
Efficient Data Slice Search for Exceptional View Detection

Yohei Mizuno, Yuya Sasaki, Makoto Onizuka
Graduate School of Information Science and Technology, Osaka University, Japan

{mizuno.yohei, sasaki, onizuka}@ist.osaka-u.ac.jp

ABSTRACT
Business analysts repeatedly execute OLAP queries consist-
ing of aggregate/group-by operations until they find trends,
insights, and/or outliers. One interesting analysis is to iden-
tify particular data slices (subset of original data) that gen-
erate exceptional views apart from the average view gener-
ated from the whole original data. However, since the search
space for identifying such data slices is quite large, efficient
techniques are indispensable for the data slice search. In this
paper, we propose 1) a framework that automatically iden-
tifies data slices that generate exceptional views for OLAP
queries, and 2) an efficient algorithm that optimizes the data
slice search. The algorithm reduces the search space by em-
ploying confidence intervals and removes redundant query
processing by applying multi-query optimization for eval-
uating queries over multiple data slices. The experiments
validate that our algorithm improves the performance eight
times faster than without the optimizations.

Keywords
Exploratory analysis, Probability theory, OLAP

1. INTRODUCTION
The need for effective analysis of business data is widely

recognized and many data mining techniques have been de-
veloped, such as online analytical processing (OLAP), asso-
ciation rule mining, clustering, classification, graph mining
and stream data mining [5]. In particular, OLAP is one of
frequently used techniques that largely contributes to busi-
ness data analysis and it is effectively used to find trends,
insights, and/or outliers from data. In typical analytical
processing, data analysts reveal hidden knowledge from data
by setting up hypotheses and testing them through investi-
gation of the data. However, a major issue of analytical
processing is that it is not easy for data analysts to set up
effective hypotheses, because it requires them to deeply un-
derstand the data itself so that they properly choose inter-
esting analytical dimensions (expressed by OLAP queries)
and/or data slices (subset of data) for detailed analysis. So,

2017, Copyright is with the authors. Published in the Workshop Proceed-
ings of the EDBT/ICDT 2017 Joint Conference (March 21, 2017, Venice,
Italy) on CEUR-WS.org (ISSN 1613-0073). Distribution of this paper is
permitted under the terms of the Creative Commons license CC-by-nc-nd
4.0

a continuous process of trial and error is very common for
analytical processing.

The exploratory analysis is a promising research area for
solving the issue above [2, 6, 12, 13]. Morton et al. [6] inves-
tigate systems that support data analysts. One challenging
goal is to develop data recommenders that would automat-
ically identify datasets outside of the system that could im-
prove the quality of analysis result. Buoncristiano et al. [2]
study a database exploration model assuming conversations
between exploratory users and the system. The conversa-
tion goes on so that the system identifies queries that reveal
significant deviation from uniform distribution. As a more
concrete example, SEEDB [12, 13] automatically explores
various types of OLAP queries in a multidimensional space
and identifies query q that maximizes the deviation between
q(D) and q(S), where D is the whole data and S is a given
data slice. However, SEEDB is not applicable to an oppo-
site case; to search for data slices that generate views that
are deviated from the view generated from whole data with
respect to a given OLAP query. An example of data slice
search is to identify particular branch office (say, Kyoto of-
fice) or certain year (say, 2001) in sales databases such that
its generated analysis result is deviated from the one gener-
ated from whole data. Moreover, since the search space of
data slice search is huge, efficient techniques are indispens-
able for the data slice search.

To achieve efficient data slice search, we propose a frame-
work that automatically identifies data slices that generate
exceptional views from OLAP queries and an efficient algo-
rithm that optimizes the data slice search. The algorithm
reduces the search space by employing the confidence inter-
vals [10] and removes redundant query processing by apply-
ing multi-query optimization techniques when searching for
multiple data slices [9].

1.1 Running example
We give a running example of business analysis. In sales

data analysis, it is important to identify particular products
whose sales trends are deviated from the average sales of
all products. Figure 1 shows normalized monthly sales of
all products, products purchased by men, and clothes. We
observe that the trend of the products purchased by men is
quite close to that of all products, which is not interesting.
In contrast, the trend of the clothes largely differs from that
of all products. We can see that the sales of the clothes
are affected by seasons particularly in March. This suggests
that we should start a new discount service for clothes in
April so as to keep the clothes sales high.

