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ABSTRACT
The increasing amount of data related to the execution of
scientific workflows has raised awareness of their shift to-
wards parallel data-intensive problems. In this paper, we
deliver our experience with combining the traditional high-
performance computing and grid-based approaches for sci-
entific workflows, with Big Data analytics paradigms. Our
goal was to assess and discuss the suitability of such data-
intensive-oriented mechanisms for production-ready work-
flows, especially in terms of scalability, focusing on a key
element in the Big Data ecosystem: the data-centric pro-
gramming model. Hence, we reproduced the functionality
of a MPI-based iterative workflow from the hydrology do-
main, EnKF-HGS, using the Spark data analysis framework.
We conducted experiments on a local cluster, and we relied
on our results to discuss promising directions for further re-
search.
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1. INTRODUCTION
Scientific workflows are key tools in many research areas

that rely on multiple, diverse, and distributed operations
over various datasets, usually yielding significant computa-
tional complexity and data dependencies. Nowadays, the
increasing amount of input, intermediate, and even output
data related to the execution of workflows is shifting these
originally computationally intensive systems towards paral-
lel data-intensive problems.

c© 2017 Copyright held by the owner/author(s).

While current workflows rely on hundreds of gigabytes of
intermediate data [13], trends show that large scale work-
flows would have to address increasing data sizes, easily
reaching peta-scale [18]. There has also been a rise of scien-
tific many-task computing (MTC) workflows [4], which are
capable to handle the huge data volume and the massive
computational requirements of these simulations.

In this context, scientific workflows face new performance
and scalability challenges in terms of data management,
workload distribution, load balance, and scheduling, to name
a few. Given the data-intensive nature of these problems, re-
cent works have suggested the opportunity of combining the
traditional high-performance computing (HPC) and grid-
based approaches with Big Data (BD) analytics and high-
throughput (HTC) paradigms [9]. For example, typical BD
programming models, such as Apache Hadoop, have been
considered to substitute MPI parallelism induction mecha-
nisms, following a data-centric approach.

Given the data-intensive nature of these problems, re-
cent works have suggested the opportunity of combining the
traditional high-performance computing (HPC) and grid-
based approaches with Big Data (BD) analytics and high-
throughput (HTC) paradigms [9]. For example, typical BD
programming models, such as Apache Hadoop, have been
considered to substitute MPI parallelism induction mech-
anisms, following a data-centric approach. Following this
trend, BD paradigms are increasingly seen as alternatives to
traditional HPC approaches for some major types of scien-
tific applications, especially those with many loosely-coupled
tasks [11], or heterogeneous tasks with few interdependences
[12].

Our hypothesis is that BD techniques could be used to
scale-up scientific workflows, although the architectural dif-
ferences between the analytics and scientific worlds might re-
quire novel approaches to achieve satisfactory results. There-
fore, in this work we aimed to assess the suitability of such
data-intensive-oriented mechanisms for production-ready work-
flows, especially in terms of scalability.

In previous works [3] we showed that applying some of
these mechanisms could improve scalability in parameter-
based scientific simulations. In particular, we focused on in-
creasing the addressable size and complexity of standalone
scientific applications, executed as map-reduce-based wrap-
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pers of the core implementation of their models.
In this paper we address the suitability of such data-

intensive-oriented mechanisms for production-ready work-
flows. To study this, we reproduced the functionality of an
iterative workflow from the hydrology domain, EnKF-HGS
[8], in Apache Spark 1.6.01, which is currently a major repre-
sentative of the data-centric analytics ecosystem. We com-
pared the original workflow and the Spark implementation
in a traditional cluster to evaluate scalability, and we anal-
ysed the behaviour of the platform and the infrastructure as
the problem size increased.

The goal of this paper is to present and discuss our experi-
ence with the application of those paradigms, platforms and
infrastructures currently used in BD, to a scientific work-
flow. The rest of this paper contains: background on the
BD techniques we relied on and their relation with scientific
workflows, and a high-level description of the workflow from
the hydrology domain we considered as use case (Section
2); key architectural details of the proposed solution imple-
mented in Spark (Section 3); the preliminary evaluations we
conducted to study the behaviour of the resulting redesigned
workflow (Section 4); and relevant highlights and directions
for future work (Section 5).

2. BACKGROUND
Scientific workflows are composed of heterogeneous and

coupled components that simulate different aspects of the
domain they model. These modules interact and exchange
significant volumes of data at runtime, hence making these
transfers efficient has a potential major impact in the overall
performance of the resulting application [17]. As a conse-
quence, both the storage infrastructure and the logical file
system abstractions could affect performance and scalabil-
ity, thus making data management a key aspect in workflow
design and implementation [15].

Data-centric analytics and BD tools like Hadoop and Spark
are being explored to provide straightforward data distri-
bution and caching mechanisms in pleasingly-parallel data-
intensive HPC applications. The inherently parallel nature
of these tools has resulted in positive experimental results
showing their suitability for massively parallel workloads like
MTC-like workflows [16]. Nevertheless, challenges remain
with respect to workflows built with a pure HPC focus, like
those described in [10], which rely on MPI and traditional
storage infrastructures.

