that share a common set of 
characteristics satisfying specific needs of a particular domain, 
and are developed from a common set of software assets [20]. 
The engineering process of SPL is often divided into two phases: 
domain engineering (the process of analyzing, architecting and 
developing reusable components among the family) and 
application engineering (process of producing a single product 
by integrating and/or customizing reusable components). Proper 
SPL practices enable fast production and customization. 

Quickly developing a series of configurable/customizable 
software systems is important not only because software is 
ubiquitous in any current intelligence, defense or security 
system, but also because such systems are becoming 

increasingly complex and competitive, both in terms of pricing 
and available functionalities. Problems in intelligence, defense, 
and security are diverse, thus it’s natural to think that not all 
clients will use of the entire set of available system features. 
Quickly—and automatically—offering a proper set of features 
to the client, given their particular needs, would help in 
establishing a competitive price, and also to avoid unnecessary 
use of computational resources caused by unused features (the 
latter may become rather critical in embedded systems). Our 
Proof of Concept model mainly addresses this issue. 

The following list summarizes some important concepts of 
SPL that are referenced throughout this paper: 

• Features are common and variant characteristics among a 
set of software systems. These are related to (or originated 
from) a set of domain requirements, and can be mapped to a 
set of software assets, so it can be thought as an abstraction 
that maps requirements to reusable components. 

• Configuration can be thought as a set of features which 
jointly satisfies constraints of consistency (e.g. dependency 
and compatibility). We can move from a configuration to 
another by adding, removing, or substituting features, of 
course, without breaking consistency rules. 

• Domain requirements are requirements identified and 
treated in the domain engineering process (i.e. “inter-
system” requirements that will derive features and related 
reusable components). 

• Application requirements are requirements treated in the 
application engineering process (i.e. emerging requirements 
that will result in a single product). A “requirement” in SPL 
can be either a domain or application requirement. 
The Proof of Concept ontology was developed in a 

iterative/evolving manner, starting from a simple, deterministic 
OWL ontology, which captured the features and their 
constraints. Then, a PR-OWL ontology which encodes some 
probabilistic relationships between the features, requirements, 
and assets was developed by reusing (importing) the original 
ontology. Finally, a PR-OWL Decision ontology was developed 
in order to represent the costs and profits (with associated risks) 
of incorporating new features to some configuration given 
emerging requirements. The resulting ontology is able to solve, 
for example, a decision problem of choosing the set of features 
to (re)use during application engineering, under maximum 
expected profit (or minimum expected cost) criteria. 

II. PR-OWL 
Traditional ontologies have no built-in mechanism for 

representing or drawing inferences under uncertainty. The 
Probabilistic Web Ontology Language (PR-OWL) consists of a 
set of classes and properties (relationships) that collectively 
form a framework for building and reasoning with probabilistic 
ontologies, yet keeping syntactical compatibility with OWL. 
The purpose of a probabilistic ontology is to describe knowledge 
about a domain and its associated uncertainty in a principled, 
structured, and sharable way, so that it can be applied to support 
semantic applications working in complex open-world 
environments. PR-OWL 2 is an extension of OWL 2 with 
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enhanced meta-level 1  support for specifying probability 
distributions of OWL properties [8]. Constructs of PR-OWL 
basically follow an abstraction inherent from Multi-Entity 

Bayesian network, which is explained in next sub-section.  

A. Multi-Entity Bayesian Network 

Multi-Entity Bayesian Network (MEBN) [18] is the 
underlying logic of PR-OWL (and its version 2). For this reason, 
a PR-OWL specification can be informally seen as a scheme for 
describing a MEBN model in OWL.  

MEBN extends BN [21] by combining the expressiveness of 
First-Order Logic and the inference power of BN. MEBN 
represents the world as a collection of inter-related entities, their 
respective attributes, and relations among them. Knowledge 
about attributes of entities and their relationships is represented 
as a collection of repeatable patterns, known as MEBN 
Fragments (MFrags). A set of well-defined MFrags that 
collectively satisfies first-order logical constraints ensuring a 
unique joint probability distribution is a MEBN Theory 
(MTheory). The probabilistic portion of a consistent PR-OWL 
2 ontology represents an MTheory. 

