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Abstract

We compare score-based and constraint-based
learning in the presence of latent confounders.
We use a greedy search strategy to identify the
best fitting maximal ancestral graph (MAG) from
continuous data, under the assumption of mul-
tivariate normality. Scoring maximal ancestral
graphs is based on (a) residual iterative con-
ditional fitting [Drton et al., 2009] for obtain-
ing maximum likelihood estimates for the pa-
rameters of a given MAG and (b) factorization
and score decomposition results for mixed causal
graphs [Richardson, 2009, Nowzohour et al.,
2015]. We compare the score-based approach in
simulated settings with two standard constraint-
based algorithms: FCI and conservative FCI.
Results show a promising performance of the
greedy search algorithm.

1 INTRODUCTION

Causal graphs can capture the probabilistic and causal
properties of multivariate distributions. Under the assump-
tions of causal Markov condition and faithfulness, the
graph induces a factorization for the joint probability distri-
bution, and a graphical criterion (d-separation) can be used
to identify all and only the conditional independencies that
hold in the joint probability distribution.

The simplest case of a causal graph is a directed acyclic
graph (DAG). A causal DAG G and faithful probability dis-
tribution P constitute a causal Bayesian network (CBN)
[Pearl, 2000]. Edges in the graph of a CBN have a straight-
forward interpretation: A directed edge X → Y denotes
a causal relationship that is direct in the context of vari-
ables included in the DAG. In general, CBNs are consid-
ered in the setting where causal sufficiency holds, i.e. the
absence of latent confounders. This is restrictive, since in
most cases we can/do not observe all variables that partici-
pate in the causal mechanism of a multivariate system.

We consider a representation for an equivalence class
of models based on maximal ancestral graphs (MAGs)
[Richardson and Spirtes, 2002]. MAGs are extensions of
CBNs that also consider latent confounders. Latent con-
founders are represented with bi-directed edges. The set of
conditional independencies that hold in a faithful probabil-
ity distribution can be identified from the graph with the
graphical criterion of m-separation. The causal semantics
of edges in MAGs are more complicated: Directed edges
denote causal ancestry, but the relationship is not necessar-
ily direct. Bi-directed edges denote latent common causes.
However, each pair of variables can only share one edge,
and causal ancestry has precedence over confounding: IfX
is a causal ancestor of Y and the two are also confounded,
then X → Y in the MAG. MAGs have several attractive
properties: They are closed under marginalization and ev-
ery non-adjacency corresponds to a conditional indepen-
dence.

There exist two main approaches for learning causal graphs
from data. Constraint-based approaches infer the con-
ditional independencies imprinted in the data and search
for a DAG/MAG that entails all (and only) of these inde-
pendences according to d/m-separation. Score-based ap-
proaches try to find the graph G that maximizes the like-
lihood of the data given G (or the posterior), according
to the factorization imposed by G. In general, a class of
causal graphs, that are called Markov equivalent, fit the
data equally well. Constraint-based approaches are more
efficient and output a single graph with clear semantics,
but give no indication the relative confidence in the model.
Moreover, they have been shown to be sensitive to error
propagation [Spirtes, 2010]. Score-based methods on the
other hand do not have this problem, and they also provide
a metric of confidence in the entire output model. Hybrid
methods that exploit the best of both worlds have there-
fore proved successful in learning causal graphs from data
[Tsamardinos et al., 2006].

Numerous constraint-based and score-based algorithms ex-
ist that learn causal DAGs (classes of Markov equiva-
lent DAGs) from data. Learning MAGs on the other



hand is typically done with constraint-based algorithms.
A score-based method for mixed causal graphs (not nec-
essarily MAGs) has recently been proposed [Nowzohour
et al., 2015] based on relative factorization results [Tian
and Pearl, 2003, Richardson, 2009].

Using these decomposition results, we implemented a sim-
ple greedy search for learning MAGs from data. We com-
pare the results of this approach with FCI [Spirtes et al.,
2000, Zhang, 2008] and conservative FCI [Ramsey et al.,
2006] outputs. Greedy search performs slightly worse in
most settings in terms of structural hamming distance, and
better than FCI in terms of precision and recall.

