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Abstract

Maximal Ancestral Graphs (MAGs) are proba-
bilistic graphical models that can model the dis-
tribution and causal properties of a set of vari-
ables in the presence of latent confounders. They
are closed under marginalization. Invariant pair-
wise features of a class of Markov equivalent
MAGs can be learnt from observational data sets
using the FCI algorithm and its variations (such
as conservative FCI and order independent FCI).
We investigate the consistency of causal features
(causal ancestry relations) obtained by FCI in
different marginals of a single data set. In prin-
ciple, the causal relationships identified by FCI
on a data set D measuring a set of variables V
should not conflict the output of FCI on marginal
data sets including only subsets of V. In prac-
tice, however, FCI is prone to error propagation,
and running FCI in different marginals results
in inconsistent causal predictions. We introduce
the term of marginal causal consistency to de-
note the consistency of causal relationships when
learning marginal distributions, and investigate
the marginal causal consistency of different FCI
variations.Results indicate that marginal causal
consistency varies for different algorithms, and
is also sensitive to network density and marginal
size.

1 INTRODUCTION

Maximal Ancestral Graphs (MAGs) [12] can represent the
causal relationships among a set of measured variables, as
well as the conditional independence of their joint proba-
bility distribution, in the presence of latent confounders.

Under the causal Markov and Faithfulness assumptions
[14], every conditional independence that holds in the dis-
tribution can be identified in the graph using the criterion

of m-separation. MAGs have several attractive properties:
They are closed under marginalization, and they are pair-
wise Markov: Every missing edge in the graph corresponds
to a conditional independence in the distribution.

The independence model of a joint probability distribu-
tion is the set of conditional independencies entailed by the
distribution. The set of MAGs that entail the same inde-
pendence model define a Markov equivalence class. All
invariant pairwise features of a Markov equivalence class
of MAGs can be represented using a Partial Ancestral
Graph (PAG) [14]. FCI [14, 15] is the first sound and
complete algorithm that identifies a PAG given a data set
over a set of possibly confounded variables V and a test of
conditional independence.

Since MAGs are closed under marginalization, FCI can be
also used in any subset V \ L of V to obtain the corre-
sponding marginal PAG. Naturally, the causal features of
marginal PAGs should not contradict those of the PAG on
the full set of variables: a disagreement between a PAG and
a marginal PAG can only be a result of the sensitivity of
FCI to statistical errors. We use the term marginal causal
consistency to describe the degree of agreement of causal
relationships among a PAG and its marginals. To the best
of our knowledge, this type of consistency of constraint-
based causal discovery has not been examined before. We
examine the outputs of FCI [14], order-independent FCI
[3], and conservative FCI with the majority rule heuristic
for collider orientations [11, 3].

In a simulated setting, we found that the algorithms’ con-
sistency is sensitive to network density and number of vari-
ables that are marginalized out. To examine whether the
consistency of causal relationships correlates with the cor-
rectness of the induced causal features, we ranked them ac-
cording to their frequency of appearance in randomly se-
lected marginals, and compared the resulting AUCs with
bootstrapping. While marginal consistency measures the
sensitivity of an algorithm to a specific choice of mea-
sured variables, bootstrapping measures the sensitivity of
an algorithm to the specific sample. Results show that
marginal consistency can help identify accurate causal fea-



tures. However, bootstrapping outperforms marginal-based
ranking in all cases.

The rest of this paper is structured as follows: Section 2
introduces basic MAG notions and notation. Section 3 de-
fines marginal causal consistency in FCI outputs, presents
a sound and complete method for identifying all pairwise
causal ancestry relationships in a PAG, and compares in-
ternal consistency of outputs of different FCI variations.
Section 4.1 describes work related to obtaining confidence
estimates for causal ancestry relations. Section 4 describes
an algorithm for ranking causal relationships for a given
data set, and compares the AUC of the proposed approach
to confidence estimates obtained with bootstrapping. Con-
clusions and future directions are discussed in Section 5.

2 PRELIMINARIES

We use V to denote random variables, and V to denote a
set of variables. A graph G, denoted as G = (V, E) is
defined over a set of variables V with edges E. A path p is a
sequence of adjacent edges, without repetition. A directed
path is a path where all edges are directed and have the
same direction. We useX 99K Y to denote that there exists
a directed path from X to Y (X is an ancestor of Y in G).