An MFrag represents uncertain knowledge about a 
collection of related random variables (RVs). RVs, also known 
as “nodes” of an MFrag, represent the attributes and properties 
of a set of entities. A directed graph represents dependencies 
among the RVs. Since an MFrag is in fact a template that can be 
repeatedly instantiated to form Situation-Specific Bayesian 

Networks (SSBNs), their RVs usually contain as arguments one 
or more ordinary variables, which are variables that are 
substituted by instances of entities during the instantiation 
process. SSBNs are regular BNs that are formed, usually in 
response to a query, to address a particular situation that may 
occur in the domain. Since a SSBN is just a regular BN, 
traditional BN algorithms, like junction tree algorithm [22], can 
be applied to it with no special adaptations. Usually, a SSBN 
would look like a collection of “similar” nodes, differing only 
by their arguments’ values. 

MEBN provides a compact way to represent repeated 
structures in a Bayesian Network. An important advantage of 
MEBN is that there is no fixed limit on the number of random 
variable instances, which can be dynamically instantiated as 
needed. Some may see MFrags as tiny “chunks of knowledge” 
of a given domain. Since a MTheory is a consistent composition 
of such “chunks”, MEBN (as a formalism) is suitable for use 
cases addressing reuse of information. This property is used in 
this work in order to achieve efficient reuse of ontology. 

Finally, MEBN categorizes random variables into three 
different types. See Figure Fig 1 for a graphical representation. 
Directed arrows going from parent to child variables represent 
dependencies. The list of arguments in parenthesis are replaced 
by unique individuals when the SSBN instantiation process is 
triggered. The following list describes the elements presented in 
Fig 1: 

                                                             
1 The language offers means for specifying or extending information 
or rules about other elements in the ontology.  

• Resident nodes (rounded yellow rectangles) are predicates 
(as in First-Order Logic) which represent the actual random 
variables that form the core subject of an MFrag. MEBN 
logic requires that the local probabilistic distribution of each 
resident node should be uniquely and explicitly defined in its 
home MFrag. The possible values of a resident node can be 
instances of entities (e.g. individuals of an OWL class). In 
this example, the resident node “fulfills” represents a 
relationship between a feature and a set of requirements (of 
any type) that the feature satisfies/fulfills. 

• Context nodes (green pentagons) are Boolean (i.e. logical 
datatype) random variables representing conditions that 
must be satisfied to make a distribution in an MFrag valid. 
First-Order Logic formula (which may reference predicates 
in other MFrags) can be used in order to express complex 
conditions. For instance, the context node 
is_derived_from(req,domReq) indicates that the MFrag is 
only valid if req (a requirement) is derived from domReq (a 
domain requirement). Any combination of req and domReq 
not satisfying the context node will cause the instances of the 
nodes in that MFrag to be marked as invalid and thus some 
default probability distribution (instead of the distribution 
specified in the MFrag) will be applied. 

• Input nodes (grey trapezoids) are basically “pointers” 
referencing to some resident node. Input nodes also provide 
a mechanism to allow resident nodes’ re-usage between 
MFrags. In the example, the input node fulfills(feature, 

domReq) is a reference to the resident node fulfills in the 
same MFrag. The arc from fulfills input node to fulfills 
resident node (i.e. the recursive dependency) indicates that 
whether a feature fulfills or not some requirement depends 
on whether the feature fulfills or not a domain requirement 
which derived the requirement in question. 

• Ordinary variables appear as arguments of nodes in the 
example (see labels feature, req, and domReq). They are 
“non-random” variables that can be replaced with instances 

 
Fig 1. Structure of MEBN Fragment. 
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of entities in order to fill the arguments of nodes. Constraints 
about the type of ordinary variables are declared in “isA” 
context nodes, whose first argument is an ordinary variable 
and the second argument is a name of some entity (e.g. some 
OWL class). 