Based on these results, we believe that score-based ap-
proach can be used to improve learning causal graphs
in the presence of confounders. Algorithm implementa-
tion and code for the detailed results are available in
https://github.com/striantafillou.

The rest of the paper is organized as follows: Section 2
briefly reviews causal graphs with and without causal suf-
ficiency. Section 3 gives an overview of constraint-based
and score-based methods for DAGs and MAGs. Section
4 describes a greedy search algorithm for learning MAGs.
Related work is discussed in Section 5. Section 6 compares
the performance of the algorithm against FCI and CFCI.
Conclusions and future work are presented in 7.

2 CAUSAL GRAPHS

We begin with some graphical notation: A mixed graph
(MG) is a collection of nodes (interchangeably variables)
V, along with a collection of edges E. Edges can be di-
rected (X → Y ) or bi-directed (X ↔ Y ). A path is a
sequence of adjacent edges (without repetition). The first
and last node of a path are called endpoints of the path.

A bi-directed path is a path where every edge is bi-directed.
A directed path is a path where every edge is directed and
oriented in the same direction. We useX 99K Y to symbol-
ize a directed path from X to Y . A directed cycle occurs
when there exists a directed path X 99K X . An almost
directed cycle is occurs when X ↔ Y and X 99K Y . A
triplet 〈X,Y, Z〉 on consequent nodes on a path are form a
collider if X → Y ← Z. If X and Z are not adjacent, the
triplet is an unshielded collider.

A mixed graph is called ancestral if it has no directed and
almost directed cycles. An ancestral graph without bi-
directed edges is a DAG. X is a parent of Y in a MG G
if X → Y in G. We use the notation PaG(X), AnG(X) to
denote the set of parents and ancestors of X in G.

Under causal sufficiency, DAGs can be used to model
causal relationships: For a graph G over a set of variables
V, X → Y in G if X causes Y directly (no variables in
V mediate this relationship). Under the causal Markov

condition and faithfulness Pearl [2000], G is connected to
the joint probability distribution P over V through the cri-
terion of d-separation (defined below). Equivalently, the
causal Markov condition imposes a simple factorization of
the joint probability distribution:

P (V) =
∏
V ∈V

P (V |PaG(V )) (1)

Thus, the parameters of the joint probability distribution
describe the probability density function of each variable
given its parents in the graph. An interesting property of
CBNs, that constitutes the basis of constraint-based learn-
ing, is the following: Every missing edge in a DAG of a
CBN corresponds to a conditional independence. Hence, if
X is independent from Y given Z (symb. X ⊥⊥Y |Z) in P ,
then X and Y are not adjacent in G.

In general, a class of Markov equivalent DAGs fit the data
equally well. DAGs in a Markov equivalent class share the
same skeleton and unshielded colliders. A Pattern DAG
(PDAG) can be used to represent the Markov equivalent
class of DAGs: It has the same edges as every DAG in
the Markov equivalence class, and the orientations that are
shared by all DAGs in the Markov equivalence class.

Confounded relationships cannot be represented in DAGs,
and mixed causal graphs were introduced to tackle this
problem. The most straightforward approach is with semi-
Markov causal models (SMCMs) Tian and Pearl [2003].
The graphs of semi-Markov causal models are acyclic di-
rected mixed graph (ADMGs). Bi-directed edges are used
to denote confounded variables, and directed edges denote
direct causation. A pair of variables can share up to two
edges (one directed, one bi-directed). The conditional in-
dependencies that hold in a faithful distribution are repre-
sented through the criterion of m-separation:

Definition 2.1 (m-connection, m-separation.) In a mixed
graph G = (E,V), a path p between A and B is m-
connecting given (conditioned on) a set of nodes Z , Z ⊆
V \ {A,B} if

1. Every non-collider on p is not a member of Z.

2. Every collider on the path is an ancestor of some
member of Z.

A and B are said to be m-separated by Z if there is no
m-connecting path between A and B relative to Z. Other-
wise, they are said to be m-connected given Z.For graphs
without bi-directed edges, m-separation is reduced to the
d-separation criterion.

