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ABSTRACT 
An ontology is an explicit formal conceptualization of some 
domain of interest. Ontology evaluation is the problem of 
assessing a given ontology from the point of view of a particular 
criterion or application, typically in order to determine which of 
several ontologies would best suit a particular purpose. This paper 
proposes an ontology evaluation approach based on comparing an 
ontology to a gold standard ontology, assuming that both 
ontologies are constructed over the same set of instances. 

1. Introduction 
Different knowledge discovery methods have been adopted for 
the problem of semi-automated ontology construction 
(GROBELNIK AND MLADENIC, 2005) including: unsupervised, 
semi-supervised and supervised learning over a collection of text 
documents; using natural language processing to obtain a 
semantic graph of a document; visualization of documents; 
information extraction to find relevant concepts; and visualization 
of the context of named entities in a document collection.  

Users facing a multitude of ontologies need to have a way of 
assessing them and deciding which one best fits their require-
ments. Likewise, people constructing an ontology need a way to 
evaluate the resulting ontology and possibly to guide the con-
struction process and any refinement steps. Automated or semi-
automated ontology learning techniques also require effective 
evaluation measures, which can be used to select the “best” 
ontology out of many candidates, to select values of tunable 
parameters of the learning algorithm, or to direct the learning 
process itself if the latter is formulated as finding a path through a 
search space. 
The remainder of this Chapter is structured as follows. In Sec-
tion 2, we present related work on ontology evaluation. In Section 
3, we refer to a formal framework for defining an ontology and 
show how various aspects of evaluation can be incorporated in 
such a framework. In Section 4, we present our approach to 
evaluating a hierarchic ontology by comparing it to a “gold 
standard”. In Section 5, we test this approach on a real-world 
topic ontology. In Section 6, we present some guidelines for 
future work. 

2. Related Work 
Various approaches to the evaluation of ontologies have been 
considered in the literature, depending on what kind of ontologies 
are being evaluated and for what purpose. Broadly speaking, most 
evaluation approaches fall into one of the following categories:  

• approaches based on comparing the ontology to a “gold 
standard” (which may itself be an ontology; e.g. MAEDCHE 
AND STAAB, 2002);  

• approaches based on using the ontology in an application and 
evaluating the results (e.g. PORZEL AND MALAKA, 2004);  

• approaches involving comparisons with a source of data (e.g. 
a collection of documents) about the domain that is to be 
covered by the ontology (e.g. BREWSTER et al., 2004); 

• approaches where evaluation is done by humans who try to 
assess how well the ontology meets a set of predefined 
criteria, standards, requirements, etc. (e.g. LOZANO-TELLO 
AND GÓMEZ-PÉREZ, 2004).  

In addition to the above categories of evaluation, we can group 
the ontology evaluation approaches based on the level of 
evaluation, as described in BRANK et al. (2006). 

3. A Theoretical Framework for Ontology 
Evaluation 
A reasonable and well thought-out formal definition of ontologies 
has been described recently in the work of EHRIG et al. (2005). In 
this formalization, the ontology (with datatypes) is defined as a 
structure O = (C, T, R, A, I, V, ≤C, ≤T, σR, σA, ιC, ιT, ιR, ιA). It 
consists of (disjoint) sets of concepts (C), types (T), relations (R), 
attributes (A), instances (I), and values (V). The partial orders ≤C 
(on C) and ≤T (on T) define a concept hierarchy and a type 
hierarchy. The function σR: R → C2 provides relation signatures 
(i.e. for each relation, the function specifies which concepts may 
be linked by this relation), while σA: A → C × T provides attribute 
signatures (for each attribute, the function specifies to which 
concept the attribute belongs and what is its datatype). Finally, 
there are partial instantiation functions ιC: C → 2I (the assignment 
of instances to concepts), ιT: T → 2V (the assignment of values to 
types), ιR: R → 2I×I (which instances are related by a particular 
relation), and ιA: A → 2I×V (what is the value of each attribute for 
each instance). (Another formalization of ontologies, based on 
similar principles, has also been described by BLOEHDORN et al. 
(2005)). 

For some types of ontologies, this framework can be further 
extended, particularly with “concept attributes” in addition to the 
“instance attributes” mentioned above. The concept attributes 
would be a set A', with a signature function σA': A' → T and an 
instantiation function ιA': A' → 2C×V. The value of such an attri-
bute would not be associated to a particular instance of a concept, 
but would apply to the concept as such. This extension will be 
useful for some of the evaluation scenarios considered later in this 
section. Other possible extensions, such as relations between 
concepts (as opposed to between instances), the introduction of 



metaclasses, or the introduction of relations with arity greater than 
2, are probably of less practical interest. 

A flexible formal network like this can accommodate various 
commonly-used kinds of ontologies: 

• Terminological ontologies where concepts are word senses 
and instances are words, e.g. the WordNet ontology. 
Attributes include things like natural-language descriptions 
of word senses (for concepts) and string representations of 
words (for instances). 

• Topic ontologies where concepts are topics and instances are 
documents. Familiar examples include the Open Directory 
(dmoz.org) or the Yahoo! directory. Concept attributes 
typically consist of a name and a short description of each 
topic, and instance attributes consist of a document title, 
description, URL, and the main block of the text (for 
practical purposes, such text is often represented as a vector 
using e.g. the TF-IDF weighting under the vector space 
model of text representation). 

