
Gold Standard Based Ontology Evaluation
Using Instance Assignment

Janez Brank
Jozef Stefan Institute

Jamova 39
Ljubljana, Slovenia
+386 1 477 3778

janez.brank@ijs.si

Dunja Mladenić
Jozef Stefan Institute

Jamova 39
Ljubljana, Slovenia
+386 1 477 3772

dunja.mladenic@ijs.si

Marko Grobelnik
Jozef Stefan Institute

Jamova 39
Ljubljana, Slovenia
+386 1 477 3778

marko.grobelnik@ijs.si

ABSTRACT
An ontology is an explicit formal conceptualization of some
domain of interest. Ontology evaluation is the problem of
assessing a given ontology from the point of view of a particular
criterion or application, typically in order to determine which of
several ontologies would best suit a particular purpose. This paper
proposes an ontology evaluation approach based on comparing an
ontology to a gold standard ontology, assuming that both
ontologies are constructed over the same set of instances.

1. Introduction
Different knowledge discovery methods have been adopted for
the problem of semi-automated ontology construction
(GROBELNIK AND MLADENIC, 2005) including: unsupervised,
semi-supervised and supervised learning over a collection of text
documents; using natural language processing to obtain a
semantic graph of a document; visualization of documents;
information extraction to find relevant concepts; and visualization
of the context of named entities in a document collection.

Users facing a multitude of ontologies need to have a way of
assessing them and deciding which one best fits their require-
ments. Likewise, people constructing an ontology need a way to
evaluate the resulting ontology and possibly to guide the con-
struction process and any refinement steps. Automated or semi-
automated ontology learning techniques also require effective
evaluation measures, which can be used to select the “best”
ontology out of many candidates, to select values of tunable
parameters of the learning algorithm, or to direct the learning
process itself if the latter is formulated as finding a path through a
search space.
The remainder of this Chapter is structured as follows. In Sec-
tion 2, we present related work on ontology evaluation. In Section
3, we refer to a formal framework for defining an ontology and
show how various aspects of evaluation can be incorporated in
such a framework. In Section 4, we present our approach to
evaluating a hierarchic ontology by comparing it to a “gold
standard”. In Section 5, we test this approach on a real-world
topic ontology. In Section 6, we present some guidelines for
future work.

2. Related Work
Various approaches to the evaluation of ontologies have been
considered in the literature, depending on what kind of ontologies
are being evaluated and for what purpose. Broadly speaking, most
evaluation approaches fall into one of the following categories:

• approaches based on comparing the ontology to a “gold
standard” (which may itself be an ontology; e.g. MAEDCHE
AND STAAB, 2002);

• approaches based on using the ontology in an application and
evaluating the results (e.g. PORZEL AND MALAKA, 2004);

• approaches involving comparisons with a source of data (e.g.
a collection of documents) about the domain that is to be
covered by the ontology (e.g. BREWSTER et al., 2004);

• approaches where evaluation is done by humans who try to
assess how well the ontology meets a set of predefined
criteria, standards, requirements, etc. (e.g. LOZANO-TELLO
AND GÓMEZ-PÉREZ, 2004).

In addition to the above categories of evaluation, we can group
the ontology evaluation approaches based on the level of
evaluation, as described in BRANK et al. (2006).

3. A Theoretical Framework for Ontology
Evaluation
A reasonable and well thought-out formal definition of ontologies
has been described recently in the work of EHRIG et al. (2005). In
this formalization, the ontology (with datatypes) is defined as a
structure O = (C, T, R, A, I, V, ≤C, ≤T, σR, σA, ιC, ιT, ιR, ιA). It
consists of (disjoint) sets of concepts (C), types (T), relations (R),
attributes (A), instances (I), and values (V). The partial orders ≤C
(on C) and ≤T (on T) define a concept hierarchy and a type
hierarchy. The function σR: R → C2 provides relation signatures
(i.e. for each relation, the function specifies which concepts may
be linked by this relation), while σA: A → C × T provides attribute
signatures (for each attribute, the function specifies to which
concept the attribute belongs and what is its datatype). Finally,
there are partial instantiation functions ιC: C → 2I (the assignment
of instances to concepts), ιT: T → 2V (the assignment of values to
types), ιR: R → 2I×I (which instances are related by a particular
relation), and ιA: A → 2I×V (what is the value of each attribute for
each instance). (Another formalization of ontologies, based on
similar principles, has also been described by BLOEHDORN et al.
(2005)).

For some types of ontologies, this framework can be further
extended, particularly with “concept attributes” in addition to the
“instance attributes” mentioned above. The concept attributes
would be a set A', with a signature function σA': A' → T and an
instantiation function ιA': A' → 2C×V. The value of such an attri-
bute would not be associated to a particular instance of a concept,
but would apply to the concept as such. This extension will be
useful for some of the evaluation scenarios considered later in this
section. Other possible extensions, such as relations between
concepts (as opposed to between instances), the introduction of

metaclasses, or the introduction of relations with arity greater than
2, are probably of less practical interest.

A flexible formal network like this can accommodate various
commonly-used kinds of ontologies:

• Terminological ontologies where concepts are word senses
and instances are words, e.g. the WordNet ontology.
Attributes include things like natural-language descriptions
of word senses (for concepts) and string representations of
words (for instances).

• Topic ontologies where concepts are topics and instances are
documents. Familiar examples include the Open Directory
(dmoz.org) or the Yahoo! directory. Concept attributes
typically consist of a name and a short description of each
topic, and instance attributes consist of a document title,
description, URL, and the main block of the text (for
practical purposes, such text is often represented as a vector
using e.g. the TF-IDF weighting under the vector space
model of text representation).

• Data-model ontologies where concepts are tables in a data
base and instances are data records (such as in a database
schema). In this setting, datatypes and attributes in the
above-mentioned formal definition of an ontology are
straightforward analogies to the types and attributes (a.k.a.
fields or columns) in a data base management system.

