
Comparing The Accumulation Of Technical Debt

Between Two Applications Developed With

Spring Web MVC And Apache Struts 2

Georgios Digkas

a

g.digkas@rug.nl

Alexander Chatzigeorgiou

b

achat@uom.gr

Apostolos Ampatzoglou

a

a.ampatzoglou@rug.nl

Paris Avgeriou

a

paris@cs.rug.nl

a Department of Mathematics and Computer Science, University of Groningen, Netherlands
b Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece

Abstract

This paper presents the results of an observational study
that investigates the di↵erences between two widely used
software development frameworks for Java EE applica-
tions. Also, it presents the accumulation of Technical
Debt and the evolution of code quality metrics of soft-
ware developed using these frameworks. Considering
that web applications hold the lion’s share of today’s
IT industry, this study focuses on two widely popular
Java EE frameworks, namely Spring Web MVC Frame-
work and Apache Struts 2. In particular, we have devel-
oped one system over four versions in both frameworks
while monitoring Technical Debt and code quality met-
rics. The findings indicate that software developed based
on these frameworks is relatively free of Technical Debt.
Moreover, we have not noticed any significant di↵erences
between the two frameworks in terms of Technical Debt,
from the perspective of source code metrics. Finally,
conducting this study, we realized that if the framework
is properly used it can potentiality lead to high quality
and maintainable systems.

1 Introduction

Technical Debt (TD) is a software engineering metaphor that has been coined by Ward Cunning-
ham [Cun92] in 1992 as: “Shipping first time code is like going into debt. A little debt speeds
development so long as it is paid back promptly with a rewrite. Objects make the cost of this

Copyright

c� by the paper’s authors. Copying permitted for private and academic purposes.

Proceedings of the Seminar Series on Advanced Techniques and Tools for Software Evolution SATToSE2016 (sat-

tose.org), Bergen, Norway, 11-13 July 2016, published at http://ceur-ws.org

1



transaction tolerable. The danger occurs when the debt is not repaid. Every minute spent on not-
quite-right code counts as interest on that debt. Entire engineering organizations can be brought
to a stand-still under the debt load of an unconsolidated implementation, object-oriented or oth-
erwise”. Additionally, software engineers and developers often compromise internal quality to
follow shortcuts in the development to meet close deadlines, at the expense of long-term system
understandability and maintainability. This happens both in industrial settings where deadlines
are pushing people to deliver debt-ridden solutions as well as in open-source projects where release
cycles or pure desire to implement a feature fast introduce similar shortcuts.

One way to build systems faster is to use a framework. A framework is a set of classes and
libraries which have been written by other developers and the programmers can use them to
create enterprise applications. Currently, there is a plethora of frameworks and the number is
growing. The developer can gain several benefits from the usage of a framework such as: easier
and faster software development a more robust architecture and extensibility. The frameworks
provide the infrastructure allowing the developer to focus on the business logic to be implemented.
Proponents of frameworks claim that building software using frameworks results in higher quality
code/products. This is happening because most of the frameworks are based on widely-acceptable
design patterns.

The purpose of this study is to compare two of the most widely-used frameworks for Java EE
applications. The analysis focuses on the resulting software quality and Technical Debt.

2 Background Information

Although the research community has not agreed upon a common way of assessing technical debt,
there are some tools that provide TD estimates such as the ones that implement the SQALE
method [Let12]. SQALE is a generic and language independent method. SQALE stands for
Software Quality Assessment based on Lifecycle Expectations and is delivered under a Creative
Commons license. One of the most widely used tools for the calculation of TD is the SonarQube
[son] platform. The calculation of TD is based on rules and issues. For each rule there is an
estimation of time that is required to fix the corresponding issue. The SonarQube sums the
estimated time for each of the issues and calculates the Technical Debt in man-days.

