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Abstract.
Automatic speech recognition(ASR) offers the ability to access the

semantic content present in spoken language within audio and video
documents. While acoustic models based on deep neural networks
have recently significantly improved the performances of ASR sys-
tems, automatic transcriptions still contain errors. Errors perturb the
exploitation of these ASR outputs by introducing noise to the text.
To reduce this noise, it is possible to apply an ASR error detection in
order to remove recognized words labelled as errors.

This paper presents an approach that reaches very good results,
better than previous state-of-the-art approaches. This work is based
on a neural approach, and more especially on a study targeted to
acoustic and linguistic word embeddings, that are representations of
words in a continuous space.

In comparison to the previous state-of-the-art approach which
were based on Conditional Random Fields, our approach reduces the
classification error rate by 7.2%.

1 Introduction

The advancement in the speech processing field and the availabil-
ity of powerful computing devices have led to better performance in
the speech recognition domain. However, recognition errors are still
unavoidable, whatever the quality of the ASR systems. This reflects
their sensitivity to the variability: the acoustic environment, speaker,
language styles and the theme of the speech. These errors can have a
considerable impact on the application of certain automatic processes
such as information retrieval, speech to speech translation, etc.

The encountered errors can be due to a misinterpretation of the
signal. For example, the noise associated with the sound of the en-
vironment or a problem with the quality of recording channel is in-
terpreted as speech by the system. One of the source of errors may
also come from a mispronunciation of a word, a non respect speech
turn when two speakers are involved at the same time also creates a
disturbance of the sound signal.

The efficient generation of speech transcriptions in any condition
(e.g. noise free environment, etc.) remains the ultimate goal, which is
not already solved. Error detection can help to improve the exploita-
tion of ASR outputs by downstream applications, but is a difficult
task given the fact that there are several types of errors, which can
range from the simple substitution of a word with a homophone to
the insertion of an irrelevant word for the overall understanding of
the sequence of words. They can also affect neighboring words and
create a whole area of erroneous words.
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Error detection can be performed in three steps: first, generating a
set of features that are based on ASR system or gathered from other
source of knowledge. Then, based on these features, estimating cor-
rectness probabilities (confidence measures). Finally, a decision is
made by applying a threshold on these probabilities.

Many studies focus on the ASR error detection. In [14], authors
have applied the detection capability for filtering data for unsuper-
vised learning of an acoustic model. Their approach was based on
applying two thresholds on the linear combination of two confi-
dence measures. The first one, was derived from language model and
takes into account backoff behavior during the ASR decoding. This
measure is different from the language model score, because it pro-
vides information about the word context. The second is the posterior
probability extracted from the confusion network. In [5], authors ad-
dressed the issue of error region detection and characterization in
Large Vocabulary Continuous Speech Recognition (LVCSR) tran-
scriptions. They proposed to classify error regions in four classes,
in particular, they are interested in a person noun error which is a
critical information in many information retrieval applications. They
proposed several sequential detection, classification approaches and
an integrated sequence labeling approach. The ASR error detection
problem is related to the Out Of Vocabulary (OOV) detection task,
considering that OOV errors behavior and impact differ from other
errors, assuming that OOV words contribute to recognition errors on
surrounding words. Many studies focused on detecting OOV errors.
More recently, in [17], authors have also focused on detecting er-
ror regions generated by OOV words. They proposed an approach
based on CRF tagger, which takes into account contextual informa-
tion from neighboring regions instead of considering only the local
region of OOV words. This approach leads to significant improve-
ment compared to state of the art. The generalization of this ap-
proach for other ASR errors was presented in [1], which proposes
an error detection system based on CRF tagger using various ASR,
lexical and syntactic features. Their experiments that are performed
on two corpora in English for the DARPA BOLT project showed
the validity of this approach for the detection of important errors.
In [18], new features gathered from other knowledge sources than
the decoder itself were explored for ASR error detection, which are
a binary feature that compares the outputs from two different ASR
systems (word by word), a feature based on the number of hits of the
hypothesized bigrams, obtained by queries entered into a very popu-
lar Web search engine, and finally a feature related to automatically
infered topics at sentence and word levels. Two out of three new fea-
tures, a binary word match feature and a bigram hit feature, led to
significant improvements, with a maximum entropy model and CRF
with linear-chain conditional random fields, comparing to a base-
line using only decoder-based features. A neural network classifier



trained to locate errors in an utterance using a variety of features
is presented in [20]. Two approaches are proposed to extract confi-
dence measures : the first one, is based on Recurrent Neural network
Language Model (RNNLM) features to capture long-distance con-
text within and across previous utterances. The second one, consist
of combining complementary state-of-the-art DNN and GMM ASR
for effective error detection, by leveraging DNN and GMM confu-
sion networks that store word confusion information from multiple
systems for feature extraction.