0

0.05

0.1

0.15

0.2

0.25

1
4
-J

a
n

1
4
-F

e
b

1
4
-M

a
r

1
4
-A

p
r

1
4
-M

a
y

1
4
-J

u
n

1
4
-J

u
l

1
4
-A

u
g

1
4
-S

e
p

1
4
-O

c
t

1
4
-N

o
v

1
4
-D

e
c

ALL MEN CLOTHES

Figure 1: Normalized monthly sales of all products, products
purchased by men, and clothes

This paper is organized as follows. We describe an overview
of data slice search for exceptional view detection in Section
2 and confidence intervals derived from probability inequal-
ity in Section 3. We give the details of efficient algorithm for
data slice search in Section 4. The performance evaluation
is given in Section 5. We describe related work in Section 6
and conclude this paper in Section 7.

2. OVERVIEW OF DATA SLICE SEARCH
In this section, we describe a problem of identifying data

slices that generate exceptional views for a given query. We
give the problem definition of data slice search in Section
2.1, and then show its procedures in Section 2.2.

2.1 Problem definition
We focus on relational database D. D is a collection of

records X1, X2, · · · , X|D|, where |D| is the number of the
records of D. Xi (1 ≤ i ≤ |D|) is composed of measure
attributes (say, prices or amounts) and dimension attributes
B (say, product categories or store names). We denote value
of measure attribute m of Xi as Xm

i . We define data slice
S as a subset of D cuboid sliced by choosing a single value
Y for b ∈ B as follows:

S := σb=Y (D) (1)

where σ is a select operation in relational algebra. We call
this operation as slicing query. An OLAP query is given by
data analysts in advance. We define a set of data slices S
and OLAP query q as follows:

S :=

|B|∪
i=1

{σbi=Y (D)|Y ∈ values(bi)}, (2)

q(S) := gGa=f(m)(S) (3)

where |B| is the number of dimension attributes, values(bi)
is a set of unique values of bi, g is a dimension attribute for
group-by, m is a measure attribute for aggregate attribute, a
is an aggregated value of m, and f is an aggregate function.
f calculates either the number of the values of m (COUNT),
the mean of the values of m (AVG), or the sum of the values
of m (SUM). G groups the records using g and aggregates
the grouped values of m using f . Those results are a se-
quence of objects consisting of the unique values of g and
the aggregated values of m. The problem here is to identify
the top-k data slices in S that generate the most extreme
exceptional views (expressed as q(S)) for given query q, de-
fined as follows:
Definition 1

k
argmax

S∈S
deviation(q(D), q(S))

where deviation is a function to measure the deviation be-
tween the view for query q of D and of data slice S.

Without the loss of generality, we use Euclidean Distance
for the deviation function1.

2.2 Procedure
By using the running example in Section 1.1, we describe

the procedure we automatically identify data slices that gen-
erate exceptional views.

1. To evaluate query q over D. In the running example, q
is defined as a aggregate/group-by query for monthly
sales as follows.
q(D) = SELECT month,SUM(price) FROM D GROUP BY month

2. To obtain set of data slices S from D by choosing each
single value Y ∈ values(bi) for each dimension bi ∈ B.
S ∈ S is generated by executing slicing queries, such
as “gender = ‘men”’ and “category = ‘clothes”’.

3. To evaluate query q over all data slices S ∈ S.
4. To compute the deviation between q(D) and q(S).

For example, Euclidean Distance between the monthly
sales of all products and those of men purchased prod-
ucts is computed.

5. To display the top-k deviated views to the users.

3. CONFIDENCE INTERVAL
We apply the confidence interval to efficiently identify top-

k data slices when OLAP queries use aggregation functions.
In this section, we first describe how we apply the confidence
interval for mean value derived from the Hoeffding Serfling
inequality [10].

The Hoeffding Serfling inequality is useful to derive the
probability’s upper bound without assuming the probability
distribution of the population when the expected value for
stochastic variable and its finite domain are given. From
the Hoeffding Serfling inequality, the confidence interval for
the mean value of aggregate attribute m of D (expressed
as µ(D)) can be derived. Let {x1,...,x|x|} and {X1,...,X|D|}
be samples and population, and |x| and |D| be sample size
and population size, respectively. The Hoeffding Serfling
inequality is modified to have the following form.