3 Case Study Design

The present study aims at investigating the question: “Are there any significant di↵erences between
the two most widely-used Java these EE frameworks, in terms of software quality and accumulation
of Technical Debt?”. The study aims to analyze software systems developed using these Java EE
frameworks for the purpose of measuring software quality with respect to the estimated TD and
selected metrics, from the point of view of software researchers in the context of web application
development [BCR94].

In order to compare the two Java EE frameworks, we have developed two CRUD web appli-
cations with state-of-the-art technology. CRUD is a term that is used in computer programming
and stands for Create, Read, Update and Delete tasks which are most often associated with the
administration of a database. We have developed one application based on the Spring Web MVC
Framework [Jo05] and the other one on Apache Struts 2 [str]. Both applications have evolved over
four versions. In each generation we were adding the same new features and functionality into the
two applications.

To evaluate the quality of both systems that we have developed, we used the metric suite that
Chidamber and Kemerer [CK94] proposed, which we augmented with a set of 2 additional source
code metrics that are complementary to them. Through metrics, project managers can have an
overview of the evolution of the projects. Below, we provide the description of some of the metrics
that we will analyze in section 4. Number Of Classes (NOC) counts the number of classes in a
project. Lines Of Code (LOC) counts the number of lines of code (in a package, classes or method).
This metric also includes the white-lines and the commented lines. Weighted Methods Per Class
(WMC) calculates the sum of complexity for all methods of a class. Each method is weighted by
its cyclomatic complexity. Only methods specified in a class are included, that is, any methods

2



inherited from a parent are excluded. Coupling Between Object Classes (CBO) calculates the
number of other classes to which a class is coupled. Primitive types, types from the java.lang
package and supertypes are not counted. Response for a Class (RFC) calculates the number of
methods that can potentially be executed in response to a message received by an object of that
class. This measure is calculated as the ‘Number Of Operations’+ ‘Number Of Remote Methods’.
Lack of Cohesion of Methods (LCOM) calculates the lack of cohesion of methods in a class with
respect to its attributes.

Moreover, we have used the SonarQube platform to calculate the Technical Debt of these
projects. During the development of the two projects, we tried to follow as closely as possible
the suggestions of the frameworks on how design and implementation should be carried out. In
the final step of our observational study, we repaid the identified Technical Debt, measured the
required time and compared the actual time with the time that SonarQube estimated that it would
take us to repay the Technical Debt.

The application that we have developed simulates a simplified information system of a university
and was developed incrementally in four versions, with increasing functionality. The functionality
of the di↵erent versions is the following:

v.1 The user of the application has the ability to retrieve general information about the university.
For example, she can see the courses that are taught (name, description, ECTS credits and
semester), the professors of the university (name, surname and contact number) and also
which courses are taught by each professor. Finally, she is able to retrieve some general
information about the secretaries of the university (name, surname and contact number).

v.2 Authentication and role authorization was added to the project. Also, additional functionality
allowed each of the users of the web site to update their personal details.

v.3 Added new functionality for the secretaries allowing them to create, modify/update, delete,
assign and remove courses to the professors of the university. Finally, the secretaries have the
ability to modify/update the data of all users.

v.4 The students that are logged into the system with their credentials, are able to update/modify
their personal information, see the courses that they are enrolled in and the grades of the
courses that they attended. Also, they have the ability to enroll to new courses as well as
be removed from the courses that they are already enrolled. If a professor logs into the
application with her credentials, she is able to update/modify her personal information and
obtain a list with all students that are attending her courses and finally, she is able to assign
grades to the students.

Figure 1 shows the evolution of the applications and the features which have been added to
each version.

4 Results and Discussion

In this section we are going to discuss the results and the findings of our observational study.
Firstly, we will discuss the metric results and then the Technical Debt for the two projects that
we have built.

4.1 Source code metrics

As already mentioned the two Java EE projects have the same functionality and evolved over four
versions. The goal was to investigate if the source code metrics will be the same or if there is a
comparative advantage by using one of the frameworks. Figure 2 shows the charts of the six of
the metrics that we calculated.