Markov equivalence classes of semi-Markov causal mod-
els do not have a simple characterization, because Markov
equivalent SMCMs do not necessarily share the same
edges: Absence of an edge in a SMCM does not necessarily
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correspond to an m-separation. Figure 1 shows an example
of two SMCMs that encode the same m-separations but do
not have the same edges (figure taken from [Triantafillou
and Tsamardinos, 2015]).

Maximal ancestral graphs are also used to model causality
and conditional independencies in causally insufficient sys-
tems. MAGs are mixed ancestral graphs, which means that
they can have no directed or almost directed cycles. Every
pair of variables X,Y in an ancestral graph is joined by
at most one edge. The orientation of this edge represents
(non) causal ancestry. A directed edgeX → Y denotes that
X is an ancestor of Y , but the relation is not necessarily di-
rect in the context of modeled variables (see for example
edge A→ D in MAGM1 of Figure 1). Moreover, X and
Y may also be confounded (e.g. edge B → D in MAG
M1 of Figure 1). A bi-directed edge X ↔ Y denotes that
X and Y are confounded.

Like SMCMs, ancestral graphs encode the conditional in-
dependencies of a faithful distribution according to the
criterion of m-separation. Maximal ancestral graphs are
graphs in which every missing edge (non-adjacency) cor-
responds to a conditional independence. Every ancestral
graph can be extended to a maximal ancestral graph by
adding some bi-directed edges [Richardson and Spirtes,
2002]. Thus, Markov equivalence classes of maximal an-
cestral graphs share the same edges and unshielded col-
liders, and some additional shielded colliders, discussed
in Zhang [2008], Ali et al. [2009]. Partial ancestral
graphs (PAGs) are used to represent the Markov equiva-
lence classes of MAGs.

Figure 1 illustrates some differences in SMCMs and MAGs
that represent the same marginal of a DAG. For example,
A is a causal ancestor of D in DAG G1, but not a direct
cause (in the context of observed variables). Therefore, the
two are not adjacent in the corresponding SMCM S1 over
{A,B,C,D}. However, the two cannot be rendered inde-
pendent given any subset of {B,C}, and therefore A→ D
is in the respective MAGM1.

On the same DAG, B is another causal ancestor (but not
a direct cause) of D. The two variables share the com-
mon cause L. Thus, in the corresponding SMCM S1 over
{A,B,C,D} B ↔ D is present. However, a bi-directed
edge between B and D is not allowed in MAGM1, since
it would create an almost directed cycle. Thus, B → D is
inM1.

Overall, a SMCM has a subset of the adjacencies of its
MAG counterpart. These extra adjacencies in MAGs corre-
spond to pairs of variables that cannot be m-separated given
any subset of observed variables, but neither directly causes
the other, and the two are not confounded. These adjacen-
cies can be checked in a SMCM using a special type of
path, called inducing path [Richardson and Spirtes, 2002].
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Figure 1: An example of two different DAGs and the cor-
responding mixed causal graphs over observed variables.
From the top: DAGs G1 over variables {A, B, C, D, L}
(left) and G2 over variables {A, B, C, D} (right). From
left to right, on the same row as the underlying causal DAG,
the respective SMCMs S1 and S2 over {A, B, C, D};
the respective MAGsM1 = G1[L andM2 = G2 over vari-
ables {A, B, C, D}; finally, the respective PAGs P1 and
P2. Notice that,M1 andM2 are identical, despite repre-
senting different underlying causal structures.

3 LEARNING THE STRUCTURE OF
CAUSAL GRAPHS

As mentioned above, there are two main approaches for
learning causal networks from data, constraint-based and
score-based. Constraint-based methods estimate from the
data which conditional independencies hold, using ap-
propriate tests of conditional independence. Each con-
ditional independence corresponds to an m(d)-separation
constraint. Constraint-based algorithms try to eliminate
all graphs that are inconsistent with the observed con-
straints, and ultimately return only the statistically equiv-
alent graphs consistent with all the tests.