Pr′(t) = Pr′[|x− µ(D)| ≥ t] (4)

where x = 1
|x|

∑|x|
i=1 x

m
i , µ(D) = 1

|D|
∑|D|

i=1 X
m
i . Since Eq.4 is

derived from the Hoeffding Serfling inequality by replacing
x − µ(D) part with its absolute form, probability Pr′(t)
in Eq.4 has as twice as probability Pr(t) in the Hoeffding
Serfling inequality [10], where Pr(t) is the probability that x
is t bigger than µ(D). Therefore, suppose that t > 0, upper
bound α can be inferred by using the following equation.

Pr′(t) ≤ 2 · exp[−2|x|t2

(1− fx)(max−min)2
] = α (5)

where fx = |x|−1
|D| ,min = min{Xm

i , i = 1, 2, · · · , |D|}, max =

max{Xm
i , i = 1, 2, · · · , |D|}. From Eq.4 and Eq.5, (1 − α)-

confidence interval2 for µ(D) can be derived as Eq.6.

x− t < µ(D) < x+ t (6)

where t =
√

(1−fx)(max−min)2(log 2−logα)
2|x| .

1We can easily extend our technique to apply other deviation
functions such as Manhattan Distance.
2We set α significance level at 0.05 in the experiments.

Furthermore, we express the range of the confidence in-
terval in the following format.

range(µ(D)) = [x− t, x+ t]. (7)

In the next place, we estimate the confidence interval for
the sum of the values of m (expressed as η(D)). We can
estimate this interval by using the following form obtained
by multiplying |D| to the terms in Eq.6.

Lemma 1 |D|(x− t) < η(D) < |D|(x+ t).

3.1 Confidence interval for size of data slices
We calculate aggregated values of m of data slices for the

problem of identifying data slices that generate exceptional
views for a given query. We need to estimate the aggregated
values from samples so as to reduce the data slice search
space. We derive expressions estimating confidence intervals
for the aggregated values of m of the data slice σ(D) ⊆ D.
Firstly, we derive the confidence interval for the size of σ(D)
(expressed as |σ(D)|). To estimate |σ(D)| using Lemma 1,
we define a function that judges whether an element of the
samples xi belongs to σ(D) as follows:

exist(xi) =

{
1 (xi ∈ σ(D))
0 (otherwise).

(8)

Furthermore, we define a ratio (expressed as s) of the ele-
ments belongs to σ(x) to the samples using exist as follows:

s =
|σ(x)|
|x| =

1

|x|

|x|∑
i=1

exist(xi). (9)

By definition of exist, min in t equals zero, and max in t
equals one in Eq.6. Therefore, we can estimate a ratio of
σ(D) to D as follows:

s− t′ <
|σ(D)|
|D| < s+ t′ (10)

where t′ =
√

(1−fx)(log 2−logα)
2|x| . We can estimate the con-

fidence interval for |σ(D)| by using the following form that
multiplied |D| by Eq.10.

Lemma 2 |D|(s− t′) < |σ(D)| < |D|(s+ t′).

3.2 Confidence interval for mean of data slices
We derive the confidence interval for the mean of m of

σ(D) (expressed as µ(σ(D))) by applying Lemma 2 to Eq.6.
We can estimate the confidence interval for µ(σ(D)) as fol-
lows by setting the size of population as |σ(D)| and the size
of samples as |σ(x)|:

σ(x)− t′′ < µ(σ(D)) < σ(x) + t′′ (11)

where σ(x) is the mean of σ(x) and t′′ is a value obtained
by substituting |σ(x)| and the range of fx in Lemma 2 for

|x| and fx in t =
√

(1−fx)(max−min)2(log 2−logα)
2|x| as follows:

|x| ← |σ(x)|,

|σ(x)| − 1

|D|(s+ t′)
< fx <

|σ(x)| − 1

|D|(s− t′)

where the range of fx is obtained by substituting |σ(x)| and
the range of |σ(D)| in Lemma 2 for |x| and |D| in fx respec-
tively. Furthermore, t′′ is removed from Eq.11 as follows. t′′

has range [tmin, tmax] because t is a function of fx and fx
has range. When the size of population equals |D|(s − t′)

and fx = |σ(x)|−1
|D|(s−t′) , t

′′ takes lowerbound tmin. When the size

of population equals |D|(s+ t′) and fx = |σ(x)|−1
|D|(s+t′) , t

′′ takes

upperbound tmax. Therefore, Eq.11 is rewritten as follows.