Evaluation can be incorporated in this theoretical framework as a
function that maps the ontology O to a real number, e.g. in the
range [0, 1]. However, a more practical approach is to focus the
evaluation on individual components of the ontology O (which
correspond roughly to different levels of ontology evaluation;
BRANK et al., 2006). Results of the evaluation of individual
components can later be aggregated into a combined ontology
evaluation score (EHRIG et al., 2005).
• The datatypes and their values (i.e. T, V, ≤T, and ιT) would

typically not be evaluated; they are merely the groundwork
on which the rest of the structure can stand.

• A lexical- or concept-level evaluation can focus on C, I, ιC,
and possibly some instance attributes from ιA.

• Evaluation of the concept hierarchy (is-a relationship) would
focus on the ≤C partial order.

• Evaluation of other semantic relations would focus on R, ιR,
and the concept and instance attributes.

• One could also envision evaluation focusing on particular
attributes; for example, whether a suitable natural-language
name has been chosen for each concept. This kind of
evaluation would take ιC and the attributes as input and
assess whether the concept attributes are suitable given ιC
and the instance attributes.

• Application- or task-based evaluation could be formalized by
defining the application as a function A(D, O) which pro-
duces some output given its input data D and the ontology O.
By fixing the input data D, any evaluation function defined
on the outputs of A becomes de facto an evaluation function
on O. However, the practical applicability of such a
formalization is debatable.

• Evaluation based on comparison to a gold standard can be
incorporated into this theoretical framework as a function
defined on a pair of ontologies (effectively a kind of simila-
rity measure, or a distance function between ontologies).
Similarly, data-driven evaluation can be seen as a function of
the ontology and the domain-specific data corpus D, and

could even be formulated probabilistically as P(O|D).

4. Architecture and Approach
We have developed an approach to ontology evaluation primarily
geared to enable automatic evaluation of an ontology that
includes instances of the ontology concepts. The approach is
based on the gold standard paradigm and its main focus is to
compare how well the given ontology resembles the gold standard
in the arrangement of instances into concepts and the hierarchical
arrangement of the concepts themselves. It is similar to the other
existing ontology evaluation methods based on the gold standard
(see Section 2) with a main difference in basing the evaluation on
instances assigned to the ontology concepts: our approach does
not rely on natural-language descriptions of the concepts and
instances (unlike e.g., the string edit distance approaches of
MAEDCHE AND STAAB, 2002). No assumptions are made regarding
the representation of instances, only that we can distinguish one
instance from another (and that the ontology is based on the same
set of instances as the gold standard).

4.1 Similarity measures on partitions
Our approach to evaluation is based on the analogies between this
ontology learning task and traditional unsupervised clustering. In
clustering, the task is to partition a set of instances into a family
of disjoint subsets. Here, the topic ontology can be seen as a
hierarchical way of partitioning the set of instances. The
clustering community has proposed various techniques for
comparing two partitions of the same set of instances, which can
be used to compare the output of an automated clustering method
with a gold-standard partition. If these distance measures on
traditional “flat” partitions can be extended to hierarchical
partitions, they can be used to compare a learned ontology to the
gold-standard ontology (since both will be, in the context of this
ontology learning task, two hierarchical partitions of the same set
of instances).

One popular measure of agreement between two flat partitions is
the Rand index (RAND, 1971). Assume that there is a set of
instances O = {o1, ..., on} (in this section we will denote the set of
instances by O rather than I as in the previous section, to prevent
confusion with i as an index in subscripts), with two partitions of
O into a family of disjoint subsets, U={U1, ..., Um} and V={V1, ...,
Vk}, where ∪i=1..m Ui = O, ∪j=1..k Vj = O, Ui ∩ Ui' = {} for each 1 ≤
i < i' ≤ m, and Uj ∩ Uj' = {} for each 1 ≤ j < j' ≤ k. Then one way
to compare the partitions U and V is to count the agreements and
disagreements in the placement of instances into clusters. If two
items oi, oj ∈ O belong to the same cluster of U but to two
separate clusters of V, or vice versa, this is considered a
disagreement. On the other hand, if they belong to the same
cluster in both partitions, or to separate clusters in both partitions,
this is considered an agreement between partitions. The Rand
index between U and V is the number of agreements relative to
the total number of pairs of instances (i.e. to n(n–1)/2).

4.2 A similarity measure for ontologies
We can elegantly formulate a similarity measure over ontologies
by rephrasing the Rand index as follows. Let us denote by U(o)
the cluster of U that contains the instance o ∈ O, and similarly by
V(o) the cluster of V that contains the instance o ∈ O. Let δx(Xi,
Xj) be some distance measure between clusters Xi and Xj. Then we
define the OntoRand index by the following formula:

OntoRandIdx(U, V)= (1)
 1– [Σ1≤i<j≤n |δU(U(oi), U(oj)) – δV(V(oi), V(oj))|] / [n(n–1)/2].

If we define δU(Ui, Uj) = 1 if Ui = Uj, and δU(Ui, Uj) = 0 otherwise
and δV as well in an analogous manner, we can see that the Rand
index is a special case of our OntoRand index. That is, the term
bracketed by |...| in eq. (1) equals 1 if there is a disagreement
between U and V concerning the placement of the pair of
instances oi and oj. The sum over all i and j therefore counts the
number of pairs where a disagreement occurs.
When we apply the OntoRand index for the purpose of comparing
ontologies, we must take the hierarchical arrangement of concepts
into account. In the original Rand index, what matters for a
particular pair of instances is simply if they belong to the same
cluster or not. However, when concepts or clusters are organized
hierarchically, not any two different clusters are equally different.
For example, two concepts with a common parent in the tree are
likely to be quite similar even though they are not exactly the
same; on the other hand, two concepts that do not have any
common ancestor except the root of the tree are probably highly
unrelated. Thus, if one ontology places a pair of instances in the
same concept while the other ontology places this pair of
instances in two different concepts with a common parent, this is
a disagreement, but not a very strong one; on the other hand, if
the second ontology places the two instances into two completely
unrelated concepts, this would be a large disagreement. We use
the formula for OntoRandIdx(U, V) given above, where the
functions δU and δV take this intuition into account. That is, rather
than returning merely 1 or 0 depending on whether the given two
clusters are the same or not, the functions δU and δV should return
a real number from the range [0, 1], expressing a measure of how
closely related the two clusters are.