The ASR error detection method presented in this paper is based
on incorporating a set of features in the confidence classifier built on
neural network architectures, including MLP and DNN, which is in
charge to attribute a label (error or correct) for each word of an ASR
hypothesis.

A combination approach based on the use of an auto encoder is
applied to combine well-known word embeddings: this combination
helps to take benefit from the complementarities of these different
word embeddings, as recently shown in one of our previous studies
[10].

2 ASR error detection based on word embeddings

The error detection system has to attribute the label correct or er-
ror to each word in the ASR transcript. Each decision is based on a
set of heterogeneous features. In our approach, this classification is
performed by analyzing each recognized word within its context.

The proposed ASR error detection system is based on a feed for-
ward neural network and is designed to be fed by different kinds of
features, including word embeddings.

2.1 Architecture

This ASR error detection system is based on a multi-stream strat-
egy to train the network, named multilayer perceptron multi stream
(MLP-MS). The MLP-MS architecture is used in order to better in-
tegrate the contextual information from neighboring words. This ar-
chitecture is inspired by [7] where word and semantic features are
integrated for topic identification in telephone conversations. The
training of the MLP-MS is based on pre-training the hidden layers
separately and then fine tuning the whole network. The proposed ar-
chitecture, depicted in Figure 1, is detailed as follows: three feature
vectors are used as input to the network – feature vectors are de-
scribed in the next section. These vectors are respectively the feature
vector representing the two left words (L), the feature vector repre-
senting the current word (W) and the feature vector for the two right
words (R). Each feature vector is used separately in order to train a
multilayer perceptron (MLP) with a single hidden layer. Formally,
the architecture is described by the following equations:

H1,X = f(P1,X ×X + b1,X) (1)

where X represents respectively the three feature vectors (L,W and
R), Pi is the weight matrix and bi is the bias vector.
The resulting vectors H1,L, H1,W and H1,R are concatenated to
form the first hidden layer H1. The H1 vector is presented as the
input of the second MLP-MS hidden layer H2 computed according
to the equation:

H2 = g(P2 ×H1 + b2) (2)

Finally, the output layer is a vector Ok of k=2 nodes corresponding
to the 2 labels correct and error:

Ok = q(PO ×H2 + bO) (3)

Note that in our experiments f and g are respectively rectified linear
units (ReLU ) and hyperbolic tangent (tanh) activation functions,
and q is the softmax function.

output

H2

H1-L H1-W H1-R

Wi-2 Wi-1 Wi Wi+1 Wi+2

Figure 1. MLP-MS architecture for ASR error detection task.

2.2 Feature vectors

In this section, we describe the features collected for each word and
how they are extracted. Some of these features are nearly the same
as the ones presented in [1]. The word feature vector is the concate-
nation of the following features:

• ASR confidence scores: confidence scores are the posterior prob-
abilities generated from the ASR system (PAP). The word pos-
terior probability is computed over confusion networks, which is
approximated by the sum of the posterior probabilities of all tran-
sitions through the word that are in competition with it.

• Lexical features: lexical features are derived from the word hy-
pothesis output from the ASR system. They include the word
length that represents the number of letters in the word, and three
binary features indicating if the three 3-grams containing the cur-
rent word have been seen in the training corpus of the ASR lan-
guage model.

• Syntactic features: we obtain syntactic features by automatically
assigning part-of-speech tags (POS tags), dependency labels –
such label is a grammatical relation held between a governor
(head) and a dependent –, and word governors, which are ex-
tracted from the word hypothesis output by using the MACAON
NLP Tool chain2 [16] to process the ASR outputs.