Lemma 3 σ(x)− tmax < µ(σ(D)) < σ(x) + tmax

where tmax =

√
(1− |σ(x)|−1

|D|(s+t′))(max−min)2(log 2−logα)

2|σ(x)| .

3.3 Confidence interval for sum of data slices
We derive the confidence interval for the sum of m of σ(D)

(expressed as η(σ(D))) by multiplying µ(σ(D)) by |σ(D)|.
When |σ(D)| takes the maximum of |σ(D)| (i.e. |D|(s+ t′)),
t should equal tmax and µ(σ(D)) takes the maximum of

µ(σ(D)) (i.e. σ(x)+ tmax) at the same time. Therefore, the
maximum of η(σ(D)) is the value obtained by multiplying
the maximum of µ(σ(D)) by the maximum of |σ(D)|. On
the other hand, when |σ(D)| takes the minimum of |σ(D)|
(i.e. |D|(s− t′)), t should equal tmin but µ(σ(D)) does not

take the minimum of µ(σ(D)) (i.e. σ(x)− tmax). We define

σ(x)− topt and |D|(s− t′opt) which are the values of µ(σ(D))
and |σ(D)| respectively when η(σ(D)) takes the minimum.
We can estimate the confidence interval for η(σ(D)) by using
the following form.

Lemma 4
(σ(x)− topt)(|D|(s− t′opt)) < η(σ(D)) < (σ(x) + tmax)(|D|(s+ t′))

where topt =

√
(1− |σ(x)|−1

|D|(s−t′opt)
)(max−min)2(log 2−logα)

2|σ(x)| , t′opt is the

value within the range of s − t′ < topt < s + t′ when the

above (σ(x)− topt)(|D|(s− t′opt)) takes the minimum.

4. EFFICIENT ALGORITHM FOR DATA
SLICE SEARCH

The algorithm prunes the search space by employing the
confidence interval and removes redundant query processing
by applying multi-query optimization for evaluating queries
over multiple data slices.
Pruning

One characteristic in identifying data slices that gener-
ate exceptional views is that most views generated from
data slices would have a high similarity to the view gen-
erated from the whole data. Since those data slices cannot
be within top-k of large deviation, it is preferable to prune
the query evaluation for those data slices. To achieve this
pruning, we only use samples and compute the confidence
interval from samples for the data slice search. Specifically,
we describe how we calculate deviations (Section 4.1), we
estimate deviations from samples by computing the upper
bound and lower bound of the confidence intervals for the
aggregation of each data slice (Section 4.2). If the upper
bound of the query result for data slice S is lower than the
lower bound of the kth highest data slice, we can safely prune
the query evaluation for the data slice S (Section 4.3).
Multi-query Optimization (Section 4.4)

In identifying data slices that generate exceptional views,
we have to evaluate a given query over multiple data slices.
This query processing is optimized by grouping the slicing
queries for the data slices with respect to the same attributes
and then by evaluating the grouped queries during a single
scan.

4.1 Calculating deviations
We describe how to calculate the deviation between q(D)

and q(S) (i.e. deviation(q(D), q(S))), which is computed by
Euclidean Distance. We define gGa=f(m)(S) in Eq.3 to the
following form.

gGa=f(m)(S) := {f(πm(σg=′Z′(S)))|Z ∈ values(g)} (12)

where values(g) is the set of the unique values of the group-
by attribute g. In other words, gGa=f(m)(S) selects subsets
of S for each value Z of g, projects the measure attribute
m of the data slices, and applies the aggregate function f .
We can expand deviation(q(D), q(S)) in Definition 1 to the
following form by using Eq.12.

deviation({f(πm(σg=′Z′(D)))|Z ∈ values(g)},
{f(πm(σg=′Z′(S)))|Z ∈ values(g)}). (13)

Furthermore, Eq.13 can be rewritten to the following form
because deviation calculates Euclidean Distance.√√√√ ∑

Z∈values(g)

(f(πm(σg=′Z′(D)))− f(πm(σg=′Z′(S))))2. (14)

That is, deviation(q(D), q(S)) selects subset of D and S
for each value Z ∈ values(g), calculates the squares of the
differences between the aggregation results of σg=′Z′(D) and
σg=′Z′(S), and calculates the square root of the sum of the
squares. When f is AVG or SUM, we normalize q(D) and
q(S) so that the sum of q(D) and the sum of q(S) equal one.

