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Abstract. The ambition of Artificial Intelligence is to solve problems
without human intervention. Often the problem description is given in
human (natural) language. Therefore it is crucial to find an automatic
way to understand a text written by a human. The research field con-
cerned with the interactions between computers and natural languages
is known under the name of Natural Language Processing (NLP), one of
the most studied fields of Artificial Intelligence.

In this paper we show that Probabilistic Logic Programming (PLP) is a
suitable approach for NLP in various scenarios. For this purpose we use
cplint on SWISH, a web application for Probabilistic Logic Program-
ming. cplint on SWISH allows users to perform inference and learning
with the framework cplint using just a web browser, with the compu-
tation performed on the server.
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1 Introduction

The ambition of Artificial Intelligence is to solve problems without human in-
tervention. Often the problem description is given in human (natural) language.
Therefore Natural Language Processing (NLP) is fundamental for problem solv-
ing.

In this paper we show that is possible to represent NLP models such as
Probabilistic Context Free Grammars, Probabilistic Left Corner Grammars and
Hidden Markov Models with Probabilistic Logic Programs.

Probabilistic Programming (PP) [5] has recently emerged as a useful tool for
building complex probabilistic models and for performing inference and learning
on them.



Probabilistic Logic Programming (PLP) [1] is PP based on Logic Program-
ming that allows to model domains characterized by complex and uncertain
relationships among domain entities.

Many systems have been proposed for reasoning with PLP. Even if they are
freely available for download, using them usually requires a complex installation
process and a steep learning curve. In order to mitigate these problems, we
developed cplint on SWISH [8], a web application for reasoning on PLP with
just a web browser: the algorithms run on a server and the users can post queries
and see the results in their browser. The application is available at http://

cplint.lamping.unife.it.
cplint on SWISH uses the reasoning algorithms included in the cplint

suite, including exact and approximate inference and parameter and structure
learning.

The paper is organized as follows. Section 2 provides an overview of the
distribution semantics, Section 3 illustrates some examples of how to represent
some of the most famous NLP models in PLPs. Finally, section 5 concludes the
paper.

All the examples in the paper named as <name>.pl can be accessed online
at http://cplint.lamping.unife.it/example/inference/<name>.pl.

2 Syntax and Semantics

The distribution semantics [11] is one of the most successful approaches for rep-
resenting probabilistic information in Logic Programming and it is at the basis
of many languages, such as Independent Choice Logic, PRISM, Logic Programs
with Annotated Disjunctions (LPADs) and ProbLog.

We consider first the discrete version of probabilistic logic programming lan-
guages. In this version, each atom is associated with a Boolean random variable
that can assume values true or false representing the its presence or absence in
the program. The facts and rules of the program specify the dependences among
the truth value of atoms and the main inference task is to compute the probabil-
ity that a ground query is true, often conditioned on the truth of another ground
goal, the evidence. All the languages following the distribution semantics allow
the specification of alternatives either for facts and/or for clauses. We present
here the syntax of LPADs because it is the most general [18].

An LPAD is a finite set of annotated disjunctive clauses of the form hi1 :
Πi1; . . . ;hini : Πini :- bi1, . . . , bimi . where bi1, . . . , bimi are literals, hi1, . . . hini

are atoms and Πi1, . . . ,Πini
are real numbers in the interval [0, 1]. This clause

can be interpreted as “if bi1, . . . , bimi
is true, then hi1 is true with probability

Πi1 or . . . or hini
is true with probability Πini

.”
Given an LPAD P , the grounding ground(P ) is obtained by replacing vari-

ables with terms from the Herbrand universe in all possible ways. If P does not
contain function symbols and P is finite, ground(P ) is finite as well.

ground(P ) is still an LPAD from which we can obtain a normal logic program
by selecting a head atom for each ground clause. This normal program, called
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“world”, is assigned a probability by multiplying the probabilities of all the head
atoms chosen. In this way we get a probability distribution over worlds from
which we can define a probability distribution over the truth values of a ground
atom: the probability of an atom q being true is the sum of the probabilities of
the worlds where q is true, that can be checked because the worlds are normal
programs that we assume have a two-valued well-founded model.