However, this topic is still fairly new, and the experi-
ence with applying these techniques is still limited. Previous
works have contributed with guidelines and methodological
approaches to make the design of scientific workflows easier
and more efficient, with a user-centric and visual perspec-
tive [5]. In this work, we focus not only in the design and
deployment of BD-inspired scientific workflows, but also in
the performance and scalability issues they inherit from the
platform and infrastructure. We aim to provide insight on
the potential benefits of redesigning HPC-oriented workflows
to BD platforms, while reflecting the technical and perfor-
mance issues that arise from these paradigms.

Major examples of these resource-intensive workflows are
multi-scale data analysis applications. The hydrology do-
main is a representative example of the former. One of

1Apache Spark 1.6.0 documentation is available at
http://spark.apache.org/docs/1.6.0/

Figure 1: Typical surface water and groundwater
processes in a pre-alpine type of valleys.

the state of the art simulators in this domain is the EnKF-
HGS workflow [7]. EnKF-HGS is an iterative workflow that
implements an MPI version of the ensemble Kalman fil-
ter (EnKF) technique for sequential data assimilation [6,
2]. EnKF-HGS runs an ensemble of model instantiations
–which we call realizations– with different combinations of
input parameters and initial conditions.

As shown in Figure 1, HGS allows the numerical sim-
ulation of all the relevant surface water and groundwater
processes in a pre-alpine type of valleys. Hence, each HGS
simulation in the ensemble of realizations represents a long-
running compute-intensive process, which comprises the se-
quential execution of two proprietary simulation kernels:
GROK and HydroGeoSphere (HGS) [14, 1]. GROK is a
preprocessor that prepares the input files for HGS, which
makes GROK an I/O intensive application. HGS, on the
other hand, is an integrated hydrological modelling simu-
lator, which mainly relies on the CPU to solve differential
equations. With the HGS simulation results, each model re-
alization is updated with the environmental field measure-
ments and optimally weighted in order to achieve a higher
quality model prediction.

3. SHIFTING TO A BIG DATA PARADIGM
As described, the original workflow consisted of an MPI

implementation of an EnKF, which relied on two legacy bi-
naries to execute the simulation (GROK and HGS). EnKF-
HGS operates with a set of realizations, which constitute
independent instantiations of the model, but with different
parameters. They are simulated independently, and the out-
put is gathered afterwards for further processing.

Since the workflow is iterative, we selected the popular
data analysis tool Spark as representative of a BD program-
ming model and execution engine. The most relevant design
and implementation details of the final implementation of
the workflow in Spark are described in the following para-
graphs. The procedures executed in the Spark driver process
are identified using letters (from A to D), while numbers (1
to 6) refer to tasks that are computed distributively in the
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Spark executors.

A. Data distribution

The first step is to load the necessary auxiliary files
that every executor will need to properly run its data
partition. This includes, for instance, the kernel bina-
ries. Spark guarantees that these files will be available
for the worker nodes in their current working directory.

B. Input matrix composition

Input data is read in the driver process in order to
initialize the base model, composed of two main ma-
trices, M1 and M2, in which each column c1,r and c2r
corresponds to an instantiation, r, of the model. Addi-
tional data structures are created and initialised, and
the parameters of the simulation are obtained.

C. Column distribution

Both matrices are distributed by columns in order to
build the realization set, R. Each realization r is com-
posed of the corresponding columns from both matri-
ces, c1,r and c2,r, so that a data distribution process
is needed to create the distributed dataset that will be
transformed in the following stages and iterations. The
rationale behind distributing the workload this way is
that each realization can be simulated independently
from the others, without any further communication.
Additionally, we forced each partition to hold the data
for a single realization in order to induce fine-grained
parallelism. After realizations are distributed, the fol-
lowoing steps are executed for each realization:

1. Data pre-processing

The GROK kernel writes the realization input data to
a local file. HGS will read the realizations from this
file in order to conduct the simulation of the model.

2. Model simulation

With the input files from GROK, HGS simulates the
model and writes its output for subsequent analysis. In
steps 1 and 2 we must ensure that both binaries will be
executed in the same node to exploit data locality. To
achieve this, we run GROK and HGS in the same map
function, which is an indivisible task in Spark. They
thus act as an inner pipeline within the workflow.

3. Distributed post-processing

The post-processing stage is partially distributed. First,
the output from each HGS execution is read in each
executor in order to create an updated realization set,
R′. With this information we create a distributed ma-
trix M ′

1, and conduct several distributed operations to
avoid gathering the whole matrix in the driver.

4. Data analysis

Further operations with auxiliary matrices are exe-
cuted in the driver in order to filter and randomize
the input for the following iteration. The goal of this
stage is to minimise the size of the dataset that needs
to be collected in a the driver prior the model update.
Note that to achieve this, significant data shuffles must
be executed.

Table 1: Technical specifications for the local clus-
ter.

