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Abstract. The integration of data elements scattered along different re-
sources, with heterogeneous formats, can take advantage of an approach
with progressive and lightweight steps, instead of pursuing costly up-
front mappings. To support such approach, we defined a multiscale-based
dataspace architecture, called LinkedScales, which carries an integration
process via graph-based transformations over a graph database. A series
of scales in the dataspace systematizes an integration and enrichment
chain of steps to leverage transformation processes, which incrementally
go from raw representations towards ontology-like structures. However,
how to record and keep track of the intermediary outcomes in the inte-
gration chain remains an open research challenge. This article proposes
combining the concept of scales with trails — lightweight, scale-specialized
semantic annotations to enable progressive integration towards a seman-
tic representation. We conduct experiments involving organism-centric
analysis in life science to show the benefits of trails for transformation
between scales.
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1 Introduction

Biologists often conduct organism-centric analysis in which organisms — i.e.,
species or taxonomic groups — are the central focus and data are collected and
integrated around them. In this context, biologists might compare organisms
in a systematic way and investigate conditions related to their hypotheses. In
this context, the construction of profiles [10] as ”wviews” of data is usual in an
organism-centric research. It involves combining data usually fragmented in het-
erogeneous sources, requiring efforts to collect and combine pieces coming from
multiple repositories and files with different formats. The manual process re-
quires a lot of time to prepare data from each source and to integrate them before
any analysis. Fig. 1 presents a practical scenario where the analysis is based on
profiles comprising ecological traits and morphological data. It requires the com-
bination of data from several resources scattered in digital repositories. In this
case, the data comes from research repositories associated with scientific publica-
tions, such as Dryad (http://datadryad.org) and Figshare (http://figshare.com).
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The combination of datasets is challenging since the different kinds of hetero-
geneity, i.e., distinct formats (CSV, Excel, NeXML), structures (tables, trees)
and schemas, etc. require several steps of integration.
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Fig. 1. Profile integrating characteristics scattered across several sources

Heterogeneity hampers a unified exploration of knowledge across distinct
systems. To provide an on-demand lightweight integration, we have defined the
LinkedScales architecture [4], which aims at splitting the integration steps as
discrete scales. Each scale encompasses common aspects and routines related to a
particular integration step. LinkedScales comply with the dynamicity of modern
integration environments, against the classic heavyweight upfront techniques.

This incremental process also produces three kinds of intermediary outcomes:
semantic representations, knowledge discovery results and user feedback. They
have operational purposes and drive transformation tasks in the production of
content in the upper scales. However, there is no a systematic method to record
and keep track of these intermediary outcomes. Operations built over them, like
transformation and enrichment, can be better specified, managed and followed
if they rely on a standard mechanism to document the outcomes.

In this article, we propose combining LinkedScales with the concept of trails.
Trails are “hints” represented as structured semantic annotations concerning
operational scale aspects — i.e., each scale emphasizes a particular step of the
integration chain, therefore each scale has distinct types of trails. Trails play
the role of metadata associated with portions of data [1]. When trails are in-
cluded in a progressive integration process, they standardize the way in which
intermediary results are represented, which might improve the specification of
transformation rules. Furthermore, LinkedScales produces a provenance graph
while transformations are executed. This graph contains not only information
about processes, but also which operational evidence (trails) were considered
during the transformation.

We present a practical scenario of exploring trails with LinkedScales. We
conducted an experimental analysis considering the integration and semantic
enrichment of resources related to a particular organism profile. In particular,
trails are exploited to guide the process of linking content in the scales with
external knowledge bases, like DBpedia, to better characterize the data concep-
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tually. In order to show how trails can improve the linking process, in the first
step of our experimental procedure, we apply the transformation without the
trails and we compare the results taking the trails into account afterward.

The remaining of this article is organized as follows: Section 2 presents foun-
dations and related work. Section 3 describes the LinkedScales framework while
Section 4 details the proposal of combining LinkedScales with trails. Section 5
presents the conclusion remarks.