• Linguistic word representation (embedding or symbol): The
orthographic representation of a word is used in CRF approaches
as for instance in [2]. Using our neural approach we can handle
different word embeddings, which permits us to take advantage of
the generalizations extracted during the construction of the con-
tinuous vectors.

• Acoustic word embeddings: these vectors represents the pronun-
ciation of a word as a projection in a space with high dimension.
Words projected into a close area are words acoustically simi-
lar [3].

2 http://macaon.lif.univ-mrs.fr



2.3 Linguistic word embeddings: a
combination-based approach

Different approaches have been proposed to create word embeddings
through neural networks. These approaches can differ in the type of
the architecture and the data used to train the model. In this study, we
distinguish two categories of word embeddings: the ones estimated
on unlabeled data, and others estimated on labeled data (dependency-
based word embeddings). These representations are detailed respec-
tively in the next subsections.

2.3.1 Word embeddings based on unlabeled data

This section presents three types of word embeddings coming from
two available implementations (word2vec [15] and GloVe [19]):

• Skip-gram: This architecture from [15] takes as input the target
word wi and outputs the preceding and the following words.
The target word Wi is at the input layer, and the context words
C are at the output layer. It consists on predicting the contextual
words C given the current word wi.
The skip-gram model with negative sampling seeks to repre-
sent each word Wi and each context C as d-dimensional vectors
(VWwi,VC ) in order to have similar vector representations for sim-
ilar words. This is done by maximizing the dot product VWwi.VC

associated with the good word-context pairs that occur in the doc-
ument D and minimize it for negative examples, that do not neces-
sarily exist in D. These negative examples are created by stochas-
tically corrupting the pairs (Wi, C), thus the name negative sam-
pling.
Also, the context is not limited to the immediate context, and train-
ing instances can be created by skipping a constant number of
words in its context, for instance, wi−3 , wi−4 , wi+3 , wi+4 , hence
the name skip-gram.

• GloVe: This approach is introduced by [19], and relies on con-
structing a global co-occurrence matrix X of words, by process-
ing the corpus using a sliding context window. Here, each element
Xij represents the number of times the word j appears in the con-
text of word i.
The model is based on the global co-occurrence matrix X instead
of the actual corpus, thus the name GloVe, for Global Vectors.
This model seeks to build vectors Vi and Vj that retain some useful
information about how every pair of words i and j co-occur, such
as:

V T
i Vj + bi + bj = logXij (4)

where bi and bj are the bias terms associated with words i and j,
respectively.
This is accomplished by minimizing a cost function J , which eval-
uates the sum of all squared errors:

J =
∑∑

f(Xij)(V
T
i Vj + bi + bj − logXij)

2 (5)

where f is weighting function which is used to prevent learning
only from very common word pairs. The authors define the f as
follows [19]:

f(Xij) =

{
Xij

Xmax
if Xij < Xmax

1 otherwise

2.3.2 Dependency-based word embeddings

Levy et al. [13] proposed an extension of word2vec, called
word2vecf and denoted w2vf-deps, which allows to replace linear
bag-of-words contexts with arbitrary features.

This model is a generalization of the skip-gram model with neg-
ative sampling introduced by [15], and it requires labeled data for
training. As in [13], we derive contexts from dependency trees: a
word is used to predict its governor and dependents, jointly with their
dependency labels. This effectively allows for variable window size.

2.3.3 Word embedding combination

In the framework of this work, we have experimented different ways
to combine the word embeddings presented above. Like described in
a previous paper [10], the use of an auto encoder is very effective.

3 Acoustic word embeddings
3.1 Building acoustic word embeddings
The approach we used to build acoustic word embeddings is inspired
from the one proposed in [3]. Word embeddings are trained through
a deep neural architecture, depicted in figure 2, which relies on a
convolutional neural network (CNN) classifier over words and on a
deep neural network (DNN) trained by using a triplet ranking loss [3,
21, 22]. This architecture was proposed in [3] with the purpose to use
the scores derived from the word classifier for lattice rescoring. The
two architectures are trained using different inputs: speech signal and
orthographic representation of the word.
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Figure 2. Deep architecture used to train acoustic word embeddings.