This semantics can be given also a sampling interpretation: the probabil-
ity of a query q is the fraction of worlds, sampled from the distribution over
worlds, where q is true. To sample from the distribution over worlds, you sim-
ply randomly select a head atom for each clause according to the probabilistic
annotations. Note that you don’t even need to sample a complete world: if the
samples you have taken ensure the truth value of q is determined, you don’t need
to sample more clauses.

To compute the conditional probability P (q|e) of a query q given evidence e,
you can use the definition of conditional probability, P (q|e) = P (q, e)/P (e), and
compute first the probability of q, e (the sum of probabilities of worlds where
both q and e are true) and the probability of e and then divide the two.

If the program P contains function symbols, a more complex definition of the
semantics is necessary, because ground(P ) is infinite, a world would be obtained
by making an infinite number of choices and so its probability, the product of
infinite numbers all smaller than one, would be 0. In this case you have to work
with sets of worlds and use Kolmogorov’s definition of probability space [7].

3 NLP Models

In NLP two common tasks are to check whether a sentence respects a gram-
mar or to tag each word of a sentence with a part-of-speech (POS) tag. For
NLP the grammars that are used in the theory of formal languages such as
context free grammars or left corner grammars do not work well because the
rules are too strict. Natural language is more flexible and is characterized by
many exceptions to rules. To model natural language, probabilistic versions of
the grammars above have been developed, such as Probabilistic Context Free
Grammars or Probabilistic Left Corner Grammars. Similarly, for POS tagging,
statistical tools such as Hidden Markov Models give good results.

3.1 Probabilistic Context-Free Grammars

A Probabilistic Context-Free Grammar (PCFG) consists of:

1. A context-free grammar G = (N,Σ, I,R) where N is a finite set of non-
terminal symbols, Σ is a finite set of terminal symbols, I ∈ N is a distin-
guished start symbol, R is a finite set of rules of the form X → Y1, . . . , Yn,
where X ∈ N and Yi ∈ (N ∪Σ).

2. A parameter θ for each rule α → β ∈ R. Therefore we have probabilistic
rules of the form θ : α→ β



This kind of models can be represented by PLPs. For instance consider the
program pcfg.pl (adapted from [15]) shown below. It represents the PCFG
{0.2 : S → aS, 0.2 : S → bS, 0.3 : S → a, 0.3 : S → b}, where {S} is N and {a, b}
is Σ.

pcfg(L):- pcfg([’S’],[],_Der,L,[]).

pcfg([A|R],Der0,Der,L0,L2):-

rule(A,Der0,RHS),

pcfg(RHS,[rule(A,RHS)|Der0],Der1,L0,L1),

pcfg(R,Der1,Der,L1,L2).

pcfg([A|R],Der0,Der,[A|L1],L2):-

\+ rule(A,_,_),

pcfg(R,Der0,Der,L1,L2).

pcfg([],Der,Der,L,L).

rule(’S’,Der,[a,’S’]):0.2; rule(’S’,Der,[b,’S’]):0.2;

rule(’S’,Der,[a]):0.3; rule(’S’,Der,[b]):0.3.

In this example if we want to perform exact inference and we want to ask for
the probability of the string “abaa”, we have to submit to cplint on SWISH
the query prob(pcfg([a,b,a,a]),Prob). and we obtain 0.0024 (In this case
the string is not ambiguous so there exists only one derivation with probability
0.2 · 0.2 · 0.2 · 0.3 = 0.0024).

3.2 Probabilistic Left Corner Grammars

A Probabilistic Left Corner Grammar (PLCG) is a probabilistic version of left-
corner grammar which uses the same set of rules as a PCFG. Whereas PCFGs
assume top-down parsing, PLCGs are based on bottom-up parsing. PLCGs set
probabilities not to expansion of non-terminals but to three elementary opera-
tions in bottom-up parsing, i.e. shift, attach and project. As a result they define
a different class of distributions from PCFGs.