Notice that the number of possible conditional independen-
cies are exponential to the number of variables. For graphs
that are maximal, i.e. every missing edge corresponds to a
conditional independence (DAGs and MAGs but not SM-
CMs), there exist efficient procedures that can return the
skeleton and invariant orientations of the Markov equiva-
lence class of graphs that are consistent with a data set,
using only a subset of conditional independencies.

The PC algorithm [Spirtes et al., 2000] is a prototypi-
cal, asymptotically correct constraint-based algorithm that
identifies the PDAG consistent with a data set. FCI [Spirtes
et al., 2000, Zhang, 2008] is the first asymptotically correct



constraint-based algorithm that identifies the PAG consis-
tent with a data set. The algorithms work in two stages.
The first stage is the skeleton identification stage: Starting
from the full graph, the algorithm tries to identify a con-
ditional independence X ⊥⊥Y |Z for each pair of variables
X,Y . The corresponding edge is then removed, and the
separating set Z is cached. The second stage is the orien-
tations stage, where the cached conditioning sets are em-
ployed to orient the edges.

Given faithfulness, the subset of conditional independen-
cies that have been identified during the skeleton identifica-
tion stage are sufficient to make all invariant orientation and
return the PDAG or PAG that represents the Markov equiv-
alence class of causal graphs that are consistent with all
and only the cached conditional independencies. In prac-
tice, the orientation stage is sensitive to error propagation
[Spirtes, 2010]. Conservative PC (CPC) [Ramsey et al.,
2006] proposes a modification of PC that results in more ro-
bust orientations: The algorithm performs additional condi-
tional independence tests during the orientation stage, and
performs only a subset of robust orientations that are con-
sistent with multiple conditional (in) dependencies. We use
the term conservative FCI (CFCI) to describe FCI with the
same conservative extension.

Score-based methods on the other hand search over the
space of possible graphs trying to maximize a score that
reflects how well the graph fits the data. This score is
typically related to the likelihood of the graph given the
data, P (D|G). For multinomial and Gaussian parametriza-
tions, respectively, BDe[Heckerman et al., 1995] and
BGe[Geiger and Heckerman, 1994] are Bayesian scores
that integrate over all possible parameters. These scores are
employed in most DAG/PDAG-learning algorithms. Other
criteria like BIC or MDL can be used to score a graph with
specific parameters [Bouckaert, 1995].

The number of possible graphs is super-exponential to the
number of variables. For DAGs, efficient search-and-score
learning is based on the factorization in Equation 1. Thus,
the likelihood of the graph can be decomposed into a prod-
uct of individual likelihoods of each node given its parents.
This can make greedy search very efficient: In each step
of the search, all the graphs that occur with single changes
of the current graph are considered. Using the score de-
composition, one only needs to recompute the scores of
nodes that are affected by the change (i.e. the set of par-
ents changes). Unfortunately, the factorization presented
in Equation 1 does not apply to probability distributions
that are faithful to mixed graphs. This happens because
variables connected with bi-directed edges (confounded)
are no longer independent given their parents in the graph.
Thus, SMCMs and MAGs do not admit a simple factoriza-
tion, where each node has a single contribution to the like-
lihood. However, the joint probability of a set of variables
V according to an ADMG G can be factorized based on

sets of variables, called the c-components [Tian and Pearl,
2003], or districts [Richardson, 2009] of the graph. The
c-components correspond to the connected components of
the bi-directed part of G (denoted G↔), the graph stemming
from G after the removal of all directed edges.