We use X ⊥⊥Y |Z to denote variables X and Y to be inde-
pendent given a set Z. In a graph G a vertex V is a collider
on a path u if and only if there are two distinct edges on u
containing V as an endpoint and both are into V. Otherwise,
V is a non-collider on U. In a graph G, a triplet X −V −Y
is unshielded if X and Y are not adjacent in G.

A Bayesian network is represented by a Directed Acyclic
Graph (DAG) G over a set of variables V and a joint proba-
bility distribution P. A directed edge denotes a direct causal
relationship. We assume that the following two conditions
hold: the Causal Markov Condition (CMC), which states
that every variable is independent of its non-descendants
given it’s parents, and the Faithfulness Condition (FC),
which states that all the conditional independencies that
hold in P stem from G and the CMC.

MAGs are mixed graphs, i.e. they can have both directed
and bi-directed edges. A directed edge X → Y indicates
that X causes Y , while a bi-directed edge X ↔ Y indi-
cates thatX and Y are confounded. Two nodes can be con-
nected with only one type of edge, and ancestry has prece-
dence over confounding: if X causes Y and the two are
also confounded, only the directed edge X → Y is present
in the MAG. MAGs can also be used to represent selection
bias via undirected edges. For this paper, we assume no
selection bias and only consider MAGs with directed and
bi-directed edges.

A path is called uncovered if every consecutive triple on the
path is unshielded [15]. Also, a path is potentially directed
if it can be oriented into a directed path by changing the

circles on the path into appropriate tails or arrowheads.

Under the causal Markov and Faithfulness assumptions
[14], the conditional independencies that hold in a joint
probability distribution can be identified in the correspond-
ing causal graph according to the graphical criterion of m-
separation [12]. Constraint-based methods query the data
to identify the independence model, and then try to find
the causal MAGs that satisfy all and only the observed in-
dependencies. A class of Markov equivalent MAGs, that
differ in a subset of edge orientations, will in general sat-
isfy the observed constraints. PAGs have the same adjacen-
cies and all invariant orientations shared by all MAGs in a
Markov equivalence class. Specifically, an edge end-point
is oriented as an arrowhead (’>’) or tail (’-’) in a PAG if
and only if it is invariant in all MAGs represented by it,
and is left as a circle (’o’) otherwise.

FCI is a sound and complete algorithm for discovering
PAGs from observational data, but it is prone to statisti-
cal errors. Several extensions have been proposed that aim
to tackle the sensitivity of FCI to error propagation: or-
der independent FCI, conservative FCI and majority rule
FCI among others. Order independent FCI (denoted iFCI
in the rest of this paper), proposed by [3], outputs a PAG
that does not depend on the order the variables are given.
Conservative FCI [11] checks all unshielded triplets in the
following way: for every unshielded triple X − Y − Z
check all subsets of X’s potential parents and all subsets of
Z’s potential parents. If Y is not in any subsets, then ori-
ent the triplet as a collider; if Y is in all subsets leave the
triplet as a non-collider; otherwise tag the triple as unfaith-
ful. Majority rule FCI (denoted mFCI in the rest of this
paper) is slightly less strict than conservative FCI. In this
extension, an unshielded triple is oriented as a collider if Y
is in less than 50% of the subsets and as a non-collider if
it is in more than 50% of the subsets. To avoid unfaithful
triples in case of ties, we leave the triple as a non-collider.
We examine and compare the marginal consistency of FCI,
order-independent FCI and majority rule FCI in simulated
data.

3 MARGINAL CAUSAL CONSISTENCY
IN PAGS

We now define the problem of marginal causal consistency
of a constraint-based algorithm. Intuitively, we are inter-
ested in how much marginalizing out variables and rerun-
ning FCI (or a variation) preserves causal relationships.

To help define the problem, we use AnP to be the set of all
ancestral relationships that hold in the Markov equivalence
class [P] entailed by P . Notice that this set may be differ-
ent than the set of ancestral relationships TRP that can be
identified directly from P by taking the transitive closure
of the directed edges: It may include additional pairs that



are connected by a different causal path in every member
of [P], so that there is no fully oriented path in P . Fig-
ure 1 shows an example where an invariant causal relation-
ship does not correspond to a single directed path in the
PAG: while TRP for the PAG of Figure 1a is the empty
set, AnP = {(X,Y )}.

Identifying AnP is not trivial. [1] use a method to im-
plicitly enumerate all MAGs in a Markov equivalence class
represented by P . The same techniques can be used to
identify AnP , by identifying the invariant ancestral rela-
tions present in all such MAGs1.