By plugging in various definitions of the functions δU and δV, we
can obtain a family of similarity measures for ontologies, suitable
for comparing an ontology with the gold standard in the context
of the task that has been discussed in Section 4.1. We propose two
concrete families of δU and δV. Since the definitions of δU and δV
will always be analogous to each other and differ only in the fact
that each applies to a different ontology, we refer only to the δU
function in the following discussion.

4.2.1 Similarity based on common ancestors
One possibility is inspired by the approach that is sometimes used
to evaluate the performance of classification models for
classification in hierarchies (see e.g. MLADENIĆ, 1998), and that
could incidentally also be useful in the context of e.g. evaluating
an automatic ontology population system. Given a concept Ui in
the ontology U, let A(Ui) be the set of all ancestors of this
concept, i.e. all concepts on the path from the root to Ui
(including Ui itself). If two concepts Ui and Uj have a common
parent, the sets A(Ui) and A(Uj) will have a large intersection; on
the other hand, if they have no common parent except the root,
the intersection of A(Ui) and A(Uj) will contain only the root
concept. Thus the size of the intersection can be taken as a
measure of how closely related the two concepts are.
 δU(Ui, Uj) = |A(Ui) ∩ A(Uj)| / |A(Ui) ∪ A(Uj)|. (2)
This measure has the additional nice characteristic that it can be
extended to cases where U is not a tree but an arbitrary directed
acyclic graph. If the arrows in this graph point from parents to
children, the set A(Ui) is simply the set of all nodes from which U
is reachable.

4.2.2 Similarity based on distance in the tree
An alternative way to define a suitable function δU would be to
work directly with the distances between Ui and Uj in the tree U.
In this case, let l be the distance between Ui and Uj in the tree
(length of the path from Ui to the common ancestor of Ui and Uj,
and thence down to Uj), and h be the depth of the deepest
common ancestor of Ui and Uj. If l is large, this is a sign that Ui
and Uj are not very closely related; similarly, if h is small, this is a
sign that Ui and Uj don’t have any common ancestors except very
general concepts close to the root, and therefore Ui and Uj aren’t
very closely related. There are various ways of taking these
intuitions into account in a formula for δU as a function of l and h.
For example, RADA et al. (1989) have proposed a distance
measure of the form:
 δ(l, h) = e–αl th(βh) (3)

Here, α and β are nonnegative constants, and th is the hyperbolic
tangent
 th(x) = (ex – e–x) / (ex + e–x) = 1 – 2/(1 + e2x).

Thus, if h is small, th(βh) is close to 0, whereas for a large h it
becomes close to 1. It is reasonable to treat the case when the two
concepts are the same, i.e. when Ui = Uj and thus l = 0, as a
special case, and define δ(0, h) = 1 in that case, to prevent δU(Ui,
Ui) from being dependent on the depth of the concept Ui.

Incidentally, if we set α to 0 (or close to 0) and β to some large
value, δ(l, h) will be approx. 0 for h = 0 and approx. 1 for h > 0.
Thus, in the sum used to define the OntoRand index (1), each pair
of instances contributes the value of 1 if they have some common
ancestor besides the root in one ontology but not in other,
otherwise it contributes the value of 0. Thus, the OntoRand index
becomes equivalent to the ordinary Rand index computed over the
partitions of instances implied by the second-level concepts of the
two ontologies (i.e. the immediate subconcepts of the root
concept). This can be taken as a warning that α should not be too
small and β not too large, otherwise the OntoRand index will
ignore the structure of the lower levels of the ontologies.
The overlap-based version of dU from eq. (2) can also be defined
in terms of h and l. If the root is taken to be at depth 0, then the
intersection of A(Ui) and A(Uj) contains h + 1 concepts, and the
union of A(Ui) and A(Uj) contains h + l – 1 concepts. Thus, we see
that eq. (2) is equivalent to defining

 δ(l, h) = (h + 1) / (h + l + 1). (4)
By comparing the equations (3) and (4), we see a notable
difference between the two definitions of δ: when h = 0, i.e. when
the two instances have no common ancestor except the root, eq.
(3) returns δ = 0 while eq. (4) returns δ = 1 / (l + 1) > 0. When
comparing two ontologies, it may often happen that many pairs of
instances have no common ancestor (except the root) in either of
the two ontologies, i.e. hU = hV = 0, but the distance between their
concepts is likely to be different: lU ≠ lV. In these cases, using eq.
(3) will result in δU = δV = 0, while eq. (4) will result in δU ≠ δV.
When the resulting values |δU – δV| are used in eq. (1), we see that
in the case of definition (4), many terms in the sum will be 0 and
the OntoRand index will be close to 1. For example, in our
experiments with the Science subtree of dmoz.org (Sec. 5.3),
despite the fact that the assignment of instances to concepts was
considerably different between the two ontologies, approx. 81%
of instance pairs had hU = hV = 0 (and only 3.2% of these
additionally had lU = lV). Thus, when using the definition of δ
from eq. (3) (as opposed to the overlap-based definition from eq.

(4)), we must accept the fact that most of the terms in the sum (1)
will be 0 and OntoRand index will be close to 1. This does not
mean that the resulting values of OntoRand are not useful for
assessing whether e.g. one ontology is closer to the gold standard
than another ontology is, but it may nevertheless appear confusing
that OntoRand is always so close to 1. In this case a possible
alternative is to replace eq. (3) by
 δ(l, h) = e–αl th(β(h + 1)) (3')

The family of δ-functions defined by (3') can be seen as a
generalization (in a loose sense) of the δ-function from formula
(4). For example, we compared the values of δ produced by these
two definitions on a set of 106 random pairs of documents from
the dmoz.org Science subtree. For a suitable choice of α and β,
the definition (3') can be made to produce values of δ that are
very closely correlated with those of definition (4) (e.g. correl.
coefficient = 0.995 for α = 0.15, β = 0.25). Similarly, when we
compute |δU–δV| for various pairs of documents (when using eq.
(1) to compare two ontologies in Sec. 5.3), definition (3') can
yield values closely correlated to those of definition (4) for
suitable values of α and β (e.g. correl. coef. = 0.981 for α = 0.8, β
= 1.5). However, note that the fact that δ values of (3') are closely
correlated with those of (4) for some choice of α and β does not
imply that the |δU–δV| will also be closely correlated for the same
choice of α and β (or vice versa).