Programs for PLCGs look very different from those for PCFGs. The program
plcg.pl (adapted from [14]) represent a PLCG that has as CFG rules {S →
SS, S → a, S → b}, where {S} is N and {a, b} is Σ

plc(Ws) :- g_call([’S’],Ws,[],[],_Der).

g_call([],L,L,Der,Der).

g_call([G|R], [G|L],L2,Der0,Der) :- % shift

terminal(G),

g_call(R,L,L2,Der0,Der).

g_call([G|R], [Wd|L] ,L2,Der0,Der) :-

\+ terminal(G), first(G,Der0,Wd),

lc_call(G,Wd,L,L1,[first(G,Wd)|Der0],Der1),

g_call(R,L1,L2,Der1,Der).

lc_call(G,B,L,L1,Der0,Der) :- % attach

lc(G,B,Der0,rule(G, [B|RHS2])),

attach_or_project(G,Der0,attach),

g_call(RHS2,L,L1,[lc(G,B,rule(G, [B|RHS2])),attach|Der0],Der).

http://cplint.lamping.unife.it/example/inference/pcfg.pl
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lc_call(G,B,L,L2,Der0,Der) :- % project

lc(G,B,Der0,rule(A, [B|RHS2])),

attach_or_project(G,Der0,project),

g_call(RHS2,L,L1,[lc(G,B,rule(A, [B|RHS2])),project|Der0],Der1),

lc_call(G,A,L1,L2,Der1,Der).

lc_call(G,B,L,L2,Der0,Der) :-

\+ lc(G,B,Der0,rule(G,[B|_])),

lc(G,B,Der0,rule(A, [B|RHS2])),

g_call(RHS2,L,L1,[lc(G,B,rule(A, [B|RHS2]))|Der0],Der1),

lc_call(G,A,L1,L2,Der1,Der).

attach_or_project(A,Der,Op) :-

lc(A,A,Der,_), attach(A,Der,Op).

attach_or_project(A,Der,attach) :-

\+ lc(A,A,Der,_).

lc(’S’,’S’,_Der,rule(’S’,[’S’,’S’])).

lc(’S’,a,_Der,rule(’S’,[a])).

lc(’S’,b,_Der,rule(’S’,[b])).

first(’S’,Der,a):0.5; first(’S’,Der,b):0.5.

attach(’S’,Der,attach):0.5; attach(’S’,Der,project):0.5.

terminal(a). terminal(b).

Besides exact inference, cplint offers also approximate inference by Monte Carlo
sampling. If we want to know the probability that the string ’ab’ is generated by
the grammar, we have to write the query mc prob(plc([a,b]),P). and cplint

on SWISH will return ∼ 0.031.

3.3 Hidden Markov Models

In a Hidden Markov Model (HMM) there are states, transitions between states,
and symbols emitted by the states. Usually there are two kinds of probabilities
in a HMM: transition probabilities, i.e. the probability of a transition from one
state to another, and emission or output probabilities, i.e. the probability of a
certain state emitting a certain symbol.

HMM can be used for POS tagging words can be considered as output sym-
bols and a sentence the sequence of output symbols emitted by an HMM. In
this case, the states are POS tags and the sequence of states that most probably
gave the sentence as the sequence of output symbols can be considered as the
POS tagging of the sentence.

In the program hmmpos.pl (adapted from http://www.ling.gu.se/~lager/

Spaghetti/spaghetti.html, [4] and [13]) illustrated below, we have a simple
HMM representation where the output probabilities are set to 1 (for every state
there is only one possible output). In this model the states represent parts-of-
speech, and the symbols emitted by the states are words (every POS emits only
one word). The assumption is that a POS of a word depends only on the POS
of the preceding word (or on the start state in case there is no preceding word).

hmm(O):-hmm(_,O).

http://cplint.lamping.unife.it/example/inference/hmmpos.pl
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hmm(S,O):-

trans(start,Q0,[]),hmm(Q0,[],S0,O),reverse(S0,S).