III. MULTI-ENTITY DECISION GRAPH 
Multi-Entity Decision Graph (MEDG) provides a 

framework for modeling and solving decision problems which 
require both first-order expressiveness and handling of 
uncertainty; and it forms the semantics, mathematical 
formalism, and a graphical abstraction of documents written in 
PR-OWL Decision. Consequently, in a technical view, PR-
OWL Decision documents can be seen as a computer-readable 
representation of MEDG models that can be persisted in storage 
media or streamed to a network. 

MEDG extends MEBN by combining the expressiveness of 
a probabilistic First-Order Logic—MEBN—with the ability to 
represent decisions and values (utilities) and to perform decision 
making under uncertainty, with maximum expected utility 
criterion, of Influence Diagrams (ID) [16]. IDs are a 
generalization of Bayesian Networks (BN) [21] which consist of 
a directed acyclic graph of probabilistic nodes (just like nodes 
in BN, it corresponds to random variables), decision nodes (they 
correspond to decisions to be made, and represent available 
actions), utility nodes (corresponds to utility functions, which 
quantifies values or preferences of a decision maker), 
conditional arcs (arcs that points to a probabilistic node and 
represent probabilistic dependence), information arcs (arcs that 
points to decision nodes and represent information that have to 
be available at the time of the decision), and functional arcs (arcs 
that points to utility nodes and represent inputs for the utility 
function). The main idea of MEDG is, therefore, to augment 
MEBN with decision nodes, utility nodes, information arcs and 
functional arcs. 

Following the convention of MEBN, the world is 
represented in MEDG as a collection of inter-related entities, 
their respective attributes, and relations among them. 
Knowledge about attributes of entities and their relationships is 
represented as a collection of network fragments that represent 
repeatable patterns, known as MFrags (now, this name stands 
for MEDG Fragments instead of MEBN Fragments). A set of 
well-defined MFrags that collectively satisfies logical 
constraints is called MTheory (similarly, this name now stands 
for MEDG Theory). A consistent PR-OWL Decision ontology 
represents an MTheory. Fig 2 shows the components of a 
MEDG Fragment, and the following list is a description of such 
components:  

• Decision resident node: this orange rectangular node is a 
new type of node in MEDG and it represents the class of 
decision nodes. It can be used in input nodes or context 
nodes, and just like resident nodes it needs to be uniquely 
and explicitly defined in some home MFrag. As in IDs, arcs 
pointing to these nodes are information arcs that represent 
information that are assumed to be known at the time of 
taking the action. In the example, incorporateFeature 
represents the decision of whether to add or not some feature 
“feat” to the current configuration “config”, given 

information of hasSuggestion (whether such feature can be 
suggested to the configuration or not). 

• Utility resident node: this blue diamond node is a new type 
of node in MEDG which represents the class of utility nodes. 
MEDG logic requires that the utility function of a utility 
resident node must be uniquely and explicitly defined in 
some home MFrag. Utility resident nodes cannot be parents 
of resident nodes or decision resident nodes, and cannot be 
used in context nodes. Arcs pointing to these nodes are 
functional arcs and represent inputs of the utility function. 
Under the multi-attribute utility criteria, we can represent the 
“global” utility function as a combination of sub-functions 
(i.e. the utility function can be decomposed to multiple sub-
functions involving only a smaller subset of variables, and 
each of such sub-functions can be represented by utility 
resident nodes). In such context, when some utility resident 
node is a child of utility resident nodes, it represents the 
combining function over the parents. If no such combining 
function is specified, then the unweighted additive function 
(i.e. a simple sum over the sub-functions) is implicitly 
assumed by default. In Fig 2, transitionCost represents the 
cost of adding the feature “feat” to the current configuration 
“config” (given the decision about whether to actually add or 
not such feature). 

• Resident node (or “probabilistic” resident node), input 
node, context node, and ordinary variables: these 
elements play the same role as in MEBN. However, input 
and context nodes can now have references to Decision 
resident nodes. The three context nodes in Fig 2 are declaring 
that the type of the ordinary variable config and feat are 
respectively the Configuration and Feature entities, and the 
values of these ordinary variables must not be equal. The 
input node hasSuggestion is a reference to a resident node in 
another MFrag (not shown in the figure, though). The 
resident node hasError is the probability of the new feature 
feat to cause error to current configuration config, and it has 
direct impact on the utility. 