However, in this work we show that all causal relationships
that are invariant in P but are not in TRP correspond to
a specific pattern, illustrated in Figure 1. The pattern can
be easily found in P to identify all additional relationships
that are causal in P but not present in TRP . Theorem 3.1
proves soundness and completeness of this rule.

Theorem 3.1 Let P be the PAG over a set of variables V
representing the Markov equivalence class of MAGs [P].
Then, if (X,Y ) 6∈ TRP , X 99K Y ∈ AnP if and only if
∃U, V, U 6= V such that

1. 〈X,U, . . . Y 〉 and 〈X,V, . . . Y 〉 form uncovered po-
tentially directed paths and

2. 〈U,X, V 〉 is an unshielded definite non collider in P .

Proof (⇐) Let U, V be distinct variables such that
〈X,U, . . . Y 〉 and 〈X,V, . . . Y 〉 are uncovered p.d paths,
with 〈U,X, V 〉 an unshielded definite non-collider in P .
Let U X in some MAG in [P], where ? is used as
a meta-symbol denoting any plausible orientation. Then
X → V (since U, X, V form a definite non collider) and
V 99K Y (since every triple on the path is a definite non
collider). Else if U ← X , then U 99K Y (since every
triple on the path is a definite non collider). Thus, (X,Y )
in AnP .

(⇒) We will first prove that if there is a directed path from
X to Y in all MAGs in [P], and there is no such directed
path in P then there exist at least two potentially directed
paths (and thus, two uncovered potentially directed paths)
in P:

If there is a directed path from X to Y in every MAG in
[P], then there is a p.d. path from X to Y in P . By Lemma
B.1 in [15] there is an uncovered p.d. path from X to Y
in P . Let p1 = 〈X,U,U2, . . . Un, Y 〉, be such a path of
length n. We want to show that another uncovered p.d.

1Although theoretically possible, the algorithm assumes that
the input PAG and separating sets are correct, that is, that the de-
pendencies and independencies encoded in the PAG are the ones
implied by the separating sets. In practice however, as suggested
by anecdotal experiments, FCI and its variants rarely produce
such output.

path p2 = 〈X,V, V2, . . . Vm, Y 〉 of length m with U 6= V
must also exist. Assume there is no such path. If for every
MAG in [P], X → U , then p1 is a directed path in P (since
every triple on the path is a definite non collider), and X ∈
AnP(Y ), which is a contradiction. Thus, X U in P ,
and there exists a MAG in [P] where X U and p1 is not
a directed path. If p1, is the only p.d. path from X to Y in
P , then X 99K Y 6∈ [P], which is a contradiction. Thus,
∃p2 = 〈X,V, V2, . . . Vm, Y 〉 with U 6= V .

Next we show that 〈V,X,U〉 form an unshielded definite
non-collider in P:
〈V,X,U〉 is not a collider inP (trivially since p1 and p2 are
potentially directed paths). We must also show that U, V
are not adjacent. If U V in , then there exists a MAG
in [P] such that U → X in P , which is inconsistent since
p1 is a p.d. path. �

Apart from (positive) causal relations, a PAG can also have
negative and ambiguous causal relations. X and Y share
a negative causal relationship in P if X cannot be a cause
of Y in P . This happens if (X,Y ) 6∈ AnP , and there can
be no directed path from X to Y in P (i.e. X Y in
P , or there is no potentially directed path from X to Y in
P). Naturally, this does not mean that Y causes X . An
ambiguous causal relationship occurs when a relationship
is neither positive nor negative.

We use the notation NAnP to denote the set of negative
causal relationships in a PAG P . The conditions mentioned
above for membership in NAnP can easily be tested in P:
To rule out the existence of a possible directed path, only
uncovered possibly directed paths need to be checked [15].
Notice that the set of ancestral and non-ancestral relations
in a PAG are by no means complementary, since ambiguous
relations also exist.

We are interested in constraint-based algorithms’ consis-
tency to marginal ancestral sets: Let D be a data set over
a set of possibly confounded variables V, and let G be the
PAG output of a sound and complete constraint-based algo-
rithm. P defines an ancestral set AnP and a non-ancestral
set NAnP . Also, let P[L, L ⊂ V, be the marginal PAG
obtained using the same algorithm (with the same hyper-
parameters) on the restriction of data set D on variables in
L. Each marginal PAG P[L defines a marginal ancestral set
AnP[L and a marginal negative ancestral set NAnP[L .