The CNN is trained to predict a word given an acoustic sequence
of T frames as input. It is composed of a number of convolution
and pooling layers, followed by a number of fully connected layers
which feeds into the final softmax layer. The final fully connected
layer just below the softmax one is called embedding layer s (it was
called e in [3]). It contains a compact representation of the acoustic
signal. This representation tends to preserve acoustic similarity be-
tween words, such that words are close in this space if they sound
alike.

The idea behind using the second architecture is to be able to build
an acoustic word embedding from orthographic word representation,
especially in order to get an acoustic word embeddings for words not
already observed in an audio speech signal. More, a such acoustic



word embedding derived from an orthographic representation can be
perceived as a canonical acoustic representation for a word, since
different prononciations imply different embeddings s.

Like in [3], orthographic word representation consists on a bag of
n-grams (n ≤ 3) of letters, composed of 10222 trigrams, bigrams,
and unigrams of letters, including special symbols [ and ] to specify
the start and the end of a word. Then, we use an auto-encoder to re-
duce the size of this bag of n-grams vector to d-dimension. To check
the performance of the resulting orthographic representation, a neural
network is trained to predict a word given this orthographic represen-
tation. It reaches 99.99% of accuracy on the training set composed of
52k words of the vocabulary, showing the richness of this represen-
tation.

Similar to [3], a DNN was trained by using the triplet ranking
loss [3, 21, 22] in order to project the orthographic word representa-
tion to the acoustic embeddings s obtained from the CNN architec-
ture, which is trained independently. It takes as input a word ortho-
graphic representation and outputs an embedding vector of the same
size as s. During the training process, this model takes as inputs the
acoustic embedding s selected randomly from the training set, the
orthographic representation of the matching word o+, and the ortho-
graphic representation of a randomly selected word different to the
first word o−. These two orthographic representations supply shared
parameters in the DNN.

We call t = (s,w+,w−) a triplet, where s is the acoustic signal
embedding, w+ is the embedding obtained through the DNN for the
matching word, while w− is the embedding obtained for the wrong
word. The triplet ranking loss is defined as:

Loss = max(0,m− Simdot(s, w
+) + Simdot(s, w

−)) (6)

where Simdot(x, y) is the dot product function used to compute the
similarity between two vectors x and y, and m is a margin param-
eter that regularizes the margin between the two pairs of similarity
Simdot(s,w+) and Simdot(s,w−). This loss is weighted according
to the rank in the CNN output of the word matching the audio signal.

The resulting trained model can then be used to build an acous-
tic embedding (w+) from any word, as long as one can extract an
orthographic representation from it.

3.2 Experiments
3.2.1 Experimental data

Experimental data for ASR error detection is based on the entire of-
ficial ETAPE corpus [11], composed by audio recordings of French
broadcast news shows, with manual transcriptions (reference). This
corpus is enriched with automatic transcriptions generated by the
LIUM ASR system, which is a multi-pass system based on the CMU
Sphinx decoder, using GMM/HMM acoustic models. This ASR sys-
tem won the ETAPE evaluation campaign in 2012. A detailed de-
scription is presented in [4].

The automatic transcriptions have been aligned with reference
transcriptions using the sclite3 tool. From this alignment, each word
in the corpora has been labeled as correct (C) or error (E). The de-
scription of the experimental data, in terms of size, word error rate
(WER) as well as percentage of substitution (Sub), deletion (Del)
and insertion (Ins), is reported in Table 1.

The performance of the proposed approach is compared with a
state-of-the-art system based on CRFs [2] provided by the Wapiti tag-

3 http://www.icsi.berkeley.edu/Speech/docs/sctk-1.2/sclite.htm

Name #words #words WER Sub Del Ins
ref hyp

Train 349K 316K 25.3 10.3 12.0 3.1
Dev 54K 50K 24.6 10.3 11.0 3.3
Test 58K 53K 21.9 8.3 10.9 2.7

Table 1. Description of the experimental corpus.

ger4 [12] and applied to the set of features presented in Section 2.2.
The ASR error detection systems (MLP-MS and CRF) are trained
on the training corpus (Train) and are applied on the test (Test) set.
The development set (Dev) was used to tune all the parameters: the
learning rate, the batch size and the hidden layers size of MLP-MS,
and the features template of CRF, that describes which features are
used in training and testing.