 
Fig 2. Structure of MEDG Fragment. 
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From a semantic viewpoint, backward compatibility (i.e. 
tools that support MEDG should also support MEBN) is only 
possible if MEDG models without presence of decision and 
utility nodes are equivalent to the respective MEBN model. This 
explains why components of MEBN (e.g. resident nodes, input 
nodes, context nodes) are fully reused in MEDG. It is worth 
noting that these approaches for backward compatibility are 
directly applicable to PR-OWL Decision as well, because PR-
OWL Decision ontologies semantically represent MEDG 
models, and they share the same abstractions (i.e. nodes, entities, 
states, etc.). 

On the other hand, forward compatibility (i.e. tools that 
support MEBN should be able to open MEDG models) is not 
directly guaranteed at the logic level, obviously because MEBN 
semantics cannot handle decision and utility nodes. Instead, 
forward compatibility is achieved at the syntactical level in PR-
OWL Decision by asserting that decision resident nodes and 
utility resident nodes in PR-OWL Decision are subclasses of 
resident nodes of PR-OWL. This shall enable tools compatible 
with PR-OWL to open PR-OWL Decision ontologies, and allow 
decision and utility nodes to be displayed and edited as if they 
were just resident nodes. This is why decision resident nodes and 
utility resident nodes in PR-OWL Decision are defined 
respectively as resident nodes with no probability distribution, 
and single-valued resident nodes in PR-OWL Decision. 

A. Entailments of PR-OWL Decision: MEDG Inference 

Entailments of PR-OWL Decision are information that can 
be inferred from a PR-OWL Decision ontology document, based 
on its underlying semantics—MEDG. This includes anything 
that can be deterministically inferred (by First-Order Logic or its 
subsets), anything that can be inferred by first-order 
probabilistic reasoning (which requires combination of First-
Order Logic and probabilistic inference), and anything that can 
be inferred by combining the previous inference with decisions 
and utility functions. The former two can be achieved with 
MEBN and PR-OWL (actually, the first one can even be 
achieved with OWL direct semantics and description logic 
reasoning), so they are not important in the context of this 
document. The last one is our focus, because it requires 
inference in MEDG semantics. 

Namely, the tasks of calculating expected utility, and to find 
optimal policy under maximum expected utility criterion are 
important entailments of PR-OWL Decision that will be 
considered in this research. We propose an algorithm (described 
in Listing 1) adapted from [23] for grounding a MEDG Theory 
based on entity information and evidence currently available in 
the knowledge/data base (in the context of PR-OWL Decision, 
the knowledge/data base is the ontology itself, or it can be a 
separate ontology, but consistent with PR-OWL Decision) to 
generate a Situation-Specific Influence Diagram (SSID) in order 
to solve the above tasks.  

Fig 3 illustrates grounded inference of MEDG in the context 
of PR-OWL Decision. In the figure, data/evidences retrieved 
without probabilistic inference (e.g. OWL individuals or OWL 
property assertions) will be combined with elements of MEDG 
in order to instantiate the SSID. Once SSIDs are generated, they 
are equal to ordinary IDs, so any algorithm for solving (e.g. 

calculate expected utility or find optimal policy) IDs can be used 
to solve SSIDs.  

 
Fig 3. Grounded inference of MEDG. 

Inputs: 

• Queries: a list of nodes (instances of decision or resident nodes) 

that will be guaranteed to be present in SSID. 

• Instances of entities: collection of all known instances of entities. 

These can be OWL individuals in PR-OWL Decision. 

• Evidence: list of all random variables and decision nodes with 

known values (and their respective values as well). 

1 Include all nodes in evidence and queries in SSID. 

2 Include all possible instantiations of utility nodes (by instantiating all 

possible values of arguments of utility resident nodes) to SSID. 

