
COVER: Change-based Goal
Verifier and Reasoner

Claudio Menghi1, Paola Spoletini2, and Carlo Ghezzi1

1 Politecnico di Milano, Milano, Italy
{claudio.menghi, carlo.ghezzi}@polimi.it
2 Kennesaw State University, Marietta, USA

pspoleti@kennesaw.edu?

Abstract. COVER is a unified framework that supports the interplay
between requirements analysts and software developers. It contracts a
bridge between the requirements analyst’s and the software developer’s
artifacts by enabling goal model analysis during software design. The goal
model produced by the requirements analyst is kept alive and updated
while the system is designed. Whenever the design of the system changes,
COVER verifies the new design against the requirements of interest. The
verification results are used to trigger a goal model analysis procedure.
The results of this analysis can be used by the requirements analyst and
the software developer to update the goal model or the design of the
system. In this paper, we present the tool support developed for COVER.

Keywords: iterative design, goal model analysis, partial models.

1 Introduction and Motivation

Software development is a complex activity which relies on a sequence of de-
velopment steps. It usually starts with the requirements analyst collecting the
requirements of the system. The identified requirements are used by the software
developer as guidelines in the system design, in which a model of the system is
produced. The system design is not a straightforward activity. It usually includes
a set of development rounds, in which a partial and incomplete model of the
system is iteratively refined. In order to satisfy the customer needs, the software
developer must ensure that the final, fully specified, version of the system satisfies
the requirements of interest.

Researchers’ interest has been mainly focused on two separate aspects. On
the one hand, researchers have been working on developing techniques and frame-
works to help the requirements analyst in collecting and analyzing requirements.
KAOS [2], TROPOS [1] and i∗ [12] are examples of modeling formalisms used to
collect and represent requirements. Over the years many techniques have been
proposed to analyze them (e.g., [5]). On the other hand, several algorithms and

? Copyright 2017 for this paper by its authors. Copying permitted for private and
academic purposes.



Claudio Menghi, Paola Spoletini, and Carlo Ghezzi

tools to help software developers in the specification of the system behavior and
in checking whether the specification satisfies the requirements of the system [8,
7, 10] have been proposed.

One of the main problems of current software development techniques is the
lack of integration between these two set of tools, and, consequently, the lack of
a bridge between requirements analysts’ and the software developers’ work. This
mismatch particularly affects modern development life cycles which 1. are heavily
based on iterative and incremental development processes and 2. require a strong
interaction between the requirements analyst and the software developer.

COVER (Change-based gOal VErifier and Reasoner) [11] is a unified frame-
work that enables goal model analysis during software design. Its goal is to
integrate models used by the requirements analyst and the software developer
to support a continuous interaction between these two actors. This would allow
requirements and design to evolve together. COVER enables the continuous
verification of the requirements of the system through design iterations and
triggers the analysis of the verification results over the goal model. It is a general
framework that can applied independently of the chosen goal model and the
design formalisms.

This paper presents the tool support (hereafter called either COVERTool
or just COVER) used in a specific instantiation of the framework, where the
variation of the TROPOS modeling language presented in [9], Modal Transition
Systems (MTS) [8], and Fluent Linear Temporal Logic (FLTL) [4] are chosen as
a goal model framework, model for the design of the system, and specification
language for functional requirements, respectively. The generic approach and a
discussion on the limits of the current instantiation can be found in [11].

The rest of the paper is organized as follows. Section 2 gives an overview
of COVERTool. Section 3 describes the user experience in using COVERTool.
Finally, Section 4 concludes the paper.

2 Overview

COVER3 is a framework that supports the interplay between requirements
analysis and design. It can be used to verify which goals of the goal models are
satisfied by the new design every time the developer changes the design of the
system, and to verify how the current design satisfies the goals of the goal model,
when the requirements analyst modifies the goal model. The overall tool support
for COVER is a Java 8 application that uses the Goal Reasoning Tool (Gr-tool) [6]
as a design framework of goal models and for the label propagation and the
Modal Transition System Analyzer (MTSA) [3] for supporting the developer in
the system design. An high-level representation of COVER is presented in Fig. 1.
Additional details on the framework can be found in [11].

The framework consists mainly of three main parts: the goal model design
and requirements specification, the system design, and the design verification,
which enables the goal model analysis.