Assuming no statistical errors, any marginal ancestral set is
a subset of the ancestral set. Thus, there is no pair (X,Y )
present in any AnP [L that is not present in AnP . On the
contrary, some ancestral relationships that can be identified
in the full data set may not be identifiable in a marginal,
due to (a) the fact that some variables are not included in
the marginal and (b) the loss of information from exclud-
ing variables. Therefore, members of AnP are possibly
not present in some AnP[L . Similarly, any marginal non-
ancestral set is a subset of the non-ancestral set, while some



(a) (b) (c) (d)

Figure 1: (a) Example of a PAG in which each Markov equivalent MAG contains a directed path from X to Y . (b,c)
Orienting the edge between U and X as U X creates the directed path X → V → Y , while orienting it as U ← X
creates the directed path X → U → Y . (d) The general pattern as described in Theorem 3.1. Dashed edges correspond to
potentially directed paths.
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Figure 2: An example of ancestral and non-ancestral sets for a PAG P and a marginal PAG P[E .
Ancestral and non-ancestral sets: AnP = {(B, {C,D}), (C,D)},
NAnP = {(A, {E,F}), (B, {A,E, F}), (C, {A,B,E, F}), (D, {A,B,C,E, F}), (E, {A,F}), (F, {A,B,E})}.
The corresponding marginal sets are AnP[E = {(C,D)},
NAnP[E = {(A,F ), (B,F ), (C, {A,B, F}), (D, {A,B,C, F}), (F, {A,B})}

members of NAnP may not be present in some NAnP[L .

In addition, the PAGs should not encode any conflicting
causal information: Members ofAnP cannot also be mem-
bers of NAnP[L , and members of NAnP cannot also be
members of AnP[L .

For finite samples, however, statistical errors propagate in
both the skeleton identification and the orientation steps of
constraint-based algorithms, and can result in conflicting
orientations. Since the algorithms are run on marginal ver-
sions of the same data set, conflicts in the marginal ances-
tral sets can be viewed as a measure of robustness of the
algorithm to statistical errors. We are therefore interested
in comparing the marginal causal consistency of different
FCI variations. Marginal consistency can also been as a
measure of the sensitivity of an algorithm to the specific
choice of observed variables.

For a given algorithm, we are interested in how often pos-
itive and negative ancestral relationships entailed by the
marginal outputs P[L agree or disagree with the output P
over the full set of variables. This information is entailed
in the confusion matrix described in Table 1.

Some remarks:

Marginal PAG P[L
Ancestral Non ancestral

PAG P
Ancestral p c

Non ancestral d n

Ambiguous e f

|AnP[L | |NAnP[L |

Table 1: Confusion matrix for (non) ancestral relationships
for a marginal of P .

Marginal PAG P[L
Ancestral Non ancestral

PAG P
Ancestral 2 0

Non ancestral 0 11

Ambiguous 0 0

2 11

Table 2: Confusion matrix for the PAGs in Figure 2.



• For perfect statistical knowledge, c = d = e = f = 0,
p = |AnP[L |, n = |NAnP[L |. Notice that an-
cestral and non-ancestral relationships identified in a
marginal PAG are not expected to be ambiguous in the
PAG over the complete set of variables V.

• The sum p+ d+ c+ n+ e+ f is different (smaller)
than the number of possible causal relationships in
the marginal data set, since P[L also has ambiguous
edges. We do not take these edges into account here,
because they are not an indication of consistency or
inconsistency of the marginal. Edges that are (non)
ancestral in P can often be ambiguous in P[L, even if
the endpoints are present in the marginal.

An example of (non) ancestral relations in a PAG and a cor-
responding marginal PAG is shown in Figure 2. The corre-
sponding confusion matrix is shown in Table 2 (assuming
perfect statistical knowledge).

Notice however, that the confusion matrix in Table 1 only
measures the robustness of an algorithm in terms of causal
predictions. Other characteristics and uncertainties of FCI
outputs are not taken into account.

3.1 Marginal consistency of FCI variations in
simulated data.

We used simulated data to examine the internal consistency
of the FCI algorithm. We used the pcalg package [8] to
simulate random DAGs with 20 variables. We tried two
different graph densities, 0.1 and 0.2 (corresponding to 1.9
and 3.8 neighbors per variable on average, respectively).
We use linear Gaussian parametrization, with coefficient
of each model sampled using the default parameters in the
pcalg package. For each graph density we generated 50
DAGs and for each such network we simulated data with
1000 samples.

We used different variations of the FCI algorithm to retrieve
a causal network with significance threshold α = 0.05 and
unconstrained maximum conditioning set. We also created
100 randomly selected marginal data sets of size 18 and
15 for each DAG, and ran all FCI variations with the same
parameters.