3 Mark all nodes in SSID as “unfinished”. 

4 For each “unfinished” node “n” in SSID, do: 

4.1 Find the resident node (or decision/utility resident node) “res” 

whose “n” is its instance. 

4.2 If the MFrag of “res” is marked as “unsatisfiable”, set “n” to use 

default distribution, mark “n” as “finished”, and continue at line 4. 

4.3 For each context node “cx” in the same MFrag 

4.3.1 If “cx” is unsatisfiable (i.e. 100% false), then mark the 

MFrag as “unsatisfiable”, set “n” to use default distribution, 

mark “n” as “finished”, and continue at line 4. 

4.3.2 Else if “cx” is unknown (i.e. neither 100% true or 100% 

false), then: 

4.3.2.1 Virtually transform the context “cx” to input node.  

4.3.2.2 Create arcs from new input node to all resident 

nodes (and decision nodes) in same MFrag. 

4.4 For each parent “p_res” of “res”, do: 

4.4.1 Instantiate arguments (ordinary variables) of “p_res” that 

match the formulae in context nodes in the same MFrag. 

4.4.2 Instantiate “p_res” with the combination of arguments 

found in previous step. 

4.4.3 For each instance “p_n” of “p_res”, do: 

4.4.3.1 Mark “p_n” as “unfinished”, and add it to SSID (if not 

already there). 

4.4.3.2 Add arcs from “p_n” to “n” in the SSID. 

4.5 Mark “n” as “finished”. 

5 Prune (remove) from SSID all nodes that are d-separated or 

disconnected from queries and utility nodes. 

6 Compile the LPD/utility scripts of all probabilistic and utility nodes, so 

that the scripts are translated to actual probability distributions/tables 

or actual utility functions/tables. 

7 Return (output) SSID. 

Listing 1: pseudocode for generating SSID. 
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B. A Script Language for Utility and Probability Distribution 

A resident node in MEDG specifies a Local Probability 

Distribution (LPD), a generic specification of conditional 
probabilities of random variables that can be instantiated from 
that resident node, given their parents. However, since MEDG 
represents generalizations, LPDs cannot be specified in a 
“propositional” manner, like a table of conditional probabilities 
for all possible combinations of parents’ states. Similarly, utility 
functions of utility resident nodes also cannot be specified in a 
“propositional” manner. 

We propose a scripting language for specifying LPDs and 
utility functions in MEDG in a uniform and “non-propositional” 
manner, by extending the scripting language of [23, pp. 17-18] 
with more support for first-order syntax, such as support for 
ordinary variables in conditions, support for arguments in nodes, 
more support for nodes with states dynamically instantiated, and 
support for non-normalized values (for utilities, which do not 
necessarily sum up to 1). Special care was taken for backward 
compatibility, so that old scripts are also valid in the new 
grammar.  

Listing 2 shows a tentative version of the new grammar in 
Backus–Naur Form [24] for a script for specifying utility and 
LPD. Listing 3 is an example of LPD script that complies with 
the proposed LPD grammar (it specifies the probability 
distribution of node fulfills of Fig 1).  

Table I is an example of a conditional probability table that 
can be generated from Listing 3, when SSID is instantiated. In 
this example, the ordinary variable “feature” was substituted by 
an entity instance called “F1”, and the ordinary variable 
“domReq” (i.e. a domain requirement) was substituted by entity 
instances “R1” and “R2”. We can see in the table that if at least 
one parent is true, then the probabilities are set to true = 0.7, and 
false = 0.3. When no parent is true, but at least one parent is 
false, then the probabilities are set to true = 0.1, and false = 0.9. 
Otherwise, the probability of absurd is set to 1. This complies 
with Listing 3.  

Scripts for specifying LPDs are not formally part of PR-
OWL, so such scripts are directly stored as literal data 
properties. We will follow the same approach and store scripts 
in the new grammar as literal (text) data properties in PR-OWL 
Decision as well. Consequently, the new LPD scripting 
language is not formally a part of the specification of PR-OWL 
Decision. 