Parametrizations of the set of distributions obeying the
conditional independence relations given by an ADMG
are available for multivariate discrete [Richardson, 2009]
and multivariate Gaussian distributions [Richardson and
Spirtes, 2002, Drton et al., 2009]. Gaussian parametriza-
tions for SMCMs are not always identifiable, but they have
been shown to be almost everywhere identifiable for AD-
MGs without edges (called bows in the structural equa-
tion model literature) [Brito and Pearl, 2002]. If, in addi-
tion, an ADMG does not have almost directed cycles (i.e.
is ancestral), the parametrization is everywhere identifiable
[Richardson and Spirtes, 2002].

4 GSMAG: GREEDY SEARCH FOR
MAXIMAL ANCESTRAL GRAPHS

Let V = {Vi : i = 1, . . . , V } be a random vector of V vari-
ables following a multivariate normal distributionN (O,Σ)
with positive definite covariance matrix Σ. Let G be a
MAG. Then graph G defines a system of linear equations:

Vi =
∑

j∈PaG(Vi)

βijVj + εi, i ∈ {1, . . . , V } (2)

Let B(G) be the collection of all real V × V matrices B =
(βij) such that (i) βij = 0 when j → i is not in G, and (ii)
(I − B) is invertible. Let Ω(G) be all the V × V matrices
Ω = (ωij) such that (i) Ω is positive definite and (ii) ωij =
0 if j ↔ i is not in G.

Then the system of linear equations (2) can be written as
V = BV + ε, and for B ∈ B(G), Cov(ε) = Ω ∈ Ω(G)
it has a unique solution that is a multivariate normal vec-
tor with covariance matrix Σ = (I − B)−1Ω(I − B)−T ,
where the superscript −T denotes the transpose inverse.
The family of distributions with covariance matrix in the
set {Σ = (I − B)−1Ω(I − B)−T } is called the normal
linear model associated with G (symb N(G)). For MAGs,
the normal linear model is everywhere identifiable.

Let D be a V ×N matrix of observations for the variables
V . Then the empirical covariance matrix is defined as

S =
1

n
DDT .

For N ≥ V + 1, S is almost surely positive definite. For a
MAG G, the log likelihood of the model is

lG(B,Ω|S) = −N
2
ln(|2πΩ|−

N − 1

N
tr[(I −B)T Ω−1(I −B)S])

(3)



input : Data set D over V with N samples, tolerance tol
output: MAG G, score sc
S ← corr(D);
G ← empty graph;
C← {V ∈ V};
foreach Ck ∈ C do

sk ← scoreContrib(V, 1, N);
end
curScore← −2

∑
k sk + ln(N)(2V + E)

minScore← curScore;
repeat

foreach pair (X,Y ) ∈ V do
foreach action in {addLeft, addRight,
addBidirected, orientLeft, orientRight,
orientBidirected, remove, reverse} do

if action is applicable and does not create
directed or almost directed cycles then

(s′,C′,G′)←
updateScores(X,Y, action, s,C,G,tol,N)
curScore← −2

∑
k s
′
k+ln(N)(2V +E);

if curScore < minScore then
(s,C,G)← (s′,C′,G′);

end
end

end
end

until no action reduces curScore;
sc← curScore ;

Algorithm 1: GSMAG

Maximum likelihood estimates B̂, Ω̂ that maximize (3)
can be found using the residual iterative conditional fit-
ting (RICF) algorithm presented in Drton et al. [2009],
and the corresponding implied covariance matrix is Σ̂ =
(I − B̂)−1Ω̂(I − B̂)−T .

Based on the factorization of MAGs presented in Richard-
son [2009], the likelihood can be decomposed according to
the c-components of G as follows [Nowzohour et al., 2015]:

lG(Σ̂|S) = −N
2

∑
k

(
|Ck|ln(2π) + ln

( |ΣGk |∏
j∈PaGk

σ2
kj

)
+

N − 1

N
tr[Σ−1Gk SGk − |PaG(Ck) \ {Ck}|]

)
,

(4)

where the Gk is the graph consisting only of nodes in Ck ∪
PaG(Ck) without any edges among variables in PaG(Ck)\
Ck, and the subscript Gk denotes the restriction of a matrix
to the rows and columns participating in Gk. σ2

kj denotes
the diagonal entry of ΣGk corresponding to parent node k.
The log likelihood is now a sum of c-component scores.