• Data-model ontologies where concepts are tables in a data 
base and instances are data records (such as in a database 
schema). In this setting, datatypes and attributes in the 
above-mentioned formal definition of an ontology are 
straightforward analogies to the types and attributes (a.k.a. 
fields or columns) in a data base management system. 

Evaluation can be incorporated in this theoretical framework as a 
function that maps the ontology O to a real number, e.g. in the 
range [0, 1]. However, a more practical approach is to focus the 
evaluation on individual components of the ontology O (which 
correspond roughly to different levels of ontology evaluation; 
BRANK et al., 2006). Results of the evaluation of individual 
components can later be aggregated into a combined ontology 
evaluation score (EHRIG et al., 2005). 
• The datatypes and their values (i.e. T, V, ≤T, and ιT) would 

typically not be evaluated; they are merely the groundwork 
on which the rest of the structure can stand.  

• A lexical- or concept-level evaluation can focus on C, I, ιC, 
and possibly some instance attributes from ιA.  

• Evaluation of the concept hierarchy (is-a relationship) would 
focus on the ≤C partial order.  

• Evaluation of other semantic relations would focus on R, ιR, 
and the concept and instance attributes.  

• One could also envision evaluation focusing on particular 
attributes; for example, whether a suitable natural-language 
name has been chosen for each concept. This kind of 
evaluation would take ιC and the attributes as input and 
assess whether the concept attributes are suitable given ιC 
and the instance attributes. 

• Application- or task-based evaluation could be formalized by 
defining the application as a function A(D, O) which pro-
duces some output given its input data D and the ontology O. 
By fixing the input data D, any evaluation function defined 
on the outputs of A becomes de facto an evaluation function 
on O. However, the practical applicability of such a 
formalization is debatable. 

• Evaluation based on comparison to a gold standard can be 
incorporated into this theoretical framework as a function 
defined on a pair of ontologies (effectively a kind of simila-
rity measure, or a distance function between ontologies). 
Similarly, data-driven evaluation can be seen as a function of 
the ontology and the domain-specific data corpus D, and 

could even be formulated probabilistically as P(O|D). 

4. Architecture and Approach 
We have developed an approach to ontology evaluation primarily 
geared to enable automatic evaluation of an ontology that 
includes instances of the ontology concepts. The approach is 
based on the gold standard paradigm and its main focus is to 
compare how well the given ontology resembles the gold standard 
in the arrangement of instances into concepts and the hierarchical 
arrangement of the concepts themselves. It is similar to the other 
existing ontology evaluation methods based on the gold standard 
(see Section 2) with a main difference in basing the evaluation on 
instances assigned to the ontology concepts: our approach does 
not rely on natural-language descriptions of the concepts and 
instances (unlike e.g., the string edit distance approaches of 
MAEDCHE AND STAAB, 2002). No assumptions are made regarding 
the representation of instances, only that we can distinguish one 
instance from another (and that the ontology is based on the same 
set of instances as the gold standard). 

4.1 Similarity measures on partitions 
Our approach to evaluation is based on the analogies between this 
ontology learning task and traditional unsupervised clustering. In 
clustering, the task is to partition a set of instances into a family 
of disjoint subsets. Here, the topic ontology can be seen as a 
hierarchical way of partitioning the set of instances. The 
clustering community has proposed various techniques for 
comparing two partitions of the same set of instances, which can 
be used to compare the output of an automated clustering method 
with a gold-standard partition. If these distance measures on 
traditional “flat” partitions can be extended to hierarchical 
partitions, they can be used to compare a learned ontology to the 
gold-standard ontology (since both will be, in the context of this 
ontology learning task, two hierarchical partitions of the same set 
of instances). 

One popular measure of agreement between two flat partitions is 
the Rand index (RAND, 1971). Assume that there is a set of 
instances O = {o1, ..., on} (in this section we will denote the set of 
instances by O rather than I as in the previous section, to prevent 
confusion with i as an index in subscripts), with two partitions of 
O into a family of disjoint subsets, U={U1, ..., Um} and V={V1, ..., 
Vk}, where ∪i=1..m Ui = O, ∪j=1..k Vj = O, Ui ∩ Ui' = {} for each 1 ≤ 
i < i' ≤ m, and Uj ∩ Uj' = {} for each 1 ≤ j < j' ≤ k. Then one way 
to compare the partitions U and V is to count the agreements and 
disagreements in the placement of instances into clusters. If two 
items oi, oj ∈ O belong to the same cluster of U but to two 
separate clusters of V, or vice versa, this is considered a 
disagreement. On the other hand, if they belong to the same 
cluster in both partitions, or to separate clusters in both partitions, 
this is considered an agreement between partitions. The Rand 
index between U and V is the number of agreements relative to 
the total number of pairs of instances (i.e. to n(n–1)/2). 

4.2 A similarity measure for ontologies 
We can elegantly formulate a similarity measure over ontologies 
by rephrasing the Rand index as follows. Let us denote by U(o) 
the cluster of U that contains the instance o ∈ O, and similarly by 
V(o) the cluster of V that contains the instance o ∈ O. Let δx(Xi, 
Xj) be some distance measure between clusters Xi and Xj. Then we 
define the OntoRand index by the following formula: 

OntoRandIdx(U, V)=        (1) 
         1– [Σ1≤i<j≤n |δU(U(oi), U(oj)) – δV(V(oi), V(oj))|] / [n(n–1)/2]. 