CPU 2 x Intel Xeon E5405 @2.00GHz

Total cores 8

Memory 8GB

OS Linux Ubuntu 14.04.1 LTS

Storage 2 x HD 1000GB + GlusterFS 3.6.9

Network 1Gb/s Ethernet

D. Model aggregation

Since not every stage of the analysis could be dis-
tributed, there is a step in which we aggregate a final
matrix that will be used to compute an update ma-
trix. This matrix is distributed afterwards, so we can
update the realizations without gathering the whole
dataset in a single node.

5. Data update and caching

The distributed update matrix is used to update every
realization in parallel. The resulting realization set is
persisted to the local storage of the nodes as a fault-
tolerance measure, and the following iteration starts.

6. Output persistence

After every iteration is executed, the output is stored
to HDFS. This is executed in parallel, as every parti-
tion is stored independently.

4. EVALUATION
The goal of our evaluation is to assess the benefits and

drawbacks of the application of the techniques discussed in
Sec. 2. We focused on absolute execution time and speed-
up to analyse the effects of the memory and virtualization
overheads of Spark.

4.1 Experimental Setup
In order to assess the performance and scalability of the

application, we selected a local cluster as baseline. The spec-
ifications and limitations of this testbed are described as
follows.

This infrastructure comprised 11 slave nodes, with the
specifications shown in Tab. 1. Each slave node holds 8GB
of RAM and two Intel Xeon E5405 @2.00GHz processors,
with four cores each. In addition, an auxiliary node was
necessary to host the driver process of the Spark imple-
mentation, which required 7GB in the largest experiment
we conducted. This means that the container in charge of
running the driver would require 7GB plus a 10% memory
overhead (as configured by default in the platform), 512MB
extra memory for heap space, and other overhead sources
like serialization buffers. Since Spark adds significant mem-
ory overhead to drivers and executors, we had to add a larger
node to bypass the memory constraints in the slave nodes.
As a consequence, we added a node with an overall amount
of 94GB of RAM and four Intel Xeon E7-4807 @1.87GHz
processors, with six cores each.

4.2 Execution Models: Spark vs. MPI
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(a) Execution time (MPI).
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(b) Execution time (Spark).
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(c) Speed-up (MPI).
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(d) Speed-up (Spark).

Figure 2: Execution time and speed-up for the MPI
and Spark workflows, running on a local cluster.

The objective of these experiments is to detect the effects
that the execution models have on the performance of the
workflow execution. We analysed the MPI-based implemen-
tation of EnKF-HGS and its data-centric version built in
Spark, both running in the local cluster formerly described.

We allocated each Spark executor to one core in order
to fairly compare scalability against single-core MPI pro-
cesses. We run experiments increasing realization volumes
and executors number. We measured the absolute execution
time for a single execution (including the job launch time re-
quired by Spark) and computed the speed-up achieved. The
results for those experiments are shown in Fig. 2, in which
(a) and (c) correspond to MPI, and (b) and (d) correspond
to Spark. Remarkably, Spark yields better execution times
for every experiment, and its speed-up is better the larger is
the experiment for a given number of workers. This might
be a result of the redesign process. However, the speed-up
in Spark for the largest experiment (i.e. 64 realizations on
64 executors) is lower than in the MPI case. The problem
in this case is that the 64 executors cannot be scheduled at
once due to their large memory requirements.

The main conclusion from this experiment is that, while
the BD-inspired approach shows surprising performance re-
sults, the memory overhead of the execution framework hurts
scalability, as less parallel executors can be allocated in the
same infrastructure. As a result, the slimmer MPI processes
seem more suitable for large scale execution of this workflow.
Another interesting aspect is related to the post-processing
stage of the workflow and its effect on the overall execution
time. At some point, with the growing number of the parallel
executors, the post-processing computation becomes shorter
in time than the data transferring time. Consequently, the
post-processing stage starts to affect the overall execution
time more than with a fewer number of the parallel execu-
tors.

5. CONCLUSIONS AND FUTURE WORKS
Scientific workflows are becoming data-intensive, and their

scale continues to grow with larger data volumes and prob-
lem complexities. There is a rising interest in exploiting the
opportunity to leverage Big Data application models and in-
frastructures to increase workflow scalability. Nevertheless,
the benefits and drawbacks of these new tools have not been
fully studied yet.

This work has explored the effects these paradigms could
have in current workflows. We aimed to detect their bene-
fits and drawbacks, and to extract from these knowledge a
series of lessons and future research topics. We focused this
work in two key elements to be compared: MPI and Apache
Spark. We experimented with a specific workflow from the
hydrology domain, and analyzed its performance and scal-
ability implemented on MPI and Spark and executed in a
local cluster.

The main conclusion from the experiments made is that,
while the BD-inspired approach shows surprising performance
results, the memory overhead of the execution framework
hurts scalability, as less parallel executors can be allocated
in the same infrastructure. As a result, the slimmer MPI
processes seem more suitable for large scale execution of this
workflow.

While we considered this use case relevant for our objec-
tives in terms of complexity and size, further experimenta-
tion with other workflows with different structures would be
necessary to corroborate our results and conclusions. In ad-
dition, further analysis of the cost-performance trade-off of
applying Big Data paradigms to workflows should be con-
ducted, as well as a detailed analysis of the I/O-related over-
head specific to the workflows.
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