The scoring function is typically the negative log likelihood

input : Pair X,Y , Action action, c-components C,
scores s, MAG G, covariance matrix S, tolerance
tol, sample size N

output: c-components C′, scores s′, MAG G′

G′ ← action( X, Y, G);
if action==(orientBidirected ∨ addBidirected) then

m← m : X ∈ Cm;
l← l : Y ∈ Cl;
Cm ← Cm ∪ Cl;
C′ ← C \ Cl;
Σ̂m ← RICF(Gm, Sm, tol);
s′m ← scoreContrib(Cm,Σm, N);

end
else if X ↔ Y in G then

m← m : X,Y ∈ Cm;
Cnew ← connectedComponents(G′m);
C← (C \ {Cm}) ∪Cnew;
foreach C ∈ Cnew do

m← index of C in C′;
Σ̂m ← RICF(Gm, Sm, tol);
s′m ← scoreContrib(Cm,Σm, N);

end
end
else

m← Cm : Gm 6= G′m;
Σ̂m ← RICF(Gm, Sm, tol);
s′m ← scoreContrib(Cm,Σm, N);

end
Algorithm 2: updateScores

regularized by a penalty for the number of parameters to
avoid over-fitting. The BIC score for MAGs is:

BIC(Σ̂,G) = −2ln(lG(Σ̂|S)) + ln(N)(2V + E), (5)

where lG(Σ̂|G) is the likelihood of the graph G with the
MLE parameters B̂, Ω̂. BIC is an asymptotically cor-
rect criterion for selecting among Gaussian ancestral graph
models [Richardson and Spirtes, 2002].

A simple greedy strategy starts from a MAG G with a score
sc and then checks the local neighborhood (i.e. the graphs
that stem from the current graph after making a single edge
change) for the lowest-scoring network. The algorithm
continues this “hill-climbing” until no single edge change
reduces the score.

Algorithm 1 begins with the empty graph, where each node
is a component. At every subsequent step, every possible
edge change is considered: For absent edges, the possible
actions are addLeft, addRight, addBidirected. For directed
edges, the possible actions are reverse, orientBidirected, re-
move. For bi-directed edges the possible actions are ori-



entLeft, orientRight, remove.

Score decomposition described in Equation 4 is used to
avoid re-fitting the entire MAG. Instead, only the likelihood
of the c-components affected by the change need to be re-
estimated. Algorithm 1 describes a simple greedy search
strategy for learning MAG structure.

Only actions that do not create directed or almost directed
cycles are attempted. To efficiently check for cycle cre-
ation, a matrix of ancestral relationships1 of the current
MAG is cached. Edge removals can never create directed
cycles. Using the cached ancestral matrix, it is straightfor-
ward to check whether the addition of a directed edge will
create a directed cycle, or if the addition of a bi-directed
edge will create an almost directed cycle. Almost directed
cycles can also be created when adding directed edges: For
each edge X ↔ Y , adding edge J → I will create a semi-
directed cycle if I is an ancestor if X(Y ) and Y (X) is an
ancestor of J .

At the end of each iteration, the matrix of ancestral rela-
tionships is updated. If a previously missing edge is added,
the update takes O(V 2) time. If an edge is removed, the
matrix is recomputed using Warshall’ s algorithm for tran-
sitive closure [Warshall, 1962].

The c-components are only updated in case a bi-directed
edge is added or altered in any way. When adding a bi-
directed edge, the corresponding c-components of the end-
points are merged if separate. When an existing bi-directed
edge is removed (completely or becomes directed), the cor-
responding c-component Ck is divided in the new con-
nected components. The scores of the affected components
are recomputed using new RICF estimates. In any other
case, the c-components remain the same, and the score of
the c-component whose corresponding graph Gk is affected
by the change is recomputed. This procedure is described
in Algorithm 2.