If we define δU(Ui, Uj) = 1 if Ui = Uj, and δU(Ui, Uj) = 0 otherwise 
and δV as well in an analogous manner, we can see that the Rand 
index is a special case of our OntoRand index. That is, the term 
bracketed by |...| in eq. (1) equals 1 if there is a disagreement 
between U and V concerning the placement of the pair of 
instances oi and oj. The sum over all i and j therefore counts the 
number of pairs where a disagreement occurs. 
When we apply the OntoRand index for the purpose of comparing 
ontologies, we must take the hierarchical arrangement of concepts 
into account. In the original Rand index, what matters for a 
particular pair of instances is simply if they belong to the same 
cluster or not. However, when concepts or clusters are organized 
hierarchically, not any two different clusters are equally different. 
For example, two concepts with a common parent in the tree are 
likely to be quite similar even though they are not exactly the 
same; on the other hand, two concepts that do not have any 
common ancestor except the root of the tree are probably highly 
unrelated. Thus, if one ontology places a pair of instances in the 
same concept while the other ontology places this pair of 
instances in two different concepts with a common parent, this is 
a disagreement, but not a very strong one; on the other hand, if 
the second ontology places the two instances into two completely 
unrelated concepts, this would be a large disagreement.  We use 
the formula for OntoRandIdx(U, V) given above, where the 
functions δU and δV take this intuition into account. That is, rather 
than returning merely 1 or 0 depending on whether the given two 
clusters are the same or not, the functions δU and δV should return 
a real number from the range [0, 1], expressing a measure of how 
closely related the two clusters are. 

By plugging in various definitions of the functions δU and δV, we 
can obtain a family of similarity measures for ontologies, suitable 
for comparing an ontology with the gold standard in the context 
of the task that has been discussed in Section 4.1. We propose two 
concrete families of δU and δV. Since the definitions of δU and δV 
will always be analogous to each other and differ only in the fact 
that each applies to a different ontology, we refer only to the δU 
function in the following discussion. 

4.2.1 Similarity based on common ancestors 
One possibility is inspired by the approach that is sometimes used 
to evaluate the performance of classification models for 
classification in hierarchies (see e.g. MLADENIĆ, 1998), and that 
could incidentally also be useful in the context of e.g. evaluating 
an automatic ontology population system. Given a concept Ui in 
the ontology U, let A(Ui) be the set of all ancestors of this 
concept, i.e. all concepts on the path from the root to Ui 
(including Ui itself). If two concepts Ui and Uj have a common 
parent, the sets A(Ui) and A(Uj) will have a large intersection; on 
the other hand, if they have no common parent except the root, 
the intersection of A(Ui) and A(Uj) will contain only the root 
concept. Thus the size of the intersection can be taken as a 
measure of how closely related the two concepts are. 
 δU(Ui, Uj) = |A(Ui) ∩ A(Uj)| / |A(Ui) ∪ A(Uj)|. (2) 
This measure has the additional nice characteristic that it can be 
extended to cases where U is not a tree but an arbitrary directed 
acyclic graph. If the arrows in this graph point from parents to 
children, the set A(Ui) is simply the set of all nodes from which U 
is reachable. 

4.2.2 Similarity based on distance in the tree 
An alternative way to define a suitable function δU would be to 
work directly with the distances between Ui and Uj in the tree U. 
In this case, let l be the distance between Ui and Uj in the tree 
(length of the path from Ui to the common ancestor of Ui and Uj, 
and thence down to Uj), and h be the depth of the deepest 
common ancestor of Ui and Uj. If l is large, this is a sign that Ui 
and Uj are not very closely related; similarly, if h is small, this is a 
sign that Ui and Uj don’t have any common ancestors except very 
general concepts close to the root, and therefore Ui and Uj aren’t 
very closely related. There are various ways of taking these 
intuitions into account in a formula for δU as a function of l and h. 
For example, RADA et al. (1989) have proposed a distance 
measure of the form: 
 δ(l, h) = e–αl th(βh)    (3) 

Here, α and β are nonnegative constants, and th is the hyperbolic 
tangent 
 th(x) = (ex – e–x) / (ex + e–x) = 1 – 2/(1 + e2x). 

Thus, if h is small, th(βh) is close to 0, whereas for a large h it 
becomes close to 1. It is reasonable to treat the case when the two 
concepts are the same, i.e. when Ui = Uj and thus l = 0, as a 
special case, and define δ(0, h) = 1 in that case, to prevent δU(Ui, 
Ui) from being dependent on the depth of the concept Ui. 