• Number Of Classes (NOC). The number of classes that exist in both projects is almost equal.
This apparently is happening due to the fact that both projects have the same functionality.
However, the project that was developed in Struts 2, has a smaller number of classes when

3



Figure 1: Versions

we compare it with the Spring. Their minimum di↵erence is 1 and the maximum is 5. The
maximum di↵erence, occurred when because one of the Action classes of Struts 2, in Spring
had to be broken into 3 classes. Moreover, in Spring we had to implement an additional
class that had the role of wrapper. Finally, the Spring application has 2 extra classes, one
to display the data to non-registered users and the other one to registered users. In Struts 2
there is one class to handle these Actions. Struts 2 gives us the opportunity to use Pointcuts
and Wildcard expressions for the management of requests.

• Lines Of Code (LOC). From the LOC chart we can see that the Struts 2 application has about
one hundred lines of code less as compared to that developed in Spring. This is in accordance
to the lower number of classes.

• Weighted Methods Per Class (WMC). As we can see from the WMPC1 chart this metric
for the Spring application does not change during the evolution of the project. But for the
Struts 2 application this metric is increasing during the evolution of the application. Struts
2 implements the pull-MVC (or MVC 2) so it requires getters and setters for the view to be
able to retrieve the data. Each getter and setter method, is increasing the complexity by 1.
This is the reason that the Struts 2 application has higher complexity.

• Coupling between Objects (CBO). From the Figure we can observe that the average coupling
for Struts is lower than that of Spring and also slightly increases from version to version.
While for the Spring application there is a sizable increase from the second generation to the
third and from there to the fourth. This happened because the Spring application has a larger
number of classes. This had as a result an increase of the average coupling of the system.

• Response for a Class (RFC). The average value of the RFC metric for the project that is
developed in Spring remains nearly constant in all versions of the project. Only the third
generation it increased by a unit, while the fourth version it returns to the baseline. On
the other hand, the average value of the RFC for Struts 2, is from the first version of the
project 10 points higher when compared with that of Spring and we can also observe that

4



from generation to generation it has an upward trend. This is happening due to the fact
that Struts 2 has a significantly lower number of Action classes that should manage the same
number of requests.

• Lack of Cohesion of Methods (LCOM). The average lack of cohesion in the project that is
developed in Struts 2, is far higher than in Spring, but it remains constant in all versions of
the project. The improved cohesion in Spring is probably due to the larger number of smaller
classes which therefore tend to be more cohesive.

Figure 2: The evolution of a series of metrics over four versions of the two system implementations

4.2 Technical Debt Results

Table 1 summarizes the results concerning the technical debt of both systems along the four
versions. As it can be observed, the accumulated technical debt is relatively low: the technical
debt ratio (i.e. the estimated technical debt over the size of each application) does not exceed
1.5% for Spring and 2.7% for the Struts application and the corresponding SQALE rating is ’A’.
For the Spring application no Blocker or Critical issues have been identified while for the Struts
application a few critical issues have been identified. These issues mainly refer to the rule: “Fields
in a Serializable class must themselves be either Serializable or transient even if the class is never
explicitly serialized or deserialized. That is because under load, most J2EE application frameworks

5



flush objects to disk, and an allegedly Serializable object with non-transient, non-serializable data
members could cause program crashes, and open the door to attackers”. Each one of these issues
increases the debt of the application by 30 minutes. These issues appeared due to the fact that
it is a good practice for the Action classes (the Controllers) of a Struts application, to extend the
ActionSupport class. The ActionSupport class implements the Serializable interface and this is
the reason why the SonarQube counts them as issues.

Concerning the evolution of TD, the estimated e↵ort to repay it and the TD ratio increase with
the passage of versions. This should be mainly attributed to the fact that we are adding new
features and functionality to our projects. In the final step of our exploratory study we repaid the
TD and also we measured the time that took us to do the repayment. The actual time to resolve
the reported issues was less than 2 hours. The time is significantly lower than the SonarQube
estimates. Our general belief is that no tremendous improvements in quality have been incurred
by repaying the accumulated TD.