When no single-edge change improves the current score,
the algorithm terminates and the current network is re-
turned. Greedy hill-climbing procedures can be stuck in lo-
cal optima (minima). To tackle this problem, they are often
augmented with meta-heuristics such as random restarts,
TABU lists or simulated annealing. For the scope of this
work we use no such heuristic. In preliminary experiments,
however, we found that augmenting Algorithm 1 with a
TABU heuristic did not significantly improve performance.

1Changing edge orientation is equivalent to a removing the
edge and then adding it re-oriented. To test for possible cycles
efficiently, a matrix of all the non-trivial ancestral relationships
(more than one variable in the path) is also cached. Reversing an
edge X → Y creates a directed cycle only if X is a non-trivial
ancestor of Y .

5 RELATED WORK

Several constraint-based algorithms exist for learning a
Markov equivalence class of MAGs from an observational
data set: FCI [Spirtes et al., 2000, Zhang, 2008] is a sound
and complete algorithm that returns the complete PAG.
RFCI Colombo et al. [2012] and FCI+[Claassen et al.,
2013] are modifications of FCI that try to avoid the com-
putationally expensive possible d-separating stage in the
skeleton search of FCI. Conservative FCI [Ramsey et al.,
2006] is a modification of FCI that makes fewer, but more
robust orientations, to avoid error propagation.

Nowzohour et al. [2015] propose a greedy search with ran-
dom restarts for learning “bow-free” ADMGs from data
and introduce the score decomposition showed in Equa-
tion 4. Since Markov equivalence for ADMGs that are not
MAGs has not yet been characterized, they use a greedy
strategy for obtaining the empirical Markov equivalence
class, based on score similarity. The authors use the esti-
mated ADMGs to compute causal effects and show promis-
ing results. However, since they do not necessarily find
maximal ancestral graphs, they do not compare against
constraint-based methods or evaluate the accuracy of the
learnt graphs.

Marginalizing out variables from causal DAGs results in
some additional equality constraints that are not condi-
tional independencies. Nested Markov models Shpitser
et al. [2013] extend SMCMs and are used to also model
these additional constraints. Shpitser et al. [2012] use a pe-
nalized likelihood score and a greedy search with TABU
list to identify a nested Markov model from discrete data.

6 COMPARISON OF GSMAG WITH FCI,
CFCI

We compared the performance of Algorithm 1 against FCI
and CFCI in simulated data. We simulated 100 random
DAGs over 10, 20 and 50 variables. To control the sparse-
ness of the DAGs, we set the maximum parents of each
node. We present results for sparse networks, where each
variable was allowed to have up to 3 parents, and denser
networks where each variables was allowed to have up
to 5 parents. For each DAG, 10% of the variables were
marginalized (1, 2 and 5 variables respectively). The
ground truth PAG PGT was then created for each marginal
DAG.

Data sets with 100, 1000 and 5000 samples were simulated
for each DAG and random parameters with absolute values
in {0.1, 0.9}. The corresponding marginal data sets were
input in Algorithm 1, FCI and CFCI. FCI and CFCI were
run with a significance threshold of 0.05 and a maximum
conditioning size 5. Algorithm 1 outputs a MAG. To com-
pare the outputs of the algorithms, the corresponding PAG



Figure 2: Performance of FCI, CFCI and GSMAG for networks with 9 observed variables (top) 3 maximum parents per
variables (bottom) 5 maximum parents per variable.

Figure 3: Performance of FCI, CFCI and GSMAG for networks with 18 observed variables (top) 3 maximum parents per
variable (bottom) 5 maximum parents per variable.

Figure 4: Performance of FCI, CFCI and GSMAG for networks with 45 observed variables (top) 3 maximum parents per
variable (bottom) 5 maximum parents per variable.

was created for each MAG output. We use PFCI ,PCFCI

andPGS to denote the outputs of FCI, CFCI and Algorithm
1, respectively.