Incidentally, if we set α to 0 (or close to 0) and β to some large 
value, δ(l, h) will be approx. 0 for h = 0 and approx. 1 for h > 0. 
Thus, in the sum used to define the OntoRand index (1), each pair 
of instances contributes the value of 1 if they have some common 
ancestor besides the root in one ontology but not in other, 
otherwise it contributes the value of 0. Thus, the OntoRand index 
becomes equivalent to the ordinary Rand index computed over the 
partitions of instances implied by the second-level concepts of the 
two ontologies (i.e. the immediate subconcepts of the root 
concept). This can be taken as a warning that α should not be too 
small and β not too large, otherwise the OntoRand index will 
ignore the structure of the lower levels of the ontologies. 
The overlap-based version of dU from eq. (2) can also be defined 
in terms of h and l. If the root is taken to be at depth 0, then the 
intersection of A(Ui) and A(Uj) contains h + 1 concepts, and the 
union of A(Ui) and A(Uj) contains h + l – 1 concepts. Thus, we see 
that eq. (2) is equivalent to defining 

 δ(l, h) = (h + 1) / (h + l + 1).   (4) 
By comparing the equations (3) and (4), we see a notable 
difference between the two definitions of δ: when h = 0, i.e. when 
the two instances have no common ancestor except the root, eq. 
(3) returns δ = 0 while eq. (4) returns δ = 1 / (l + 1) > 0. When 
comparing two ontologies, it may often happen that many pairs of 
instances have no common ancestor (except the root) in either of 
the two ontologies, i.e. hU = hV = 0, but the distance between their 
concepts is likely to be different: lU ≠ lV. In these cases, using eq. 
(3) will result in δU = δV = 0, while eq. (4) will result in δU ≠ δV. 
When the resulting values |δU – δV| are used in eq. (1), we see that 
in the case of definition (4), many terms in the sum will be 0 and 
the OntoRand index will be close to 1. For example, in our 
experiments with the Science subtree of dmoz.org (Sec. 5.3), 
despite the fact that the assignment of instances to concepts was 
considerably different between the two ontologies, approx. 81% 
of instance pairs had hU = hV = 0 (and only 3.2% of these 
additionally had lU = lV). Thus, when using the definition of δ 
from eq. (3) (as opposed to the overlap-based definition from eq. 



(4)), we must accept the fact that most of the terms in the sum (1) 
will be 0 and OntoRand index will be close to 1. This does not 
mean that the resulting values of OntoRand are not useful for 
assessing whether e.g. one ontology is closer to the gold standard 
than another ontology is, but it may nevertheless appear confusing 
that OntoRand is always so close to 1. In this case a possible 
alternative is to replace eq. (3) by 
 δ(l, h) = e–αl th(β(h + 1))   (3') 

The family of δ-functions defined by (3') can be seen as a 
generalization (in a loose sense) of the δ-function from formula 
(4). For example, we compared the values of δ produced by these 
two definitions on a set of 106 random pairs of documents from 
the dmoz.org Science subtree. For a suitable choice of α and β, 
the definition (3') can be made to produce values of δ that are 
very closely correlated with those of definition (4) (e.g. correl. 
coefficient = 0.995 for α = 0.15, β = 0.25). Similarly, when we 
compute |δU–δV| for various pairs of documents (when using eq. 
(1) to compare two ontologies in Sec. 5.3), definition (3') can 
yield values closely correlated to those of definition (4) for 
suitable values of α and β (e.g. correl. coef. = 0.981 for α = 0.8, β 
= 1.5). However, note that the fact that δ values of (3') are closely 
correlated with those of (4) for some choice of α and β does not 
imply that the |δU–δV| will also be closely correlated for the same 
choice of α and β (or vice versa).  

The need to select concrete values of α and β is one of the 
disadvantages of using the definition (3) (or (3')) rather than the 
overlap-based definition (2) (or equivalently (4)). 

Further generalizations. The distance measure (3) could be 
further generalized by taking δ(l, h) = f(l) g(h) for any decreasing 
function f and increasing function g. Since the values l and h are 
always integers and are limited by the depth of the tree (or twice 
the depth in the case of l), the functions f and g (or even δ(l, h) 
itself) could even be defined using a table of function values for 
all possible l and h. 
Note that the main part of the OntoRand index formula, as 
defined in equation (1), i.e. the sum Σ1≤i<j≤n |δU(U(oi), U(oj)) – 
δV(V(oi), V(oj))|, can also be interpreted as a Manhattan (L1-norm) 
distance between two vectors of n(n–1)/2 components, one 
depending on the ontology U and the other depending only on the 
ontology V. Thus, in effect, we have represented an ontology U 
by a “feature vector” in which the (i, j)-th component has the 
value δU(U(oi), U(oj)) describing how closely the instances oi and 
oj have been placed in that ontology. This interpretation opens the 
possibility of various further generalizations, such as using 
Euclidean distance instead of Manhattan distance, or even using 
kernel methods (cf. HAUSSLER, 1999). However, we leave such 
extensions for further work. 

4.3 Approximation algorithms 
As can be seen from eq. (1), the computation of our ontology 
similarity measure involves a sum over all pairs of documents, (i, 
j) for 1 ≤ i < j ≤ n. This quadratic time complexity can be 
problematic when comparing ontologies with a fairly large 
number of instances (e.g. on the order of 100000, as in the case of 
the dmoz.org “Science” subtree mentioned in Section 5). One way 
to speed up the computation of the similarity measure and obtain 
an approximate result is to use a randomly sampled subset of pairs 
rather than all possible pairs of documents. That is, eq. (1) would 
then contain the average value of |δU(U(oi), U(oj)) – δV(V(oi), 
V(oj))| over some subset of pairs instead of over all pairs. 