The need to select concrete values of α and β is one of the
disadvantages of using the definition (3) (or (3')) rather than the
overlap-based definition (2) (or equivalently (4)).

Further generalizations. The distance measure (3) could be
further generalized by taking δ(l, h) = f(l) g(h) for any decreasing
function f and increasing function g. Since the values l and h are
always integers and are limited by the depth of the tree (or twice
the depth in the case of l), the functions f and g (or even δ(l, h)
itself) could even be defined using a table of function values for
all possible l and h.
Note that the main part of the OntoRand index formula, as
defined in equation (1), i.e. the sum Σ1≤i<j≤n |δU(U(oi), U(oj)) –
δV(V(oi), V(oj))|, can also be interpreted as a Manhattan (L1-norm)
distance between two vectors of n(n–1)/2 components, one
depending on the ontology U and the other depending only on the
ontology V. Thus, in effect, we have represented an ontology U
by a “feature vector” in which the (i, j)-th component has the
value δU(U(oi), U(oj)) describing how closely the instances oi and
oj have been placed in that ontology. This interpretation opens the
possibility of various further generalizations, such as using
Euclidean distance instead of Manhattan distance, or even using
kernel methods (cf. HAUSSLER, 1999). However, we leave such
extensions for further work.

4.3 Approximation algorithms
As can be seen from eq. (1), the computation of our ontology
similarity measure involves a sum over all pairs of documents, (i,
j) for 1 ≤ i < j ≤ n. This quadratic time complexity can be
problematic when comparing ontologies with a fairly large
number of instances (e.g. on the order of 100000, as in the case of
the dmoz.org “Science” subtree mentioned in Section 5). One way
to speed up the computation of the similarity measure and obtain
an approximate result is to use a randomly sampled subset of pairs
rather than all possible pairs of documents. That is, eq. (1) would
then contain the average value of |δU(U(oi), U(oj)) – δV(V(oi),
V(oj))| over some subset of pairs instead of over all pairs.

Another way towards approximate computation of the similarity
measure is to try to identify pairs (i, j) for which the difference
|δU(U(oi), U(oj)) – δV(V(oi), V(oj))| is not close to 0. If both
ontologies classify the instances oi and oj into highly unrelated
clusters, the values δU(U(oi), U(oj)) and δV(V(oi), V(oj)) will both
be close to 0 and their difference will also be close to 0 and will
not have a large effect on the sum. (In a typical dmoz-like
hierarchy we can expect that a large proportion of pairs of
instances will fall unto such relatively unrelated clusters. As an
extreme case, consider the definition of δU using eq. (3). If a pair
of instances has no common ancestor concept except the root, h
will be 0 and thus δU will be 0. If this happens in both ontologies,
the pair will contribute nothing to the sum in eq. (1).) Thus it
would be reasonable to try identifying pairs (i, j) for which oi and
oj are in closely related clusters in at least one of the two
ontologies, and computing the exact sum for these pairs, while
disregarding the remaining pairs (or processing them using the
subsampling technique from the previous paragraph). For
example, suppose that δU is defined by eq. (4) as δ(l, h) = (h + 1) /
(h + l + 1). Thus, we need to find pairs of concepts for which (h +
1) / (h + l + 1) is greater than some threshold ε. (Then we will
know that detailed processing is advisable for pairs of instances
which fall into one of these pairs of concepts.) The condition (h +
1) / (h + l + 1) > ε can be rewritten as l < (h + 1)(1/ε – 1). Thus,
suitable pairs of concepts could be identified by the following
algorithm:

 Initialize P := {}.
 For each concept c:
 Let h be the depth of c, and let
 L = (h + 1)(1/ε – 1).
 Denote the children of c (its immediate subconcepts)
 by c1, …, cr.
 For each l from 1 do L, for each i from 1 to r,
 let Sl,i be the set of those subconcepts of c that
 are also subconcepts of ci and are l levels
 below c in the tree.
 For each l from 1 to L, for each i from 1 to r,
 add to P all the pairs from
 Sl,i × (∪l' ≤ L – l ∪i' ≠ i Sl',i').

In each iteration of the outermost loop, the algorithm processes a
concept c and discovers all pairs of concepts c', c'' such that c is
the deepest common ancestor of c' and c'' and δU(c', c'') > ε. For
more efficient maintenance of the Sl,i sets, it might be advisable to
process the concepts c in a bottom-up manner, since the sets for a
parent concept can be obtained by merging appropriate sets of its
children.
For the time being, we have tested random sampling of pairs as
outlined at the beginning of this Subsection. Separate treatment of
pairs with (h + 1) / (h + l + 1) > ε will be the topic of future work.