IV. PR-OWL DECISION 
PR-OWL Decision, the language proposed in this research, 

extends PR-OWL in order to support decision variables (i.e. 

actions that a decision maker can take) and utility variables (i.e. 
values and preferences) in probabilistic ontologies.  

The new language provides definitions of special classes and 
properties (relationships) that collectively form a framework for 
building and reasoning with decision problems expressed as 
probabilistic ontologies. These new components are defined in 
terms of existing PR-OWL and OWL elements, so that 
syntactical compatibility with PR-OWL (and OWL) is achieved. 
In this chapter we define such new components and how they 
relate to PR-OWL and OWL.  

We primarily extend PR-OWL version 2 (PR-OWL 2), 
because it offers enhanced meta-level features—not present in 
version 1—that allows us to represent probability distributions 

<distribution> ::= <statement> | <if_statement> 

 <if_statement>  ::=  

  "if" <allop> <varsetname>  

 "have" "(" <b_expression> ")" <statement>  

  "else" <else_statement>  

 <allop> ::= "any" | "all" 

 <varsetname> ::= <ident>[["."|","]<ident>]* 

 <b_expression> ::= <b_term> [ "|" <b_term> ]* 

 <b_term> ::= <not_factor> [ "&" <not_factor> ]* 

 <not_factor> ::= [ "~" ] <b_factor> 

 <b_factor> ::= "(" <b_expression> ")"  

 | <ident> ["(" <arguments> ")"]   

 "=" <ident> ["(" <arguments> ")"]  

 <arguments> ::= <ident>[["."|","]<ident>]* 

 <else_statement> ::= <statement> | <if_statement> 

 <statement> ::= "[" <assignment_or_if> "]"  

 <assignment_or_if> ::= <assignment> | <if_statement> 

 <assignment> ::= <ident> "=" <expression> [ "," <assignment> ]* 

 <expression> ::= <term> [ <addop> <term> ]* 

 <term> ::= <signed_factor> [ <mulop> <signed_factor> ]* 

 <signed_factor> ::= [ <addop> ] <factor> 

 <factor> ::= <number> | <function> | "(" <expression> ")" 

 <function> ::= <possibleVal>  

  | "CARDINALITY" "(" [<varsetname>] ")" 

  | "MIN" "(" <expression> ";" <expression>")" 

  | "MAX" "(" <expression>";" <expression>")" 

  | <external_function> 

 <possibleVal> ::= <ident> 

 <addop> ::= "+" | "-" 

 <mulop> ::= "*" | "/" 

 <ident> ::= <letter> [ <letter> | <digit> ]* 
Listing 2: BNF grammar of LPD/utility script. 

TABLE I.  EXAMPLE OF CONDITIONAL PROBABILITY TABLE THAT CAN BE OBTAINED FROM SCRIPT IN LISTING 3. 

 

if any feature,domReq have ( fulfills(feature,domReq) = true ) [ 

   true = .7, false = .3 

] else if any feature,domReq have ( fulfills = false ) [ 

   true = 0.1, false = 0.9 

] else [ absurd = 1 ] 
Listing 3: Example of LPD script. 
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of existing OWL properties [8]. These features are necessary 
conditions for semantic-level compatibility with OWL, because 
they enable entailments of OWL ontologies to be also contained 
in the entailments of PR-OWL 2. We also offer an alternative 
extension of PR-OWL version 1 (PR-OWL 1) for decision 
support in ontologies originally written in this older version as 
well. However, this is only kept for backward compatibility, and 
is superseded by the extension of PR-OWL 2. The version of 
PR-OWL Decision which extends PR-OWL 2 is called PR-
OWL 2 Decision, and the version that extends PR-OWL 1 is 
called PR-OWL 1 Decision; but for simplicity, in this document 
We’ll simply use “PR-OWL Decision” to refer to the one that 
extends PR-OWL 2. 

A. PR-OWL Decision Schema Vocabulary 

Just like any OWL and PR-OWL document, a PR-OWL 
Decision document needs to be built by combining a set of pre-
defined building blocks. A PR-OWL Decision document is said 
to be syntactically valid if the document is validated against a 
schema vocabulary. A schema vocabulary is a document that 
partially defines another document’s structure with a list of legal 
elements, attributes, built-in classes and properties.  