2 Foundations and Related Work

Several data integration approaches have emerged, including federated databases,
schema integration and data warehouses [7]. They mostly rely on providing a
virtual unified view under a global schema (GS) [8]. Within GS-based systems,
data stay in their original data sources — i.e., maintaining their original schemas
— and are dynamically fetched and mapped to a global schema [2]. It requires
a big upfront effort to produce a global schema definition, which may become
impracticable due to the inclusion and changes in schemas. Such classical data
integration might successfully work when integrating modest numbers of stable
databases in controlled environments.

Scenarios in which schemas often change and new data models must be con-
sidered still lack an efficient solution. To this end, pay-as-you-go integration
approaches implement incremental integration based on progressive steps to
continuously refine and improve the connections among sources. The proposal
of dataspaces aims at providing the benefits of the classical data integration
approach but in a progressive fashion way [8]. Dataspaces approach for data
integration can be divided into a bootstrapping stage and subsequent refine-
ments. Progressive integration refinements may rely on structural analysis, on
user feedback or on manual/automatic mappings among sources [1].

This investigation explores the concept of trails in a pay-as-you-go integration
approach. Trails are keyword-based annotations that relate concepts to data
sources to be integrated. They are used for a gradual improvement of integration
among sources [9]. Trails play a key role since an important step in integration
tasks involves defining semantic equivalences across distinct data sources during
the dataspace improvement. In some proposals, the user is engaged in helping
the semi-supervised process of discovering, suggesting and evaluating mappings,
either by statistical techniques or driven by ontologies and dictionaries [1].

As an alternative for the one-step approach to define equivalences between
distinct data source elements, trails rely on services to support incremental re-
finements of mappings between schemas. Whenever the user feeds the system
with new “hints”, it exploits them to improve the semantic equivalences discov-
ery. These “hints” are treated as a lightweight mechanism to define declarative
relationships between loosely integrated data sources [1]. Trails can be associ-
ated with either a particular portion of the data or the whole dataset. They can
be either automatically inferred or manually assigned, depending on the effort
that users are willing to spend [9)].
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3 LinkedScales

LinkedScales [4] refers to an architecture that systematizes the progressive inte-
gration steps, bringing the proposal of multiscale to the data integration chain.
It is based on an abstract model that organizes the integration steps as a pile of
scales, where the entities in an upper scale are built based on transformations
over entities of a lower scale.

The integration starts on the lowest scale, where all original data sources
are ingested and transformed into graphs. Each subsequent scale from this point
is a graph derived from the previous scale, taking advantage of the flexibil-
ity of graphs to logically represent different structures along the scales. This
model allows representing operations within and across the scales as transfor-
mation procedures in graphs. Fig. 2 presents the four scales aiming at going
from the raw data sources (lower scales, containing more details about format
and structure) to a conceptual scale (fewer details of format and structure, and
focus on domain-specific concepts). Scales are interconnected by an orthogo-
nal graph, supporting traceability among them — i.e., it is possible to ”track”
sources/targets of transformations between scales.
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Fig. 2. LinkedScales Primary Data Architecture [4]

The Physical Scale aims at representing the different data sources in their
original physical format as a graph. The original raw data sources are trans-
formed into a graph by an ingestion procedure. The Graph Translator reads
several specialized formats — e.g., Excel, CSV, relational tables, XML — and con-
verts them to an equivalent graph representation. The original structure, format
and content of the underlying data sources are reflected in a graph.

The Logical Scale offers a common view for data inside similar or equiv-
alent logical models represented in the previous scale. Tables and hierarchical
documents are examples of logical models present in the sources. In the previous
scale, differences might exist in the representation of a table within a PDF, a
table from a spreadsheet and a table within an HTML file since they preserve
specificities of their formats.
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The Description Scale emphasizes the content (e.g., labels of elements
within an XML document or values in spreadsheet cells) and their relationships.
Since models represent relations among data elements in different ways — e.g., a
row in a table can represent data concerning the same entity while hierarchical
relations in a document represent aggregations — the Description Scale reduces
all logical models to a single unified one, to shift the focus towards the descriptive
content. The unified model selected for this scale relies on the triple <resource,
property, value>, which is usual in several meta-data standards as Resource
Description Framework (RDF).

The highest scale refers to the Conceptual Scale. It integrates data from
the lower scale at a semantic level by exploiting the content and relationships
between nodes to discover and make explicit the semantics through ontologies.
Entities are discovered, deduplicated and related to ontologies as instances of
classes, or properties and their values. A “textual graph” of the previous scale
becomes a graph containing interrelated entities and their properties/values,
with explicit semantics supported by ontologies.