5. Evaluation of the proposed approach
The idea of evaluating the proposed approach to automatic
ontology evaluation is in showing its output on several concrete
situations enabling the reader to get an idea of the approach
results given a well defined mismatch in the ontologies (the
learned ontology and the “gold-standard” ontology). Namely,
instead of learning and ontology that we then evaluate, we use the
“gold-standard” ontology, introduce some errors in it and use it to
simulate the learned ontology. We have defined several simple
and intuitive operations for introducing errors in the “gold-

standard” ontology. The aim is to illustrate a kind of mismatch
that can be found between the learned ontology and the “gold-
standard” ontology and its influence on the evaluation score of the
proposed OntoRand index. The following operations are
presented below in our evaluation of the proposed approach:
• Removing lower levels of the tree – deleting all concepts

below a certain depth in the tree (see Section 5.1).
• Swapping a concept and its parent (see Section 5.2).
• Reassigning instances to concepts based on their associated

natural language text (see Section 5.3).
We have tested our approach on a concrete task of evaluating a
topic ontology based on the dmoz.org internet directory. This
ontology is structured as a hierarchy of topics, and each topic may
contain (besides subtopics) zero or more links to external web
pages.
We used a version of the dmoz.org directory downloaded on
October 21, 2005. It contains 687,333 concepts and 4,381,225
instances. The concepts are organized into a tree; the deepest parts
of the hierarchy go 15 levels deep, but in most places it is
shallower (85% of all concepts are on levels 5 through 9, and the
average node depth is 7.13). Since it would be too time-
consuming to compute our OntoRand index over all pairs of
documents (there are approx. 9.6 ⋅ 1012 such pairs), we used a
random sample of 106 pairs of documents.
In the case of the similarity measure (3), which is based on the
tree distance between two concepts, it is necessary to select the
parameters α and β. Recall that α is used in the term e–αl, where l
is the length of the path from one concept to the other. Since our
hierarchy has just 15 levels, we know that l ≤ 28 for any pair of
nodes; but since most nodes are on levels 5 through 9, we can
expect l to be around 10–15 for a typical random pair of unrelated
concepts. We decided to use α = 0.3, which results in e–αl values
from 0.74 (for l = 1) to 0.22 (for l = 5), 0.05 (for l = 10) and 0.01
(for l = 15).

The parameter β can be chosen using similar considerations. It is
used in the term th(βh), where h is the level at which the last
common ancestor of the two concepts is located. Thus in our case
h will be between 0 and 14, and will be close to 0 for two random
unrelated concepts. For two very closely related concepts, h will
typically be close to the depth of these two concepts, which (as
we saw above) is on average around 7. We use β = 0.4, which
results in values of th(βh) ranging from 0 (for h = 0) and 0.20 (for
h = 1) to 0.76 (for h = 5), 0.89 (for h = 7), and 0.96 (for h = 10).

In general, the choice values of α and β depends on the
characteristics of the ontologies we are dealing with. A more
principled way of choosing α and β might be to set explicit
requirements on the value that we want e–αl to have for a pair of
two random (i.e. typically unrelated) documents, and on the value
that we want th(βh) to have for a pair of two very closely related
documents.

5.1 Removing lower levels of the tree
In this scenario we keep only the upper k levels of the tree, for
various values of k. Any concepts located at levels from k+1 on
are discarded; instances that used to be assigned to one of the
deleted concepts are reassigned to its ancestor on the level k–1
(i.e. the deepest level that was not deleted). We then compare the
resulting tree with the original tree. This removal of lower levels
of the tree corresponds to the scenario that the ontology is being
constructed automatically in a top-down manner (e.g. by hierar-

chical top-down clustering of instances) and some automatic stop-
ping criterion is used to decide when to stop partitioning the clus-
ters; if we stop too early, the resulting hierarchy will lack the
lower levels. The chart in Figure 1 shows how the overlap mea-
sure (eq. 2) and the tree distance measure (eq. 3) react to this
gradual removal of lower parts of the hierarchy.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

k = number of topmost levels retained in the tree

O
nt

oR
an

d
si

m
ila

rit
y

in
de

x

overlap-based analytical approx. tree-distance

Fig. 1. Evaluation of ontologies that lack lower levels, based on the
OntoRand index. The overlap-based similarity measure uses formula (2)
to define δU, while the tree-distance based similarity measure uses formula
(3). The dotted line shows an analytical approximation of the OntoRand
values based on the overlap similarity measure.

We note that the overlap-based similarity measure increases
monotonically as more and more levels are kept. The increase is
quick at first and slow at the end, which is reasonable because (as
has been noted above) the deeper levels of the hierarchy contain
relatively few nodes, so discarding them does not alter the
hierarchy so dramatically. For instance, if we constructed an
ontology in a top-down manner and stopped when the ontology is
at most seven levels deep, the OntoRand index would estimate the
similarity of this ontology to the gold standard (having an average
node depth of approx. 7) as 0.94. On the other hand, if we stopped
after at most three levels, the OntoRand index would be 0.74.
It may be somewhat surprising that the similarity of an ontology
to the original one is still as high as 0.74 even if only the top three
levels of the ontology have been kept. To understand this, con-
sider a pair of random concepts; in the original hierarchy, they are
typically unrelated and are located around the 7th level, so the an-
cestor sets of eq. (2) have an intersection of 1 and a union of
around 13, resulting in the overlap measure δ ≈ 1/13. In the
pruned hierarchy, where only k uppermost levels have been re-
tained, and documents from lower nodes reassigned to the
ancestor nodes at level k–1, such a random pair of documents
would yield δ around 1/(2k–1). Thus such pairs of documents
would push the OntoRand index value towards 1 – |1/13 – 1/(2k–1)|.
As the “analytical approximation” in the chart shows, this formula
is not an altogether bad predictor of the shape of the curve for the
overlap-based measure.

The tree-distance similarity measure is slightly more problema-
tic in this scenario. In the original tree, a typical random pair of
instances falls into unrelated concepts that have no common an-
cestors except the root, i.e. h = 0 and thus δ = 0 (or δ close to 0
even if h > 0). If a few deepest levels of the tree are removed and
instances reassigned to the suitable ancestor concepts, any pair of
instances that used to have h = 0 will still have h = 0, thus its δ
according to eq. (3) remains unchanged and this pair does not
help decrease the similarity measure between the new hierarchy

and the original one. This is why the similarity as measured by
OntoRand remains relatively high all the time. Only concept pairs
with h > 0 contribute towards the dissimilarity, because their
distance (l in eq. (3)) decreases if the lower levels are pruned
away and the instances moved to higher-level concepts. Because l
is used in the term e–αl, decreasing l causes the value of δ to in-
crease for that pair of instances; the more levels we prune away,
the larger δ will be compared to its original value, and the Onto-
Rand similarity decreases accordingly. A quirk occurs at the very
end, when only one level remains and h drops to 0 even for these
pairs of instances; thus δ doesn’t increase when we move from
two levels to 1: it drops to 0 instead, causing the overall Onto-
Rand similarity to grow again. This non-monotonicity could be
addressed by modifying the formula (3) somewhat, but it doesn’t
really have a large practical impact anyway, as in a practical set-
ting the ontology to be compared to the gold standard would
certainly have more than one level.