3 The tool is available at https://github.com/claudiomenghi/COVER.



COVER: Change-based Goal Verifier and Reasoner

…

⊤/?/⊥
⊤/?/⊥

G1
G2 G3

… …… …

System Design

G(P → F(Q)) G(P → F(Q)) (F1 → ◇(F2)) 

Design Verification

Goal Model Analysis

Developer

Requirements Specification

…t1 t2

e1

e2

⊤/?/⊥

FEEDBACK

Analyst

G1 → ⊤
G2 → ?
G3 → ⊥
…..

INPUT

USAGEOUTPUT

… …

Goal Model Design

MTSA
MTSA

Fig. 1. An high-level overview of the COVER.

Goal model design and requirements specification. The requirements
analyst develops a TROPOS goal model for the system using Gr-tool. Goals are
refined into requirements, which, in turn, are decomposed into tasks, i.e., the
functionalities the system has to provide. The completion of a task is indicated
by the developer with an event: the system generates the event if and only if the
task of interest has been accomplished. The analyst uses these events to provide a
formal description of some of the goals of the system. The analyst chooses the set
of requirements to be formally specified in FLTL depending on the system under
development. Note that events and FLTL formulae are not part of TROPOS;
they are used to link the requirements analyst and developers models.

System design. The software developer produces a high-level model of the
system to be in MTSs. Then, she/he iteratively decomposes the system until the
behaviors of all of its components are specified.

Design verification and goal model analysis. COVER verifies the new
(incomplete/partial) design of the system. It relies on MTSA as a verification
tool for MTSs. Since the model is incomplete, the verification procedure may
return three different values: > if the property is satisfied by the current design,
no matter how the undefined parts of the system will be later refined; ⊥ if the
property is not satisfied; ? whether its satisfaction depends on the parts which
still have to be refined.

The values obtained from the verification of the system design are used to
trigger the analysis of the goal model. Each goal of the goal model is associated
with an initial value, which specifies whether it is satisfied, possibly satisfied,



Claudio Menghi, Paola Spoletini, and Carlo Ghezzi

or not satisfied by the current design. The goals that have not been formalized
are considered as not satisfied. A label propagation algorithm is then used to
propagate the initial values. The label propagation algorithm in [6] is modified
according to the three valued semantic used in the verification of the goal model.
The results are used by the requirements analyst and the software developer to
change the goal model and the design of the system, respectively. Further details
can be found in [11].

3 User experience

We describe how COVER can be used by requirements analysts and software
developers.

Requirements analyst perspective. The analyst identifies the requirements
of the system in TROPOS, using the Gr-Tool. We assume that the developer
specifies each goal by means of an identifier followed by the goal name, i.e.,
the textual description of each goal matches the following pattern: IDENTIFIER:
GOAL NAME. When the final version of the goal model is produced, the requirements
analyst formally specifies the requirements of interest. The analyst provides the
specification of the requirements in a file with extension .lts. This file contains
a set of FLTL formulae that formally specify the goals of the system. Each goal
starts with an identifier followed by a semi column (e.g., G1 :) which is preceded
by the keyword assert. When the formalization of the requirements ends, the
requirements analyst forwards the produced file to the software developer.

1 java -jar COVER.jar initGoalModel.goal design.lts PROC

finalGoalModel.goal

Listing 1.1. Running COVER

When the software developer produces a new (partial) model of the system,
a modified version of the file .lts, containing also a behavioral model of the
system, is delivered to the requirements analyst. The analyst runs COVERTool
by executing the command in Listing 1.1, where:

– initGoalModel.goal is the original goal model to be considered;
– design.lts is the design to be verified;
– PROC is the identifier of the process specified by the MTS contained in the

file design.lts to be considered by the verification procedure;
– finalGoalModel.goal is a file that will contain the goal model updated with

the results of the label propagation.

An example of the tool’s output is shown in Fig. 2a. COVERTool loads the goal
model and iteratively analyzes its goals. When a goal is analyzed, COVERTool
extracts the identifier of the goal and checks if the file design.lts contains an
FLTL property associated with the goal. If a property is specified, it is verified
w.r.t. the process PROC specified as parameter in the COVER Tool invocation.
When all the properties are verified, the label propagation algorithm is executed.



COVER: Change-based Goal Verifier and Reasoner

(a) An example of COVER output. (b) Inspecting the output using the Gr-Tool.