Fig 4 illustrates how the PR-OWL Decision schema 
vocabulary relates to other vocabularies. The vocabulary 
(schema) files of PR-OWL 1 Decision and PR-OWL 2 Decision 
reuses constructs from PR-OWL 1 and PR-OWL 2 respectively. 
While the vocabularies of PR-OWL are valid ontologies in 
OWL direct semantics (thus, we can use the OWL “import” 
mechanism to reuse the entire document), the OWL RDF/XML 
syntax vocabulary file/document has some constructs that are 
not defined in OWL direct semantics, so only a subset of OWL 
vocabulary document is used in PR-OWL vocabulary. Finally, 
as the name implies, the OWL RDF/XML syntax document 
combines syntaxes from XML (and XML Schema) and 
Resource Description Framework (RDF)  and its schema 
(RDFS) [25]. 

From the foundation of OWL, any ontology component is 
identified by an Internationalized Resource Identifier (IRI), a 
standard defined by the Internet Engineering Task Force to 
extend the Uniform Resource Identifier (URI) scheme. URIs 
and IRIs are both text identifiers that resemble web addresses, 
but URIs are limited to ASCII characters, while IRIs allow 

Unicode characters to be used. The stereotype <<owl:imports>> 
in arcs represents a property that is used for importing other 
OWL ontologies entirely. The World Wide Web Consortium 
(W3C) recommends not to import the OWL schema vocabulary 
directly to ontologies using direct semantics of OWL, because it 
will break some compatibility with Description Logic. 
Therefore, the stereotype <<uses>> indicates that only a subset 
of features are referenced. The stereotype <<Definition>> is 
used instead of <<Vocabulary>> in XML Schema Definition 
(XSD) simply because the word “definition” is part of its official 
name.  

In the syntax viewpoint, backward compatibility with PR-
OWL is forced because we explicitly import the PR-OWL 
schema vocabulary into the new schema (thus, tools compatible 
with PR-OWL Decision are forced to handle PR-OWL schema 
as well). Forward compatibility (i.e. tools compatible with OWL 
or PR-OWL will be able to open PR-OWL Decision 
documents—but not necessarily execute some reasoning 
process) is achieved because PR-OWL Decision schema 
vocabulary only uses building blocks of OWL and PR-OWL, 
and the PR-OWL schema vocabulary only uses building blocks 
compatible with OWL’s RDF/XML syntax and vocabulary—
thus the entire import closure is forward compatible. 

B. Syntactical Differences with PR-OWL 

PR-OWL Decision introduces the concept of decision nodes 
and utility nodes to PR-OWL. No changes will be made to 
existing syntactical blocks of PR-OWL, which will be fully 
reused—imported—by the PR-OWL Decision. Fig 5 illustrates 
the classes of PR-OWL 2 Decision and their relationships to PR-
OWL 2 classes. Fig 6 illustrates the classes of PR-OWL 1 
Decision and their relationships to PR-OWL 1 classes. The 
remaining paragraphs of this section basically discusses about 
the contents of the figures. 

The prefixes of IRIs of classes in PR-OWL 2 Decision are 
the IRIs of its schema vocabulary (i.e. IRIs of these classes starts 
with the IRI of the schema vocabulary of PR-OWL 2 Decision, 
and the IRI fragment—suffix after “#”—is the name of the 
class). Similarly, prefixes of IRIs of classes in PR-OWL 1 
Decision are the IRIs of the schema vocabulary of PR-OWL 1 
Decision. For example, the IRI of class DomainDecisionNode 
of PR-OWL 2 Decision is <http://www.pr-owl.org/pr-owl2-

 
Fig 4. IRI/URI of vocabularies. 
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decision.owl#DomainDecisionNode>. The IRIs of the other 
classes follow the same pattern, so IRIs are omitted in the figures 
for sake of visibility. These classes can be mapped to 
components of its underlying logic—Multi-Entity Decision 
Graph (MEDG)—which is presented in later section. 