Table 1: SonarQube report for Spring and Struts 2 applications

Version Spring 1 Spring 2 Spring 3 Spring 4 Struts 1 Struts 2 Struts 3 Struts 4

Lines of code 1375 1455 1765 2046 1296 1303 1517 1801

Lines 1963 2062 2565 2828 1884 1893 2180 2535

Functions 166 172 194 212 164 165 182 201

Classes 28 29 33 36 28 28 29 31

Duplicated lines (%) 1.9% 1.8% 2.3% 4.4% 2.0% 2.0% 2.9% 2.5%

Duplication Lines 38 38 72 124 38 38 64 64

Duplication Blocks 2 2 4 8 2 2 4 4

Complexity 195 201 225 248 193 194 214 240

Complexity/Function 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

Complexity/Class 7.0 6.9 6.8 6.9 7.0 6.9 6.8 6.9

Issues 82 90 118 140 158 159 171 188

Blocker Issues 0 0 0 0 0 0 0 0

Critical Issues 0 0 0 0 2 2 6 15

Major Issues 13 17 25 33 90 91 95 98

Minor Issues 62 66 86 100 59 59 63 68

Info Issues 7 7 7 7 7 7 7 7

Technical Debt 7h 54min 1d 1d 4h 1d 7h 1d 7h 2d 2d 3h 3d

Technical Debt Ratio 1.1% 1.2% 1.4% 1.5% 2.4% 2.5% 2.5% 2.7%

SQALE Rating A A A A A A A A

5 Threats to Validity

In this section, we present and discuss possible threats to validity of our study. First of all, internal
validity expresses to what extent the observed results are attributed to the performed intervention,
and not to other factors. Then, reliability is linked to whether the case study is conducted and
presented in such way that others can replicate it with the same results. Finally, external validity
deals with possible threats when generalizing the findings of our study to the entire population.

The main threat to the internal validity is related to the developer who implemented the two
applications. The developer had used the Spring MVC framework one time in the past, before he
conducted this study. The main reliability threat of our exploratory study is that the two Java
EE projects have been developed by the same developer. Concerning external validity, we have
identified one possible threat. We developed and compared our Java EE project only in two of a
variety of Java Web Frameworks. We chose these two frameworks because they are used widely
and also implement the MVC pattern in di↵erent ways. One the one hand, Spring Web MVC is
a push-MVC framework. On the other hand Struts 2 is a pull-MVC framework.

6 Conclusions and Future Work

This study presents an exploratory study to seek the benefits of framework-based development of
Java EE applications. The main finding of this work is that framework-based development does
not lead to serious issues leading to a relatively low technical debt. Moreover, after repaying the

6



TD no tremendous improvement to the quality of the software has been observed. Finally, the
required e↵ort for the repaying of TD was significantly lower than the corresponding estimates.

In terms of future work, it would be valuable to generalize this study by analyzing multiple
projects and multiple types of data (i.e. source code metrics, issues, commits, etc). Framework-
based development could be contrasted to non-framework-based applications to investigate if there
is a significant di↵erence between these two types of development.

References

[BCR94] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. Experience factory. En-
cyclopedia of software engineering, 1994.

[CK94] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented design. IEEE
Transactions on Software Engineering, 20(6):476–493, June 1994.

[Cun92] Ward Cunningham. The WyCash Portfolio Management System. In Addendum to
the Proceedings on Object-oriented Programming Systems, Languages, and Applications
(Addendum), OOPSLA ’92, pages 29–30, New York, NY, USA, 1992. ACM.

[Jo05] Rod Johnson and others. Introduction to the spring framework. TheServerSide. com,
21:22, 2005.

[Let12] Jean-Louis Letouzey. The SQALE method for evaluating technical debt. In Proceedings
of the Third International Workshop on Managing Technical Debt, pages 31–36. IEEE
Press, 2012.

[son] SonarQube. http://www.sonarqube.org/.

[str] Welcome to the Apache Struts project. https://struts.apache.org/.

7