4 Combining Trails with LinkedScales

This work involves an enhancement of the LinkedScales framework to incor-
porate Trails as the driving component for transformations and provenance.
It treats trails as scale-specialized operational semantic annotations, which indi-
cates the role of data portions. Such hints are considered by scale transformation
processes, incrementally conducting the refinement of the dataspace.

We conducted an experiment in the organism-centric scenario to investigate
how trails improve transformations between scales. We collected two comple-
mentary sources coming from different scientific publications — as illustrated in
Figure 3. The first source is an XLS spreadsheet [3] shared in the Dryad reposi-
tory. The second source is a NeXML file — an XML-based format for representing
phylogenetic and phenotypic data, shared in the Figshare repository [6].
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Fig. 3. Schematic illustration of the bootstrap phase of the experiment
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Both data sources are concerned with information about lungfish. While
the first data source contains morphological traits, behavioral aspects, habitat
characteristics, etc. of several lungfish species, the second data source comprises
a phylogenetic tree and a phenotypic description in a character/character state
format. Even though both data sources are available for researchers, integrating
such information conceptually by combining data of the same lungfish species
remains a challenging laborious task.

In next sections we exploit the data sources as a running example to describe
the use of different types of trails and their relationship with scales. Trails vary
according to each scale, indicating relevant aspects of data that the transfor-
mation process takes into account during the production of an upper scale. We
further describe roles of trails presenting the scale that they are inserted accom-
panied by the target transformation scale —e.g., a physical-logical trail refers to
a trail to be inserted in the physical scale, impacting in the data production of
the logical scale.

4.1 Physical-logical Trails

Lowest part of Figure 4 presents an excerpt of an XLS spreadsheet contain-
ing information from a study of discrete characters change in the evolution of
lungfish (class Sarcopterygii) [3]. The dataset is an asset associated with a publi-
cation, shared in the Dryad repository. It describes information about taxonomic
classification, associated geological age, type of habitat, countries, etc.

Data is ingested into LinkedScales database as a graph. The middle part of
Figure 4 shows partial representation of the ingestion result in the Physical Scale.
Rows of nodes represent rows of the spreadsheet and their stream of cells. The
graph focus on representing as much information as possible of the raw resource.
Via such data, the logical organization can be inferred or derived — e.g., initial
and boldly formatted cells usually are the table schema.

Physical-logical trails — pictured as colored hexagons in Figure 4 — are in-
serted to distinguish types of structures and their internal components. Figure 4
(middle part) illustrates how trails are used to conduct transformations from the
physical to the logical scale. Trails associate structure-related roles to the nodes
as: table (Ist:table), row (Ilst:dataRow) and the stream of cells corresponding to
the schema (lst:schemaRow). In the bootstrap phase of the dataspace, this type
of trail is either automatically inferred by the ingestion module, according to
the internal structures, or specified by the user. In short, the Physical-logical
trails indicate how data is logically organized within the format-specific graph
representation of the resource.

Based on the associated physical-logical trails, a transformation process adopts
a standard representation of structural elements of tables to logically represent
the resource in the logical scale. Representing structures using a standard repre-
sentation in the logical scale is particularly important, as it allows, for instance,
reusing table-related algorithms to reach resources independently of formats.
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Fig. 4. Excerpt of a XLS and its representation on the Physical and Logical scales

4.2 Logical-description Trails

The Description Scale aims at shifting the focus to the content and their re-
lationships, reducing logical models to an RDF-based structure. The bottom
part of Figure 5 illustrates how logical-description trails are used to produce
the description scale from the logical scale. At this point, trails indicate how
structural elements should be organized as <resource, property, value> triples.

Figure 5 illustrates how trails (colored hexagons) are associated with struc-
tural elements on the Logical Scale, indicating, for instance, that rows (nodes
T999 and ro3g) are resources, schema attributes (green nodes Genus, Species,
Age) are properties and cells are values — e.g., < ra39, Genus, Neoceratodus >
and < 1939, Species, forsteri > are triples produced based on trails.