5.2 Swapping a concept and its parent
This operation on trees is sometimes known as “rotation”. Consid-
er a concept c and its parent concept c'. This operation replaces c
and c' so that c' becomes the child of c; all other children of c',
which were formerly the siblings of c, are now its grandchildren;
all the children of c, which were formerly the grandchildren of c',
are now its siblings. If c' formerly had a parent c", then c" is now
the parent of c, not of c'. The result of this operation is a tree such
as might be obtained by an automated ontology construction algo-
rithm that proceeds in a top-down fashion and did not split the set
of instances correctly (e.g. instead of splitting the set of instances
related to science into those related to physics, chemistry,
biology, etc., and then splitting the “physics” cluster into
mechanics, thermodynamics, nuclear physics, etc., it might have
split the “science” cluster into mechanics, thermodynamics,
nuclear physics, and “miscellaneous”, where the last group would
later be split into chemistry, biology, etc.).
How does this operation affect the values of h and l used in eqs.
(2) and (3)? For two concepts that were originally both in the
subtree rooted by c, the value of h decreases by 1; if they were
both in the subtree of c' but not in the subtree of c, the value of h
increases by 1; if one was in the subtree of c and the other outside
the subtree of c', the value of l decreases by 1; if one was in the
subtree of c' but not in the subtree of c, and the other was outside
the subtree of c', the value of l increases by 1; otherwise, nothing
changes. The last case includes in particular all those pairs of
instances where none belonged to the subtree rooted by c' in the
original ontology; this means the vast majority of pairs (unless the
subtree of c' was very large). Thus the disagreement in the
placement of documents is usually quite small for an operation of
this type, and OntoRand is close to 1. This phenomenon is even
more pronounced when using the similarity measure based on tree
distance (eq. 3) instead of the overlap measure (eq. 2). Therefore,
in Figure 2, we show only the results for the overlap measure and
we show 1–OntoRand instead of OntoRand itself.
We performed 640 experiments with this operation, using each of
the 640 third-level categories as the category c (e.g. replacing
Top/Science/Physics and Top/Science, etc.). Experiments show
that the dissimilarity of the ontology after rotation to the original
ontology grows with the size of the parent subtree of c, while this
dissimilarity decreases with the size of c’s own subtree. This is
reasonable: the more instances there are in c’s subtree, the less
different it is from its parent, and the less the ontology has

changed due to the rotation. For instance, the topmost group of
“×” symbols on Fig. 2 corresponds to experiments where c was
one of the subcategories of the largest second-level category,
“Top/World”. As this chart shows, the dissimilarity is almost
linearly proportional to the difference in the size of the parent
subtree and the subtree rooted by c.

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.010

0 500000 1000000 1500000 2000000

difference in the size of the parent and the child subtree

on
to

lo
gy

 d
is

si
m

ila
rit

y

1.5M (Top/World) 1M (Top/Regional) less than 300K (all others)
Fig. 2. Evaluation of ontologies where a concept c has been swapped
with its parent. These charts explore the connection between dissimilarity
and the number of instances in c’s own subtree. Each choice of c is re-
presented by one symbol (whose shape depends on the number of instan-
ces in the subtree rooted by c’s parent). The x-coordinate is the difference
in the number of instances between the parent’s and c’s own subtree.

5.3 Reassignment of instances to concepts
In the dmoz ontology, each instance is really a short natural-
language document consisting of a web page title and description
(usually 10–20 words). In this scenario, we follow the standard
practice from the field of information retrieval and represent each
document by a normalized TF-IDF vector. Based on these
vectors, we compute the centroid of each concept, i.e. the average
of all documents that belong to this concept or to any of its direct
or indirect subconcepts. The cosine of the angle between a
document vector and a concept centroid vector is a measure of
how closely the topic of the document matches the topic of the
concept (as defined by the set of all documents belonging to that
concept). We then reassign each document to the category whose
centroid is the most similar to the document vector. Thus, the
hierarchical relation between concepts remains unchanged, but
the assignment of instances to concepts may change considerably.
This reassignment of instances to the nearest concepts resembles
operations that might be used in an automated ontology construc-
tion or population approach (e.g. analogous to k-means
clustering). We then measure the similarity of the new ontology
(after the reassignment of documents to concepts) to the original
one.

For reasons of scalability, the experiments in this section were not
performed on the entire dmoz ontology, but only on its “Science”
subtree. This consists of 11,624 concepts and 104,853 documents.
We compare two reassignment strategies: “thorough reassign-
ment” compares each document vector to the centroids of all con-
cepts, while “top-down reassignment” is a greedy approach that
starts with the root concept and proceeds down the tree, always
moving into the subconcept whose centroid is the most similar to
the document vector. When a leaf is reached, or when none of the
subconcept centroids is more similar to the document vector than
the current concept’s centroid, the procedure stops and assigns the
document to the current concept. This is much faster than tho-
rough reassignment, but it has the risk of being derailed into a less
promising part of the tree due to bad choices in the upper levels.