Another way towards approximate computation of the similarity 
measure is to try to identify pairs (i, j) for which the difference 
|δU(U(oi), U(oj)) – δV(V(oi), V(oj))| is not close to 0. If both 
ontologies classify the instances oi and oj into highly unrelated 
clusters, the values δU(U(oi), U(oj)) and δV(V(oi), V(oj)) will both 
be close to 0 and their difference will also be close to 0 and will 
not have a large effect on the sum. (In a typical dmoz-like 
hierarchy we can expect that a large proportion of pairs of 
instances will fall unto such relatively unrelated clusters. As an 
extreme case, consider the definition of δU using eq. (3). If a pair 
of instances has no common ancestor concept except the root, h 
will be 0 and thus δU will be 0. If this happens in both ontologies, 
the pair will contribute nothing to the sum in eq. (1).) Thus it 
would be reasonable to try identifying pairs (i, j) for which oi and 
oj are in closely related clusters in at least one of the two 
ontologies, and computing the exact sum for these pairs, while 
disregarding the remaining pairs (or processing them using the 
subsampling technique from the previous paragraph). For 
example, suppose that δU is defined by eq. (4) as δ(l, h) = (h + 1) / 
(h + l + 1). Thus, we need to find pairs of concepts for which (h + 
1) / (h + l + 1) is greater than some threshold ε. (Then we will 
know that detailed processing is advisable for pairs of instances 
which fall into one of these pairs of concepts.) The condition (h + 
1) / (h + l + 1) > ε can be rewritten as l < (h + 1)(1/ε – 1). Thus, 
suitable pairs of concepts could be identified by the following 
algorithm: 

 Initialize P := {}. 
 For each concept c: 
  Let h be the depth of c, and let  
   L = (h + 1)(1/ε – 1). 
  Denote the children of c (its immediate subconcepts) 
   by c1, …, cr. 
  For each l from 1 do L, for each i from 1 to r,  
   let Sl,i be the set of those subconcepts of c that 
   are also subconcepts of ci and are l levels  
   below c in the tree. 
  For each l from 1 to L, for each i from 1 to r, 
   add to P all the pairs from  
   Sl,i × (∪l' ≤ L – l ∪i' ≠ i Sl',i'). 

In each iteration of the outermost loop, the algorithm processes a 
concept c and discovers all pairs of concepts c', c'' such that c is 
the deepest common ancestor of c' and c'' and δU(c', c'') > ε. For 
more efficient maintenance of the Sl,i sets, it might be advisable to 
process the concepts c in a bottom-up manner, since the sets for a 
parent concept can be obtained by merging appropriate sets of its 
children. 
For the time being, we have tested random sampling of pairs as 
outlined at the beginning of this Subsection. Separate treatment of 
pairs with (h + 1) / (h + l + 1) > ε will be the topic of future work. 

5. Evaluation of the proposed approach 
The idea of evaluating the proposed approach to automatic 
ontology evaluation is in showing its output on several concrete 
situations enabling the reader to get an idea of the approach 
results given a well defined mismatch in the ontologies (the 
learned ontology and the “gold-standard” ontology). Namely, 
instead of learning and ontology that we then evaluate, we use the 
“gold-standard” ontology, introduce some errors in it and use it to 
simulate the learned ontology. We have defined several simple 
and intuitive operations for introducing errors in the “gold-



standard” ontology. The aim is to illustrate a kind of mismatch 
that can be found between the learned ontology and the “gold-
standard” ontology and its influence on the evaluation score of the 
proposed OntoRand index. The following operations are 
presented below in our evaluation of the proposed approach: 
• Removing lower levels of the tree – deleting all concepts 

below a certain depth in the tree (see Section 5.1). 
• Swapping a concept and its parent (see Section 5.2).  
• Reassigning instances to concepts based on their associated 

natural language text (see Section 5.3). 
We have tested our approach on a concrete task of evaluating a 
topic ontology based on the dmoz.org internet directory. This 
ontology is structured as a hierarchy of topics, and each topic may 
contain (besides subtopics) zero or more links to external web 
pages. 
We used a version of the dmoz.org directory downloaded on 
October 21, 2005. It contains 687,333 concepts and 4,381,225 
instances. The concepts are organized into a tree; the deepest parts 
of the hierarchy go 15 levels deep, but in most places it is 
shallower (85% of all concepts are on levels 5 through 9, and the 
average node depth is 7.13). Since it would be too time-
consuming to compute our OntoRand index over all pairs of 
documents (there are approx. 9.6 ⋅ 1012 such pairs), we used a 
random sample of 106 pairs of documents. 
In the case of the similarity measure (3), which is based on the 
tree distance between two concepts, it is necessary to select the 
parameters α and β. Recall that α is used in the term e–αl, where l 
is the length of the path from one concept to the other. Since our 
hierarchy has just 15 levels, we know that l ≤ 28 for any pair of 
nodes; but since most nodes are on levels 5 through 9, we can 
expect l to be around 10–15 for a typical random pair of unrelated 
concepts. We decided to use α = 0.3, which results in e–αl values 
from 0.74 (for l = 1) to 0.22 (for l = 5), 0.05 (for l = 10) and 0.01 
(for l = 15). 

The parameter β can be chosen using similar considerations. It is 
used in the term th(βh), where h is the level at which the last 
common ancestor of the two concepts is located. Thus in our case 
h will be between 0 and 14, and will be close to 0 for two random 
unrelated concepts. For two very closely related concepts, h will 
typically be close to the depth of these two concepts, which (as 
we saw above) is on average around 7. We use β = 0.4, which 
results in values of th(βh) ranging from 0 (for h = 0) and 0.20 (for 
h = 1) to 0.76 (for h = 5), 0.89 (for h = 7), and 0.96 (for h = 10). 