The variations of the FCI algorithm we used are the follow-
ing: order independent FCI (iFCI), FC, FCI with majority
rule (mFCI). We did not include the conservative FCI, as
the existence of ambiguous triples results in outputs that
are not complete PAGs. Hence, Theorem 3.1 can not be ap-
plied. Instead, we included the majority rule FCI, which is
inspired by conservative FCI, but in which the triplet’s ori-
entation is dictated by a majority vote on the corresponding
conditional independence tests. To guarantee that the out-
put is a valid PAG, ambiguous triplets (occurring in a tie
vote) are marked as definite non-colliders.

Due to statistical errors, the output of the FCI algorithm
is also not necessarily a valid PAG. A very common prob-
lem is the creation of cycles or almost cycles. To tackle
this problem, we added the option to aggressively prevent
cycles, as implemented in TETRAD [13]. This functional-
ity is applied in the phase of orienting edges, where every
attempted orientation is checked for creating an (almost)
cycle. If that is the case, then that specific orientation is not
performed, and the orientation rules move on to the next
possible orientation. We have to note that we do not use
the orientation rules that aim at recovering undirected edges
(selection bias).

The results of the experiments are shown in Figures 3 and
4. The ratios were computed by summing over all numer-
ators and dividing by the sum of all denominators (for ex-
ample, for p

|AnP[L
| we summed over all correctly identified

ancestral relations p and divided by the total number of pre-
dicted ancestral relations |AnP[L | over all marginals and
datasets). This guarantees that each bar sums to one and
avoids divisions by zero, in case no relation is predicted.

For all algorithms, the consistency drops for both denser
networks and smaller marginals. For networks with den-
sity 0.1 all algorithms have more than 50% consistent pre-
dictions for both 18 and 15-variable marginals. For denser
networks however, the performance of iFCI and FCI drops
below 0.2. mFCI has the largest ratio of consistent rela-
tionships, and retains a consistency ratio of 0.60 for 18-
variable marginals. However, its performance drops to 0.38
for 15-variable marginals. For all algorithms, the majority
of causal relationships are found non-ancestral in P , and a
small ratio is found ambiguous. It is worth noting, how-
ever, that the algorithms typically output very few positive
causal relationships.

Non-ancestral causal relationships on the other hand are
much more consistent, as shown in Figures 5 and 6. The
majority of non-ancestral relationships are consistent (blue
bars, n

|AnP[L
| ). Overall, mFCI has the highest ratio of con-

sistent negative relationships.

Overall, results show that (a) the performance of constraint-
based algorithms heavily depends on the graph density, par-
ticularly for algorithms that are less conservative, and thus
more sensitive to error propagation and (b) The causal pre-
dictions of the algorithms are sensitive to marginalization.
Even for mFCI, removing two out of 20 variables results in
30-40% relations that are not validated in the marginal data
set.



(a) (b)

Figure 3: Barplots showing the ratios of positive relations in (a) 18-variable marginals, (b) 15-variable marginals in the
graphs of density 0.1. Blue: Consistent ancestral relationships. Red: Inconsistent ancestral relationships (found non-
ancestral in P). Pink: Inconsistent ancestral relationships (found ambiguous in P).

(a) (b)

Figure 4: Barplots showing the ratios of positive relations in (a) 18-variable marginals, (b) 15-variable marginals in the
graphs of density 0.2. Blue: Consistent ancestral relationships. Red: Inconsistent ancestral relationships (found non-
ancestral in P). Pink: Inconsistent ancestral relationships (found ambiguous in P).

(a) (b)

Figure 5: Barplots showing the ratios of negative relations in (a) 18-variable marginals, (b) 15-variable marginals in the
graphs of density 0.1. Blue: Consistent non-ancestral relationships. Red: Inconsistent non-ancestral relationships (found
ancestral in P). Pink: Inconsistent non-ancestral relationships (found ambiguous in P). The majority of non-causal
predictions are consistent (blue).

4 RANKING CAUSAL RELATIONSHIPS
BASED ON MARGINAL CAUSAL
CONSISTENCY

Calculating the marginal ancestral sets indicates a way of
ranking pairwise causal relationships according to their fre-
quency of appearance in AnP[L for different marginals.
The idea is that causal relationships that frequently appear
in marginal PAGs will tend to be true more often, even if

they are not consistent with the output of the algorithm on
the whole data set.