After documents are reassigned to concepts, new centroids of the
concepts may be computed (based on the new assignment of do-
cuments to concepts), and a new reassignment step performed
using the new centroids. The charts on Fig. 3 show the results for
up to five reassignment steps. The overlap-based definition of δU
(see eq. (2)) was used for both charts.
The upper chart in Figure 3 shows the similarity of the ontology
after each reassignment step to the original ontology. As can be
expected, top-down reassignment of documents to concepts intro-
duces much greater changes to the ontology than thorough reas-
signment. Most of the change occurs during the first reassignment
step (which is reasonable as it would be naïve to expect a simple
centroid-based nearest neighbor approach using 10–20 word
descriptions to accurately match the classification of the human
editors working for dmoz). In fact, it turns out that 93% of docu-
ments are moved to a different concept during the first top-down
reassignment step (or 66% during the first thorough reassignment
step). However, the similarity measure between the new ontology
and the original one is nevertheless fairly high (around 0.74). The
reasons for this are: firstly, only the assignment of documents to
concepts has been changed, but not the hierarchical relationship
between the concepts; secondly, if documents are moved to
different concepts in a consistent way, δU may change fairly little
for most pairs of documents, resulting in a high OntoRand index
value; thirdly, even though 93% of documents were moved to a
different concept, the new concept was often fairly close to the
original one. This is shown on the lower chart of Fig. 3, where the
value of δU was computed between the concept containing a docu-
ment in the original ontology and the one containing this docu-
ment after a certain number of reassignment steps; this was then
averaged over all documents. As this chart shows, even though
only 7% of documents remained in the same concept during the
first step of top-down reassignment, the average (over all docu-
ments) δU between the original and the new concept is not 0.07
but much higher – approx. 0.31.

6. Discussion and future work
The main features of our proposed approach are that it focuses on
fully automated evaluation of ontologies, based on comparison
with a gold standard ontology; it does not make any assumptions
regarding the description or representation of instances and
concepts, but assumes that both ontologies have the same set of
instances. We proposed a new ontology similarity measure, Onto-
Rand index, designed by analogy with the Rand index that is
commonly used to compare partitions of a set. We propose
several versions of the OntoRand index based on different
underlying measures of distance between concepts in the
ontology. We evaluated the approach on a large ontology based
on the dmoz.org web directory. The experiments were based on
several operations that modify the gold standard ontology in order
to simulate possible discrepancies that may occur if a different
ontology is constructed over the same problem domain (and same
set of instances). The experiments show that the measure based on
overlap of ancestor sets (Sec. 4.2.1) is more convenient than the
measure based on tree distance (Sec. 4.2.2), because the latter
requires the user to define the values of two parameters and it is
not obvious how to do this in a principled way. Additionally, the
tree-distance based measure is often less successful at spreading
similarity values over a greater part of the [0, 1] interval; to
address this issue, we propose a modified similarity measure (eq.
3'), which we will evaluate experimentally in future work.
Another issue, which is shared by both similarity measures

proposed here, is that the resulting OntoRand index is sometimes
insufficiently sensitive to differences that occur in the upper
levels of the ontology (Sec. 5.2). Sec. 5.3 indicates another
possible drawback of this approach, namely that keeping the
structure of the concept hierarchy and modifying only the
assignment of instances to concepts may not affect the similarity
measure as much as a human observer might expect.

From a purely algorithmic point of view, it would be interesting
to explore if the ontology similarity measure as currently defined
in Section 4.2 can be accurately computed in sub-quadratic time
(in terms of the number of instances).
The experimental evaluation in Section 5 could be extended with
various other operations. For example, we could split existing leaf
concepts into subconcepts, either randomly or using some cluster-
ing technique. This is the converse of the operation of removing
the leaf concepts described in Section 5.1. Another possibly inter-
esting operation would be to merge two or more sibling concepts.
As the experiments with switching a concept and its parent
showed (Sec. 5.2), a rearrangement of concepts in the upper levels
of the tree (in our case we were switching a third-level concept
and its parent, which is a second-level concept) might have only a
very small effect on the similarity measure. Depending on the
intended application, this may be undesirable from a human point
of view because changes in the upper levels correspond to
significantly different decisions regarding the conceptualization
of the main concepts (especially the more abstract ones) of the
domain of interest. These are important decisions that occur in the

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5

number of reassignment steps

O
nt

oR
an

d
si

m
ila

rit
y

in
de

x

top-down reassignment thorough reassignment

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5

number of reassignment steps

ov
er

la
p

be
tw

ee
n

or
ig

in
al

 a
nd

re

as
si

gn
ed

 c
on

ce
pt

 (a
ve

ra
ge

d
ov

er

al
l d

oc
um

en
ts

)

top-down reassignment thorough reassignment
Fig. 3. Evaluation of ontology where instances have been reassigned to
concepts based on their natural-language descriptions. The number of
reassignment steps is used as the x-coordinate. The upper chart shows the
similarity of the original ontology and the ontology after reassignment.
The lower chart shows the average distance (as measured by δU, eq. (2))
between a concept containing an instance in the original ontology and the
concept to which the instance has been reassigned.

early stages of ontology construction; therefore, it might be help-
ful if our similarity measures could be extended to be more sensi-
tive to such differences in the organization of concepts in the up-
per levels of the ontology.
The proposed approach presented in Section 3 assumes that we
are comparing two ontologies based on the same set of instances
(but with different sets of concepts, different assignment of in-
stances to concepts and different arrangement of concepts into a
hierarchy). One way to extend this approach would be to allow
for comparison of ontologies based on different sets of instances.
In this case it is no longer possible to take a pair of instances and
observe where they are placed in one ontology and where in the
other, because each ontology has its own separate set of instances.
Our current approach also completely disregards concept labels,
but in many practical situations these labels are an important part
of the ontology and contain a lot of knowledge about the problem
domain. Thus, it would be interesting to extend our approach to
take concept labels or other attributes into account, e.g. via the
string edit distance.
Another interesting topic for further work would be trying to
evaluate an ontology “by itself” rather than comparing it to a gold
standard. This type of evaluation would be useful in many
contexts where a gold standard ontology is not available. One
possibility is to have a partial gold standard, such as a list of
important concepts but not a hierarchy; evaluation could then be
based on precision and recall. Another scenario is if a gold
standard is not available for our domain of interest but for some
other domain, we can use that domain and its gold standard to
evaluate/compare different ontology learning algorithms and/or
tune their parameters, then use the resulting settings on the actual
domain of our interest in the hope that the result will be a reason-
able ontology, even though we do not have a gold standard to
compare it to.