The performance is evaluated by using recall (R), precision (P)
and F-measure (F) for the misrecognized word prediction and global
Classification Error Rate (CER). CER is defined as the ratio of the
number of misclassifications over the number of recognized words.

The linguistic word embedding described in Section 2.3 are made
of 200 dimensions. They were computed from a large textual corpus,
composed of about 2 billions of words. This corpus was built from
articles of the French newspaper “Le Monde”, the French Gigaword
corpus, articles provided by Google News, and manual transcriptions
of about 400 hours of French broadcast news.

The training set for the convolutional neural network used to
compute acoustic word embedding consists of 488 hours of French
Broadcast News with manual transcriptions. This dataset is com-
posed of data coming from the ESTER1 [8], ESTER2 [9] and
EPAC [6] corpora.

It contains 52k unique words that are seen at least twice each in
the corpus. All of them corresponds to a total of 5.75 millions occur-
rences. In French language, many words have the same pronunciation
without sharing the same spelling, and they can have different mean-
ings; e.g. the sound [so] corresponds to four homophones: sot (fool),
saut (jump), sceau (seal) and seau (bucket), and twice more by tak-
ing into account their plural forms that have the same pronunciation:
sots, sauts, sceaux, and seaux. When a CNN is trained to predict a
word given an acoustic sequence, these frequent homophones can
introduce a bias to evaluate the recognition error. To avoid this, we
merged all the homophones existing among the 52k unique words of
the training corpus. As a result, we obtained a new reduced dictionary
containing 45k words and classes of homophones.

Acoustic features provided to the CNN are log-filterbanks, com-
puted every 10ms over a 25ms window yielding a 23-dimension vec-
tor for each frame. A forced alignment between manual transcrip-
tions and speech signal was performed on the training set in order
to detect word boundaries. The statistics computed from this align-
ment reveal that 99% of words are shorter than 1 second. Hence we
decided to represent each word by 100 frames, thus, by a vector of
2300 dimensions. When words are shorter they are padded with zero
equally on both ends, while longer words are cut equally on both
ends.

3.2.2 Experimental results

Experimental results are summarized in Table 2. In terms of global
classification error rate, the proposed neural approach outperforms

4 http://wapiti.limsi.fr



the CRF, especially by using a combination of embeddings. It yields
5.8% of CER reduction compared to CRF by using only linguistic
word embedding. By using also acoustic word embeddings, the CER
reduction reached 7.2%. One can also notice that the use of an auto
encoder to combine word embeddings is really useful to capture com-
plementarities of different single linguistic word embeddings.

Word Label error Global
Approach Represent. P R F CER

CRF (baseline) discrete 67.69 54.74 60.53 8.56
Neural w2vf-deps 71.90 50.98 59.66 8.26

with single Skip-gram 74.45 46.75 57.44 8.30
ling. word embed. GloVe 72.16 46.97 56.90 8.53

Neural with w2vf-deps
ling. word embed. ⊕ Skip-gram 69.66 57.89 63.23 8.07

combination ⊕ GloVe
Neural with w2vf-deps

ling. word embed. ⊕ Skip-gram 70.09 58.92 64.02 7.94
combination and ⊕ GloVe

acoustic word embed. + s + w+

Table 2. Comparison of the use of different types of word embeddings in
MLP-MS error detection system on Test corpus.

4 Conclusion

In this paper, we have investigated the use of a neural network to
detect ASR error. Specifically, we proposed to effectively represent
words through linguistic and acoustic word embeddings.

Experiments were made on automatic transcriptions generated by
LIUM ASR system applied on the ETAPE corpus (French broadcast
news). They show that the proposed neural architecture, using the
acoustic word embeddings as additional features, outperforms state-
of-the-art approach based on the use of Conditional Random Fields,
with a reduction of the classification error rate of 7.2%.
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[4] Paul Deléglise, Yannick Estève, Sylvain Meignier, and Teva Merlin,
‘Improvements to the LIUM French ASR system based on CMU
Sphinx: what helps to significantly reduce the word error rate?’, in In-
terspeech, Brighton, UK, (September 2009).
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