In general, the choice values of α and β depends on the 
characteristics of the ontologies we are dealing with. A more 
principled way of choosing α and β might be to set explicit 
requirements on the value that we want e–αl to have for a pair of 
two random (i.e. typically unrelated) documents, and on the value 
that we want th(βh) to have for a pair of two very closely related 
documents. 

5.1 Removing lower levels of the tree 
In this scenario we keep only the upper k levels of the tree, for 
various values of k. Any concepts located at levels from k+1 on 
are discarded; instances that used to be assigned to one of the 
deleted concepts are reassigned to its ancestor on the level k–1 
(i.e. the deepest level that was not deleted). We then compare the 
resulting tree with the original tree. This removal of lower levels 
of the tree corresponds to the scenario that the ontology is being 
constructed automatically in a top-down manner (e.g. by hierar-

chical top-down clustering of instances) and some automatic stop-
ping criterion is used to decide when to stop partitioning the clus-
ters; if we stop too early, the resulting hierarchy will lack the 
lower levels. The chart in Figure 1 shows how the overlap mea-
sure (eq. 2) and the tree distance measure (eq. 3) react to this 
gradual removal of lower parts of the hierarchy. 
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Fig. 1. Evaluation of ontologies that lack lower levels, based on the 
OntoRand index. The overlap-based similarity measure uses formula (2) 
to define δU, while the tree-distance based similarity measure uses formula 
(3). The dotted line shows an analytical approximation of the OntoRand 
values based on the overlap similarity measure. 

We note that the overlap-based similarity measure increases 
monotonically as more and more levels are kept. The increase is 
quick at first and slow at the end, which is reasonable because (as 
has been noted above) the deeper levels of the hierarchy contain 
relatively few nodes, so discarding them does not alter the 
hierarchy so dramatically. For instance, if we constructed an 
ontology in a top-down manner and stopped when the ontology is 
at most seven levels deep, the OntoRand index would estimate the 
similarity of this ontology to the gold standard (having an average 
node depth of approx. 7) as 0.94. On the other hand, if we stopped 
after at most three levels, the OntoRand index would be 0.74. 
It may be somewhat surprising that the similarity of an ontology 
to the original one is still as high as 0.74 even if only the top three 
levels of the ontology have been kept. To understand this, con-
sider a pair of random concepts; in the original hierarchy, they are 
typically unrelated and are located around the 7th level, so the an-
cestor sets of eq. (2) have an intersection of 1 and a union of 
around 13, resulting in the overlap measure δ  ≈ 1/13. In the 
pruned hierarchy, where only k uppermost levels have been re-
tained, and documents from lower nodes reassigned to the 
ancestor nodes at level k–1, such a random pair of documents 
would yield δ around 1/(2k–1). Thus such pairs of documents 
would push the OntoRand index value towards 1 – |1/13 – 1/(2k–1)|. 
As the “analytical approximation” in the chart shows, this formula 
is not an altogether bad predictor of the shape of the curve for the 
overlap-based measure. 

The tree-distance similarity measure is slightly more problema-
tic in this scenario. In the original tree, a typical random pair of 
instances falls into unrelated concepts that have no common an-
cestors except the root, i.e. h = 0 and thus δ = 0 (or δ close to 0 
even if h > 0). If a few deepest levels of the tree are removed and 
instances reassigned to the suitable ancestor concepts, any pair of 
instances that used to have h = 0 will still have h = 0, thus its δ 
according to eq. (3) remains unchanged and this pair does not 
help decrease the similarity measure between the new hierarchy 



and the original one. This is why the similarity as measured by 
OntoRand remains relatively high all the time. Only concept pairs 
with h > 0 contribute towards the dissimilarity, because their 
distance (l in eq. (3)) decreases if the lower levels are pruned 
away and the instances moved to higher-level concepts. Because l 
is used in the term e–αl, decreasing l causes the value of δ to in-
crease for that pair of instances; the more levels we prune away, 
the larger δ will be compared to its original value, and the Onto-
Rand similarity decreases accordingly. A quirk occurs at the very 
end, when only one level remains and h drops to 0 even for these 
pairs of instances; thus δ doesn’t increase when we move from 
two levels to 1: it drops to 0 instead, causing the overall Onto-
Rand similarity to grow again. This non-monotonicity could be 
addressed by modifying the formula (3) somewhat, but it doesn’t 
really have a large practical impact anyway, as in a practical set-
ting the ontology to be compared to the gold standard would 
certainly have more than one level. 