Fig. 2. An example of interaction with COVER.

The requirements analyst can graphically inspect the results obtained by
COVERTool and contained in the file finalGoalModel.goal using the Gr-Tool.
For example, Fig. 2b shows an example of results obtained using COVER. The
column Input SAT contains the results of the verification procedure, where the
values T and P specify that the property is satisfied and possibly satisfied,
respectively. When a goal is associated with no value, it is either violated or not
associated with an FLTL formula. The column Output SAT contains the results
obtained by running the label propagation algorithm. The requirements analyst
can use these results to improve its goal model. Additional details on how these
results are used to change the goal model can be found in [11].

The analyst executes the previously described procedure also when she/he
already possesses a design of the system and she/he changes its goal model. This
allows her/him to verify which goals of the new goal model are satisfied by design.

Software developer perspective. The software developer receives from the
requirements analyst the file containing the requirements that the system has
to satisfy. The developer produces a behavioral model of the system basing
his/her decision on the received requirements and then uses MTSA to verify if the
produced model satisfies/possibly satisfies the requirements of interest. MTSA
per se does not provide any feedback about the impact of the design decision over
the goal satisfaction, but COVERTool in which MTSA is integrated provides
this functionality and propagates the results obtained with MTSA back to the
goal model. This allows the software developer to analyze the consequences of
her/his design choices over the goal satisfaction.



Claudio Menghi, Paola Spoletini, and Carlo Ghezzi

COVERTool is executed using the command specified in Listing 1.1. The
obtained results are inspected using the Gr-Tool. The software developer can use
the results of the label propagation algorithm to improve its design. Additional
details can be found in [11].

4 Conclusion

This paper presented the tool support for COVER, a unified framework that
enables goal model analysis during the software development. The goal model
produced by the requirements analyst is kept alive during the design of the
system. At each refinement round, i.e., whenever the developer produces a new
increment or changes something in the model, the new (incomplete) design of
the system is verified. The verification results are used to analyze the set of goals
of the goal model that are currently satisfied, possibly satisfied and not satisfied.

References

1. P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos. Tropos:
An agent-oriented software development methodology. Autonomous Agents and
Multi-Agent Systems, 8(3):203–236, 2004.

2. A. Dardenne, A. Van Lamsweerde, and S. Fickas. Goal-directed requirements
acquisition. Science of computer programming, 20(1):3–50, 1993.

3. N. D’Ippolito, D. Fischbein, M. Chechik, and S. Uchitel. MTSA: The Modal
Transition System Analyser. In International Conference on Automated Software
Engineering, pages 475–476. IEEE, 2008.

4. D. Giannakopoulou and J. Magee. Fluent Model Checking for Event-Based Systems.
In Symposium on Foundations of Software Engineering, pages 257–266, 2003.

5. P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R. Sebastiani. Formal reasoning
techniques for goal models. In Journal on Data Semantics I. Springer, 2003.

6. P. Giorgini, J. Mylopoulos, and R. Sebastiani. Goal-oriented requirements analysis
and reasoning in the tropos methodology. Engineering Applications of Artificial
Intelligence, 18(2):159–171, Mar. 2005.

7. M. Huth, R. Jagadeesan, and D. Schmidt. Modal transition systems: A foundation
for three-valued program analysis. In Programming Languages and Systems, pages
155–169. Springer, 2001.

8. K. G. Larsen and B. Thomsen. A modal process logic. In Logic in Computer
Science, pages 203–210. IEEE, 1988.

9. S. Liaskos, S. A. McIlraith, S. Sohrabi, and J. Mylopoulos. Integrating prefer-
ences into goal models for requirements engineering. In Requirements Engineering
Conference, pages 135–144. IEEE, 2010.

10. C. Menghi, P. Spoletini, and C. Ghezzi. Dealing with incompleteness in automata-
based model checking. In Formal Methods, volume 9995, pages 531–550, 2016.

11. C. Menghi, P. Spoletini, and C. Ghezzi. To appear in: Requirements engineering:
Foundation for software quality, REFSQ. Lecture Notes in Computer Science.
Springer, 2017.

12. E. S. Yu. Towards modelling and reasoning support for early-phase requirements
engineering. In Requirements Engineering Conference, pages 226–235. IEEE, 1997.