Acknowledgements
This work was supported by the Slovenian Research Agency and
the IST Programme of the European Community under SEKT
Semantically Enabled Knowledge Technologies (IST-1-506826-
IP) and PASCAL Network of Excellence (IST-2002-506778).
This publication only reflects the authors' views.

Bibliography and References
1. BLOEHDORN, S., HAASE, P., SURE, Y, VOELKER, J., BEVK, M.,

BONTCHEVA, K., ROBERTS, I., Report on the integration of ML, HLT
and OM. SEKT Deliverable D.6.6.1, July 2005.

2. BRANK, J., MLADENIĆ, D., GROBELNIK, M., Automatic Evaluation of
Ontologies. In: Kao, A., Poteet, S. (eds.), Text Mining and Natural
Language Processing, Springer, 2006 (to appear).

3. BREWSTER, C., ALANI, H., DASMAHAPATRA, S., WILKS, Y., Data
driven ontology evaluation. Proceedings of Int. Conf. on Language
Resources and Evaluation, Lisbon, Portugal, 26–28 May 2004.

4. BURTON-JONES, A., STOREY, V. C., SUGUMARAN, V., AHLUWALIA,
P., A semiotic metrics suite for assessing the quality of ontologies.
Accepted by Data and Knowledge Engineering (2004).

5. CHAWATHE, S. S., RAJARAMAN, A., GARCIA-MOLINA, H., WIDOM,
J., Change Detection in Hierarchically Structured Information. Proc.
of the ACM SIGMOD Conference, pp. 493–504, 1996.

6. DING, L., FININ, T., JOSHI, A., PAN, R., COST, R. S., PENG, Y.,
REDDIVARI, P., DOSHI, V., SACHS, J., Swoogle: A search and

metadata engine for the semantic web. Proc. 13th ACM Conference
on Information and Knowledge Management, pp. 652–659 (2004).

7. EHRIG, M., HAASE, P., HEFKE, M., STOJANOVIC, N., Similarity for
ontologies — a comprehensive framework. Proc. 13th European
Conference on Information Systems, May 2005.

8. FOX, M. S., BARBUCEANU, M., GRUNINGER, M., LIN, J., An
organization ontology for enterprise modelling. In: M. Prietula et al.
(eds.), Simulating organizations: Computational models of
institutions and groups, AAAI/MIT Press, 1998, pp. 131–152.

9. GÓMEZ-PÉREZ, A. Some ideas and examples to evaluate ontologies.
Knowl. Sys. Lab., Stanford Univ., 1994.

10. GÓMEZ-PÉREZ, A. Towards a framework to verify knowledge
sharing technology. Expert Systems with Applications, 11(4):519–
529 (1996).

11. GROBELNIK, M, MLADENIC, D., Automated Knowledge Discovery in
Advanced Knowledge Management, Journal of Knowledge
Management, Volume 9, Issue 5, pp. 132-149, 2005.

12. GUARINO, N., WELTY, C., Evaluating ontological decisions with
OntoClean. Comm. of the ACM, 45(2):61–65, February 2002.

13. HARTMANN, J., SPYNS, P., GIBOIN, A., MAYNARD, D., CUEL, R.,
SUÁREZ-FIGUEROA, M. C., SURE, Y., Methods for ontology
evaluation. KnowledgeWeb (EU-IST Network of Excellence IST-
2004-507482 KWEB), Deliverable D1.2.3, January 2005.

14. HAUSSLER, D., Convolution kernels on discrete structures. Technical
report, Department of Computer Science, University of California at
Santa Cruz, 1999.

15. LOZANO-TELLO, A., GÓMEZ-PÉREZ, A., Ontometric: A method to
choose the appropriate ontology. Journal of Database Management,
15(2):1–18 (2004).

16. MAEDCHE, A., STAAB, S., Measuring similarity between ontologies.
Proc. 13th CIKM (2002). LNAI vol. 2473.

17. MEILA, M., Comparing clusterings by the variation of information.
Proc. 16th Ann. CoLT, 2003.

18. MEILA, M., Comparing clusterings — an axiomatic view. Proc.
ICML, 2005.

19. MLADENIC, D., Machine Learning on non-homogeneous, distributed
text data. Ph.D. thesis, University of Ljubljana, 1998.

20. MLADENIC, D., GROBELNIK, M., Feature selection on hierarchy of
web documents. J. of Decision support systems, 35, 2003, 45-87.

21. PATEL, C., SUPEKAR, K., LEE, Y., PARK, E. K., OntoKhoj: a semantic
web portal for ontology searching, ranking and classification. 5th
ACM Workshop Web Inf. & Data Mgmt, New Orleans, USA, 2004.

22. PORZEL, R., MALAKA, R., A task-based approach for ontology
evaluation. Proc. ECAI 2004 Workshop on Ontology Learning and
Population, pp. 9–16.

23. RADA, R., MILI, H., BICKNELL, E., BLETTNER, M., Development and
application of a metric on semantic nets. IEEE Trans. on Systems,
Man, and Cybernetics, 19(1):17–30 (1989).

24. RAND, W. M., Objective criteria for the evaluation of clustering
methods. J. of the American Stat. Association, 66:846–850 (1971).

25. SPYNS, P., EvaLexon: Assessing triples mined from texts. Tech. Rpt.
09, STAR Lab, Brussels, 2005.

26. SUPEKAR, K. A peer-review approach for ontology evaluation. Proc.
Int. Protégé Conf., Madrid, Spain, 2005.

27. VELARDI, P., NAVIGLI, R., CUCCHIARELLI, A., NERI, F., Evaluation
of OntoLearn, a methodology for automatic learning of domain
ontologies. In: P. Buitelaar, P. Cimiano, B. Magnini (eds.), Ontology
Learning from Text: Methods, Evaluation and Applications, IOS
Press, 2005.

28. VÖLKER, J., VRANDECIC, D., SURE, Y., Automatic evaluation of
ontologies (AEON). Proceedings of the 4th International Semantic
Web Conference, 2005.