The following list describes the main elements of PR-OWL 
2 Decision in Fig 5—again, please refer to the section about 
Multi-Entity Decision Graph for the semantics of these 
elements: 

• DomainDecisionNode: this class represents decision 
resident nodes of MEDG (see next section for descriptions 
about MEDG). It extends DomainResidentNode, a class 
which represents resident nodes in PR-OWL, because all 
properties that are valid for the DomainResidentNode (for 
instance, it should be associated with possible values, can 
have parents and children, and can be used as arguments of 
other nodes) are also valid for DomainDecisionNode, except 
for the fact that LPDs are not used in DomainDecisionNode. 

• DomainUtilityNode: this class represents utility functions 
(utility resident nodes in MEDG). This is represented as 
subclass of DomainResidentNode for forward compatibility, 
so that tools compatible with PR-OWL can open utility 
nodes as if they were resident nodes with a single possible 
value (the utility instance).  

• UtilityMExpression: this is an extension of MExpression of 
PR-OWL 2 for DomainUtilityNode. The MExpression 
connects Node to its arguments, types, or possible values, 
and UtilityMExpression specifies some restrictions that force 

DomainUtilityNode not to be used in arguments of context 
nodes (this is achieved by “isTypeOfArgumentIn exactly 0 

MExpressionArgument” restriction), and by forcing the type 
of DomainUtilityNode to be always UtilityVariable. 

• UtilityVariable: this is an extension of RandomVariable, a 
class which describes the type of MExpression. 
UtilityVariable is used to force DomainUtilityNode to be 
associated with only a single possible value: the utility. This 
asserts that tools compatible with PR-OWL will see 
instances of DomainUtilityNode as being resident nodes with 
a single value. 

• utility: this OWL individual is a possible state of 
DomainUtilityNode created for compatibility with PR-OWL 
(thus, this OWL individual does not actually represent the 
“concept” of utility), because constraints in PR-OWL forces 
any node to have at least one possible state. Please, notice 
that numerical values of utilities in PR-OWL Decision are 
represented in terms of utility functions, not by some OWL 
individual or literal called “utility”. This is similar to the 
approach in PR-OWL for probabilities, because such values 
are represented as probability distributions, not by some 
individual or literal called “probability”. 
The following list describes the elements of PR-OWL 1 

Decision (Fig 6) and compares them with PR-OWL 2 Decision: 

• Domain_Decision: same of DomainDecisionNode of PR-
OWL 2 Decision. 

• Domain_Utility: same of DomainUtilityNode of PR-OWL 2 
Decision. The “isArgTermIn exactly 0 ArgRelationship” 
forces Domain_Utility not to be used as arguments in context 

 
Fig 5. PR-OWL 2 Decision classes and relations to PR-OWL 2.  

 
Fig 6. PR-OWL 1 Decision classes and relations to PR-OWL 1.  
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nodes; and the restriction “hasPossibleValues utility” 
enables tools compatible with PR-OWL 1 to see 
Domain_Utility as a resident node with single value. 

• UtilityLabel: this is the same of utility in PR-OWL 2 
Decision. The difference is that a constraint in PR-OWL 1 
forces a possible state of a node to be an individual of Entity, 
while in PR-OWL 2 this constraint is relaxed. For this 
reason, utility in PR-OWL 1 Decision is an individual of 
MetaEntity—subclass of Entity. 

V. CONCLUSION AND FUTURE WORK 
PR-OWL Decision was formulated as an extension to PR-

OWL in order to support decision making under uncertainty. 
Backward and forward compatibility was ensured by reusing 
both syntax and semantic elements from PR-OWL. MEDG, the 
underlying logic of PR-OWL Decision, augments MEBN with 
decision and utility variables, so that entailments of PR-OWL 
Decision can be obtained with MEDG inference. An example of 
grounded inference/solving algorithm and a script for specifying 
probabilities and utilities in MEDG was described in this 
document. This work is part of an ongoing Ph.D. research, thus 
further details on MEDG, related algorithms, and software 
implementations will be coming in future works. 
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