Summarizing PAG differences is not trivial, and many dif-



Figure 5: Score divided by number of samples for FCI,
GS and the ground truth network for sparse networks (3
maximum parents) for 9(left), 18(middle) and 45(right) ob-
served variables.

ferent approaches are used in the literature. As a general
metric of how different two PAGs are, we use the structural
hamming distance (shd) for PAGs, defined as follows: Let
P̂ be the output PAG and P be the ground truth PAG. For
each change (edge addition, edge deletion, change arrow-
head, change tail) required to transform P̂ into P , shd is
increased by 1.

Figure 6: Score divided by number of samples for FCI,
GS and the ground truth network (5 maximum parents) for
9(left), 18(middle) and 45(right) observed variables.

We also use precision and recall, as described in Tillman
and Spirtes [2011]: Precision is defined as the number of
edges in the output PAG with the correct orientations, di-
vided by the number of edges in the output PAG. Recall
is defined as the number of edges in the output PAG with
correct orientations, divided by the number of edges in the
ground truth PAG. These metrics are very conservative,
since they penalize even small differences. For example,
an edge that is→ in the ground truth but in the output
PAG will be classified as a false positive.

Figures 2, 3, and 4 show the performance results for net-
works of 10, 20 and 50 variables, respectively. Mean val-
ues over 100 iterations are presented for all experiments.
All algorithms perform better in sparser networks.

Greedy search has larger structural hamming distances than
FCI and CFCI. More specifically, out of 900 cases (over all
variable and sample sizes), FCI outperforms GSMAG in
657 cases for sparse networks and in 715 cases for dense
networks, while CFCI outperforms GSMAG in 682 cases
for sparse networks and in 710 cases for dense networks.
In terms of precision, CFCI is again the best of the three
(outperforms GSMAG in 601 and 659 out of 900 cases for
sparse and dense networks, respectively). FCI has the poor-
est precision: it outperforms GSMAG in 318 and 221 cases
for sparse and dense networks, respectively). Finally, GS-
MAG has the best recall out of all algorithms, with CFCI

being second. Specifically, terms of recall, FCI outper-
forms GSMAG in 139 and 83 cases, while CFCI outper-
forms GSMAG in 357 and 249 cases for sparse networks
and dense networks, respectively. Naturally, greedy search
is much slower than both conservative and plain FCI.

Intriguingly, GSMAG’s performance declines for the
largest attempted sample size (5000 samples), particularly
for larger networks. This happens because greedy search
tends to include many false positive edges. It is possible
that this is related to the naive greedy search, and could be
improved by augmenting some kind of heuristic for escap-
ing local minima, or by adjusting the scoring criterion.

Figure 6 shows the score of the output MAG for Algorithm
1 and the ground truth MAG. To compare also with FCI,
we used the method presented in Zhang [2008] to obtain
a MAG from PFCI . Notice that this cannot be applied to
the output of CFCI, since it is not a complete PAG (due to
unfaithful triplets). Greedy search typically scores closer
to the ground truth, particularly for denser networks.

7 FUTURE WORK

We present an implementation of a greedy search algorithm
for learning MAGs from observations, and compare it to
FCI and CFCI. To the best of our knowledge, this is the first
comparison of score-based and constraint-based search in
the presence of confounders.

The algorithm uses the decomposition presented in Now-
zohour et al. [2015] for bow-free SMCMs. Compared to
SMCMs, MAGs are less expressive in terms of causal state-
ments. However, since they have no almost directed cycles,
fitting procedures for obtaining maximum likelihood esti-
mates always converge. Semi-Markov causal models that
are Markov equivalent to the output MAG could be identi-
fied as a post-processing step.

Heuristic procedures for escaping local minima could also
be explored, to improve the performance of GSMAG. Al-
gorithm efficiency could also possibly be improved by up-
dating without recomputing inverse matrices and where ap-
plicable.

Other interesting directions include taking weighted aver-
ages for specific PAG features, or using both constraint-
based and score-based techniques for hybrid learning.
Greedy search in the space of PAGs instead of MAGs could
also be explored, since a transformational characterization
for Markov equivalent MAGs exists [Zhang and Spirtes,
2005].
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