5.2 Swapping a concept and its parent 
This operation on trees is sometimes known as “rotation”. Consid-
er a concept c and its parent concept c'. This operation replaces c 
and c' so that c' becomes the child of c; all other children of c', 
which were formerly the siblings of c, are now its grandchildren; 
all the children of c, which were formerly the grandchildren of c', 
are now its siblings. If c' formerly had a parent c", then c" is now 
the parent of c, not of c'. The result of this operation is a tree such 
as might be obtained by an automated ontology construction algo-
rithm that proceeds in a top-down fashion and did not split the set 
of instances correctly (e.g. instead of splitting the set of instances 
related to science into those related to physics, chemistry, 
biology, etc., and then splitting the “physics” cluster into 
mechanics, thermodynamics, nuclear physics, etc., it might have 
split the “science” cluster into mechanics, thermodynamics, 
nuclear physics, and “miscellaneous”, where the last group would 
later be split into chemistry, biology, etc.). 
How does this operation affect the values of h and l used in eqs. 
(2) and (3)? For two concepts that were originally both in the 
subtree rooted by c, the value of h decreases by 1; if they were 
both in the subtree of c' but not in the subtree of c, the value of h 
increases by 1; if one was in the subtree of c and the other outside 
the subtree of c', the value of l decreases by 1; if one was in the 
subtree of c' but not in the subtree of c, and the other was outside 
the subtree of c', the value of l increases by 1; otherwise, nothing 
changes. The last case includes in particular all those pairs of 
instances where none belonged to the subtree rooted by c' in the 
original ontology; this means the vast majority of pairs (unless the 
subtree of c' was very large). Thus the disagreement in the 
placement of documents is usually quite small for an operation of 
this type, and OntoRand is close to 1. This phenomenon is even 
more pronounced when using the similarity measure based on tree 
distance (eq. 3) instead of the overlap measure (eq. 2). Therefore, 
in Figure 2, we show only the results for the overlap measure and 
we show 1–OntoRand instead of OntoRand itself. 
We performed 640 experiments with this operation, using each of 
the 640 third-level categories as the category c (e.g. replacing 
Top/Science/Physics and Top/Science, etc.). Experiments show 
that the dissimilarity of the ontology after rotation to the original 
ontology grows with the size of the parent subtree of c, while this 
dissimilarity decreases with the size of c’s own subtree. This is 
reasonable: the more instances there are in c’s subtree, the less 
different it is from its parent, and the less the ontology has 

changed due to the rotation. For instance, the topmost group of 
“×” symbols on Fig. 2 corresponds to experiments where c was 
one of the subcategories of the largest second-level category, 
“Top/World”. As this chart shows, the dissimilarity is almost 
linearly proportional to the difference in the size of the parent 
subtree and the subtree rooted by c. 
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Fig. 2. Evaluation of ontologies where a concept c has been swapped 
with its parent. These charts explore the connection between dissimilarity 
and the number of instances in c’s own subtree. Each choice of c is re-
presented by one symbol (whose shape depends on the number of instan-
ces in the subtree rooted by c’s parent). The x-coordinate is the difference 
in the number of instances between the parent’s and c’s own subtree.  

5.3 Reassignment of instances to concepts  
In the dmoz ontology, each instance is really a short natural-
language document consisting of a web page title and description 
(usually 10–20 words). In this scenario, we follow the standard 
practice from the field of information retrieval and represent each 
document by a normalized TF-IDF vector. Based on these 
vectors, we compute the centroid of each concept, i.e. the average 
of all documents that belong to this concept or to any of its direct 
or indirect subconcepts. The cosine of the angle between a 
document vector and a concept centroid vector is a measure of 
how closely the topic of the document matches the topic of the 
concept (as defined by the set of all documents belonging to that 
concept). We then reassign each document to the category whose 
centroid is the most similar to the document vector. Thus, the 
hierarchical relation between concepts remains unchanged, but 
the assignment of instances to concepts may change considerably. 
This reassignment of instances to the nearest concepts resembles 
operations that might be used in an automated ontology construc-
tion or population approach (e.g. analogous to k-means 
clustering). We then measure the similarity of the new ontology 
(after the reassignment of documents to concepts) to the original 
one. 

For reasons of scalability, the experiments in this section were not 
performed on the entire dmoz ontology, but only on its “Science” 
subtree. This consists of 11,624 concepts and 104,853 documents. 
We compare two reassignment strategies: “thorough reassign-
ment” compares each document vector to the centroids of all con-
cepts, while “top-down reassignment” is a greedy approach that 
starts with the root concept and proceeds down the tree, always 
moving into the subconcept whose centroid is the most similar to 
the document vector. When a leaf is reached, or when none of the 
subconcept centroids is more similar to the document vector than 
the current concept’s centroid, the procedure stops and assigns the 
document to the current concept. This is much faster than tho-
rough reassignment, but it has the risk of being derailed into a less 
promising part of the tree due to bad choices in the upper levels. 



After documents are reassigned to concepts, new centroids of the 
concepts may be computed (based on the new assignment of do-
cuments to concepts), and a new reassignment step performed 
using the new centroids. The charts on Fig. 3 show the results for 
up to five reassignment steps. The overlap-based definition of δU 
(see eq. (2)) was used for both charts. 
The upper chart in Figure 3 shows the similarity of the ontology 
after each reassignment step to the original ontology. As can be 
expected, top-down reassignment of documents to concepts intro-
duces much greater changes to the ontology than thorough reas-
signment. Most of the change occurs during the first reassignment 
step (which is reasonable as it would be naïve to expect a simple 
centroid-based nearest neighbor approach using 10–20 word 
descriptions to accurately match the classification of the human 
editors working for dmoz). In fact, it turns out that 93% of docu-
ments are moved to a different concept during the first top-down 
reassignment step (or 66% during the first thorough reassignment 
step). However, the similarity measure between the new ontology 
and the original one is nevertheless fairly high (around 0.74). The 
reasons for this are: firstly, only the assignment of documents to 
concepts has been changed, but not the hierarchical relationship 
between the concepts; secondly, if documents are moved to 
different concepts in a consistent way, δU may change fairly little 
for most pairs of documents, resulting in a high OntoRand index 
value; thirdly, even though 93% of documents were moved to a 
different concept, the new concept was often fairly close to the 
original one. This is shown on the lower chart of Fig. 3, where the 
value of δU was computed between the concept containing a docu-
ment in the original ontology and the one containing this docu-
ment after a certain number of reassignment steps; this was then 
averaged over all documents. As this chart shows, even though 
only 7% of documents remained in the same concept during the 
first step of top-down reassignment, the average (over all docu-
ments) δU between the original and the new concept is not 0.07 
but much higher – approx. 0.31. 