hmm(Q,S0,S,[L|O]):-

trans(Q,Q1,S0),

out(L,Q,S0),

hmm(Q1,[Q|S0],S,O).

hmm(_,S,S,[]).

trans(start,det,_):0.30; trans(start,aux,_):0.20; trans(start,v,_):0.10;

trans(start,n,_):0.10; trans(start,pron,_):0.30.

trans(det,det,_):0.20; trans(det,aux,_):0.01; trans(det,v,_):0.01;

trans(det,n,_):0.77; trans(det,pron,_):0.01.

trans(aux,det,_):0.18; trans(aux,aux,_):0.10; trans(aux,v,_):0.50;

trans(aux,n,_):0.01; trans(aux,pron,_):0.21.

trans(v,det,_):0.36; trans(v,aux,_):0.01; trans(v,v,_):0.01;

trans(v,n,_):0.26; trans(v,pron,_):0.36.

trans(n,det,_):0.01; trans(n,aux,_):0.25; trans(n,v,_):0.39;

trans(n,n,_):0.34; trans(n,pron,_):0.01.

trans(pron,det,_):0.01; trans(pron,aux,_):0.45; trans(pron,v,_):0.52;

trans(pron,n,_):0.01; trans(pron,pron,_):0.01.

out(a,det,_). out(can,aux,_). out(can,v,_). out(can,n,_). out(he,pron,_).

For instance we want to know the most frequent state sequence for the sen-
tence “he can can a can”. In this case it corresponds to the most frequent
part-of-speech sequence for that sentence. By using the cplint syntax we query
mc sample arg( hmm(S,[he,can,can,a,can]),100,S,O)., we should obtain the
sequence [pron, aux, v, det, n].

4 Related Work

PRISM [12] is one of the most influential systems for the application of PLP
to NLP. PRISM uses a symbolic-statistical modeling language that follows the
distribution semantics that differs from ICL/LPADs/ProbLog because the pro-
grams are required to satisfy some constraints, namely that clauses have mutu-
ally exclusive bodies and literals in the body of clauses are mutually independent.
This restriction is satisfied by all the models presented in this paper and in fact
all of them are inspired by models for the PRISM system. However, the restric-
tion severely limits the expressiveness and may prove too constraining for more
complex models.

In [6] the authors build a Bayesian network corresponding to the distribution
of the parse trees induced by a given PCFG. The Bayesian network can be used
to handle partial sequences, not handled by standard approaches. Contextual
information regarding the sentences and other evidence can also be exploited by
defining the probability values of the conditional probability tables as functions
of the position of the subsequence within the whole terminal string, the length
of the subsequence and the position of the term in the sequence.

Other approaches for parameter learning exploit counting for PLCGs starting
from a parse tree [2] or define a parser which exploits probabilistic best-first



parsing methods and use beam-search [10] to ensure termination of the learning
process. An EM algorithm is exploited in [16,17] to learn the parameters from
unbracketed sentences.

Applying (probabilistic) inductive logic programming (ILP) to NLP was in-
vestigated in [3] where the authors present an ILP system able to learn syntactic
and semantic parsers that are then used to answer natural language database
queries by mapping them into Prolog. However the system cannot handle uncer-
tain information.

5 Conclusions

PCFGs, PLCGs and HMMs are some of the most widely used models in NLP. In
this paper we show that is possible to represent these models with Probabilistic
Logic Programs. All the proposed examples are available in cplint on SWISH,
a web application for PLP.

A complete online tutorial of cplint on SWISH [9] is available at http:

//ds.ing.unife.it/~gcota/plptutorial/.
We are currently considering a version of probabilistic Definite Clause Gram-

mars, where the probability distribution is defined on the possible non-terminals
with the same expansion, rather than on the possible expansions of a non-
terminal. This extension could be mapped naturally on LPADs, and could be
applied to probabilistic parsing of ambiguous grammars.
Acknowledgement This work was supported by the “GNCS-INdAM”.
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