4.1 Related Work

Alternative approaches for ranking causal ancestry rela-
tions can be categorized into (a) Bayesian model averaging
methods and (b) resampling-based methods.

Bayesian model averaging methods compute the posterior



(a) (b)

Figure 6: Barplots showing the ratios of negative relations in (a) 18-variable marginals, (b) 15-variable marginals in the
graphs of density 0.2. Blue: Consistent non-ancestral relationships. Red: Inconsistent ancestral relationships (found
ancestral in P). Pink: Inconsistent non-ancestral relationships (found ambiguous in P). The majority of non-causal
predictions are consistent (blue).

(a) (b) (c)

Figure 7: ROC curves of the variations of the FCI algorithm in graphs with originally 20 variables and density 0.1. (a)
18-variable marginals (b) 15-variable marginals (c) bootstrapping.

(a) (b) (c)

Figure 8: ROC curves of the variations of the FCI algorithm in graphs with originally 20 variables and density 0.2. (a)
18-variable marginals (b) 15-variable marginals (c) bootstrapping.

probability of network features by averaging over network
structures. This can be either approximated using MCMC
[6] or by using exact methods [10, 2]. Apart from their high
computational cost, such methods are not very general and
are only applicable to cases where network scores can be
computed. Although various scores exist for Bayesian net-
work structures [7], scores for MAGs have only recently
been explored [12] and require more expensive fitting pro-
cedures [4].

Resampling-based methods repeatedly apply a learning
method on resampled datasets and estimate the confidence
of network features as the proportion of induced networks
in which they appeared. Such methods include parametric
and non-parametric bootstraps [5], as well as stability se-
lection [9]. The main advantage is that they are general and
thus also applicable in the case of PAGs.

In this section we compare our approach with the non-



parametric bootstrap by [5].

4.2 Experiments

We produced rankings for all possible pairs of variables
according to (a) the frequency of appearance in the cor-
responding marginal ancestral sets AnP[L and (b) the fre-
quency of appearance in AnP for FCI outputs on differ-
ent bootstrap samples of the initial data set D. Since we
only use 100 different marginals per iteration, for each pair
(X,Y ), the frequency of appearance inAnP[L was divided
by the number of data sets in which X and Y are both
present (i.e. we excluded from the calculation marginals
in which the causal ancestry could not be found). For ev-
ery pair of variables the true label is 1 if the relationship
is ancestral in the DAG the data was sampled from, and 0
otherwise.

Based on these ranking and the status of the relationship
in the ground truth network (used to simulate the data), we
calculated ROC curves and the corresponding AUCs. Fig-
ures 7(a,b) and 8(a,b) show the performance of the algo-
rithms using marginals of 15 and 18 variables for densities
0.1 and 0.2 respectively. For all settings, ROC curves are
significantly better than random guessing. Again, the re-
sults are better for sparser networks, where AUC ranges
from 82.25-91.84%. The AUCs drop for denser networks,
ranging from 60.78-83.57%. mFCI has the highest AUCs
for all settings.

We compared our method against bootstrapping. For each
DAG, 100 data sets with 1000 samples were resampled
with replacement from the original data set. FCI was ran
on the new data sets, each time calculating the ancestral set
AnP on the output PAG. Each order pair of variables was
then ranked according to the frequency of appearance in
the ancestral sets. The results are shown in figures 7(c) and
8(c), where we can see that bootstrapping outperforms the
marginal-based ranking in all cases. Again, the majority
rule FCI outperforms the rest of the algorithms.

5 DISCUSSION

We defined and examined the problem of marginal causal
consistency in constraint-based causal discovery. We pre-
sented a way to identify all invariant causal relationships
entailed in a complete PAG.

We examined how well causal and non-causal relationships
predicted by three different variations of FCI are preserved
when you marginalize out variables. Results indicate that
constraint-based learning methods for causal networks are
sensitive to the selected marginal, particularly for dense
networks.

The results are important because in most real-life applica-
tions researchers may have limited knowledge on the pos-

sible unmeasured variables. It is also possible that confi-
dence metrics computed based on marginals could be more
helpful in situations where you have ”outlier” variables that
do not satisfy the algorithm’s assumptions (e.g. they create
cycles, do not satisfy the distributional assumptions of con-
ditional independence tests etc). In such cases, it is pos-
sible that taking random marginals could improve the al-
gorithms’ performance (similar to the way bootstrapping is
beneficial when you have outlier samples).

We must also point out that PAGs encode much richer in-
formation than the causal ancestry relations examined here.
Exploring different types of marginal consistency is also an
area of interest.
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