The transformation illustrated in Figure 5 can be represented by a rule which
matches a pattern (including specific trails) as input and produces a transformed
output. Transformation patterns are already defined in the LinkedScales model
[4], and are beyond the scope of this work.

4.3 Description-conceptual Trails

Description-conceptual trails focus on reaching an expected perspective —
e.g., organism profiles. Figure 5 (upper part) illustrates trails indicating the
expected semantic interpretation of nodes in the description scale, making the
semantic explicit by adopting specific elements of ontologies. Such trails can
be automatically discovered by the system in a semi-supervised process or be
directly assigned.
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Fig. 5. Logical-description trails driving a logical-description scale transformation, and
description-conceptual trails driving the production of the conceptual scale

The Conceptual Scale addresses fundamental semantic concerns by distin-
guishing entities and adopting controlled vocabularies to represent descriptive
properties. Adjustments — removing or adding description-conceptual trails —
made on previous scale are a way for handling the dynamicity of scenarios as
organims-centric research in terms of testing different hypothesis.

Scales and trails play complementary roles in the progressive integration
process. While a scale provides a homogeneous view of the lower layers, trails
offer the proper clues for the transformation to the next scale. Consider, for
example, the logical scale. It offers a homogeneous view of data considering the
logical model, i.e., all tables are represented in the same way, as well as, all trees.
If on one hand, this is a powerful mechanism, as the heterogeneity of several
table formats is hidden in a lower scale, enabling to reuse the same algorithms
for several homogeneous tables, on the other hand, these algorithms need clues
to interpret implicit differences which will impact in the next scale.

Regarding the experiment of integrating both XLS and NeXML sources, at
the bootstrap stage, after ingesting both data files and converting them to the
Logical and Description scales in the graph, we used DBpedia (dbpedia.org) to
automatically produce the trails that guided the production of the Conceptual
scale. The experiment aimed at connecting portions of the data source with
DBPedia resources (English release of October 2015), and therefore indirectly
linking and enriching similar resources.
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Our procedure searches in the DBpedia for the most similar resources of each
node in the graph. The search method compares the input query against the
DBpedia resource contents. This comparison uses the tf-idf measure and may
return approximate/incorrect results like uncorrelated resources. To examine the
benefits brought by the trails in this transformation process, the next integration
stage inserted trails associated to the nodes to give clues to our integration
system about the nature of the nodes in the graph. In this experiment, two
trails were considered associated with specific procedures:

-Species related Trail: The user tags the nodes that represent Species,
then the system can filter, via SPARQL queries, the resources returned by the
bootstrap stage that are instances of taxonomy-related classes, according to the
DBpedia ontology.

-Morphological related Trail: The user tags the nodes that represent mor-
phological characters. Such trails are used as input in an entity-quality recog-
nition algorithm [5] that extracts morphological characters inside a free-text
and creates an Entity-Quality (EQ) representation. The Entity element refers to
the morphological character (e.g., bone) and the Quality stands for a qualifier
(e.g., present) that specifies a given state of the Entity. The algorithm uses two
domain-ontologies to support its recognition task: (1) Teleost Anatomy Ontol-
ogy (TAO) to recognize the Entities and (2) Phenotypic Trait Ontology (PATO)
to recognize the Qualities.

Figure 6 depicts a portion of the conceptual scale with (right part) and with-
out (left part) trails. Each node in the figure represents a specific species from
both data sources — the first data source in green, and the second data source in
red — and edges represent relationships concerning taxonomy and morphological
traits (entity-quality pairs). When trails are associated to elements of the pre-
vious scale (description), the produced conceptual scale is semantically refined
according to the expected requirements in the organism profiles.
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5 Conclusion

Asignificant part of the biological research work remains in an organism-centric
perspective, which usually requires combining data regarding distinct aspects of
organisms. In this article, we presented how our LinkedScales framework, based
on the multiscale integration approach, can work aligned with trails as opera-
tional semantic annotations. Trails systematize intermediary outcomes, improv-
ing the transformation process and provenance records among the scales. Our
experimental analysis demonstrated the overall potential benefits of trails in
LinkedScales to reach organism profiles. Future work involves conducting addi-
tional experimental evaluations to thoroughly examine the quality and scalability
of data integration provided by the approach.
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