6. Discussion and future work 
The main features of our proposed approach are that it focuses on 
fully automated evaluation of ontologies, based on comparison 
with a gold standard ontology; it does not make any assumptions 
regarding the description or representation of instances and 
concepts, but assumes that both ontologies have the same set of 
instances. We proposed a new ontology similarity measure, Onto-
Rand index, designed by analogy with the Rand index that is 
commonly used to compare partitions of a set. We propose 
several versions of the OntoRand index based on different 
underlying measures of distance between concepts in the 
ontology. We evaluated the approach on a large ontology based 
on the dmoz.org web directory. The experiments were based on 
several operations that modify the gold standard ontology in order 
to simulate possible discrepancies that may occur if a different 
ontology is constructed over the same problem domain (and same 
set of instances). The experiments show that the measure based on 
overlap of ancestor sets (Sec. 4.2.1) is more convenient than the 
measure based on tree distance (Sec. 4.2.2), because the latter 
requires the user to define the values of two parameters and it is 
not obvious how to do this in a principled way. Additionally, the 
tree-distance based measure is often less successful at spreading 
similarity values over a greater part of the [0, 1] interval; to 
address this issue, we propose a modified similarity measure (eq. 
3'), which we will evaluate experimentally in future work. 
Another issue, which is shared by both similarity measures 

proposed here, is that the resulting OntoRand index is sometimes 
insufficiently sensitive to differences that occur in the upper 
levels of the ontology (Sec. 5.2). Sec. 5.3 indicates another 
possible drawback of this approach, namely that keeping the 
structure of the concept hierarchy and modifying only the 
assignment of instances to concepts may not affect the similarity 
measure as much as a human observer might expect. 

From a purely algorithmic point of view, it would be interesting 
to explore if the ontology similarity measure as currently defined 
in Section 4.2 can be accurately computed in sub-quadratic time 
(in terms of the number of instances). 
The experimental evaluation in Section 5 could be extended with 
various other operations. For example, we could split existing leaf 
concepts into subconcepts, either randomly or using some cluster-
ing technique. This is the converse of the operation of removing 
the leaf concepts described in Section 5.1. Another possibly inter-
esting operation would be to merge two or more sibling concepts.  
As the experiments with switching a concept and its parent 
showed (Sec. 5.2), a rearrangement of concepts in the upper levels 
of the tree (in our case we were switching a third-level concept 
and its parent, which is a second-level concept) might have only a 
very small effect on the similarity measure. Depending on the 
intended application, this may be undesirable from a human point 
of view because changes in the upper levels correspond to 
significantly different decisions regarding the conceptualization 
of the main concepts (especially the more abstract ones) of the 
domain of interest. These are important decisions that occur in the 
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Fig. 3. Evaluation of ontology where instances have been reassigned to 
concepts based on their natural-language descriptions. The number of 
reassignment steps is used as the x-coordinate. The upper chart shows the 
similarity of the original ontology and the ontology after reassignment. 
The lower chart shows the average distance (as measured by δU, eq. (2)) 
between a concept containing an instance in the original ontology and the 
concept to which the instance has been reassigned. 



early stages of ontology construction; therefore, it might be help-
ful if our similarity measures could be extended to be more sensi-
tive to such differences in the organization of concepts in the up-
per levels of the ontology.  
The proposed approach presented in Section 3 assumes that we 
are comparing two ontologies based on the same set of instances 
(but with different sets of concepts, different assignment of in-
stances to concepts and different arrangement of concepts into a 
hierarchy). One way to extend this approach would be to allow 
for comparison of ontologies based on different sets of instances. 
In this case it is no longer possible to take a pair of instances and 
observe where they are placed in one ontology and where in the 
other, because each ontology has its own separate set of instances.  
Our current approach also completely disregards concept labels, 
but in many practical situations these labels are an important part 
of the ontology and contain a lot of knowledge about the problem 
domain. Thus, it would be interesting to extend our approach to 
take concept labels or other attributes into account, e.g. via the 
string edit distance. 
Another interesting topic for further work would be trying to 
evaluate an ontology “by itself” rather than comparing it to a gold 
standard. This type of evaluation would be useful in many 
contexts where a gold standard ontology is not available. One 
possibility is to have a partial gold standard, such as a list of 
important concepts but not a hierarchy; evaluation could then be 
based on precision and recall. Another scenario is if a gold 
standard is not available for our domain of interest but for some 
other domain, we can use that domain and its gold standard to 
evaluate/compare different ontology learning algorithms and/or 
tune their parameters, then use the resulting settings on the actual 
domain of our interest in the hope that the result will be a reason-
able ontology, even though we do not have a gold standard to 
compare it to. 
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