4.2 Estimating deviations
We calculate f(πm(σg=′Z′(D))) in Eq.14 beforehand and

then estimate f(πm(σg=′Z′(S))) by using the samples of S.
We apply Lemma 2, 3 and 4 for the aggregate function
COUNT, AVG and SUM, respectively. For example, we can
express the confidence interval for the size of S (expressed
as range(|S|)) by using Lemma 2 when f is COUNT.

range(|S|) = [|D|(s− t′), |D|(s+ t′)]. (15)

We can calculate the upper bound of deviation between D
and S by using the following form.√√√√ ∑

Z∈values(g)

(max(f(πm(σg=′Z′(D))), range(πm(σg=′Z′(S)))))2 (16)

where max(x, [a, b]) is a function that takes a value and a
range as arguments, and returns the value which takes the
largest distance from x in range [a, b]. On the other hand,
we can calculate the lower bound of the deviation, replacing
max in Eq.16 to a function which returns the value which
takes the smallest distance from x in the range [a, b].

4.3 Pruning data slices
We prune the query evaluation for data slices that cannot

be within top-k of large deviation. The pruning works as
follows. We divide the dataset D into the samples and the
rest. We evaluate given query q over all data slices S ∈ S for
the samples. We compute the upper bound and lower bound
of the deviations for the result of q. If the upper bound of
the data slice S is lower than the lower bound of the kth
highest data slice, we do not evaluate q over the data slice S
for the rest of dataset. As a result, we can prune the query
evaluation for the data slice that does not become the top-k
result with a high probability.

4.4 Multi-query Optimization
By grouping the slicing queries for the data slices with

respect to the same attributes, the grouped queries can be
combined into a single query, which results in the reduction
of wasteful computation and faster process. For example,
when calculating the monthly sales of products bought by
either males or females, combining two queries into a single
query can be made. By grouping the slicing queries, the
number of the slicing queries becomes equal to the number
of dimension attributes B, and these grouped queries are
executed with single scan.

5. PERFORMANCE EVALUATION
Our goal of experiments is to evaluate the efficiency and

accuracy of our proposed algorithm in the data slice search.
We compared the performance of naive approach (NO OPT),
with combining all slicing queries for data slices into sin-
gle query regardless of different attributes (ONE QUERY),
with multi-query optimization (MULTI), and with the com-
bination of multi-query optimization and data slice pruning
optimizations by confidence interval (COMB).

5.1 Benchmark
We measured the performances by using various OLAP

queries for real dataset.
Dataset: This dataset is sales data of supermarkets which is
provided by Joint Association Study Group of Management
Science. The dataset is composed of measure attributes
(price and number) and dimension attributes (store (9), time
(19), sex (3), category 1 (8), category 2 (25) and category 3
(164)). The number in the parenthesis indicates the number
of unique values of the attribute. The number of records is
103, 382, 016.
OLAP queries: We use price and number for aggregation
and store and time for group-by.
Attributes for selecting data slices: We do not use the
same attribute both for group-by operation and slicing data
condition at the same time, because the result is not useful
in such case; a single value is sliced out, group-by operation
is applied, and then only a single value is aggregated.

All experiments were run on single machine with 16 GB
RAM and 4 core Intel(R) Core(TM) i7-4702MQ processor.
We evaluate our techniques on Microsoft SQL Server 2014.
We used nonclustered columnstore indexes for efficiency. We
removed extremely large values of measure attributes in ad-
vance for the purpose of data cleaning. We chose samples
from the first part of the database. All experiments were
repeated three times and the measurements were averaged.

5.2 Results
Figure 2 shows the latencies of top-10 data slices search

for evaluating the OLAP queries over the dataset. The x-
axis shows the OLAP queries and the label indicates aggre-
gation attribute/group-by attribute. We observe that the
multi-query optimization and data slice pruning are effec-
tive in improving the latencies for the dataset. In detail,
the pruning data slice optimization effectively improves the
latencies when the number of distinct values of group-by
attribute is small, such as store (9). That is, Euclidean
Distance between long sequences tends to be more similar
than short sequences, so we have more opportunities of prun-
ing the search space when the number of distinct values of

0

5

10

15

20

price/store number/store price/time number/time

la
te

n
c
y
(s

)

OLAP query

NO_OPT ONE_QUERY MULTI COMB

Figure 2: Latency experiments for the four approaches

0

5

10

15

50 70 90 110

la
te

n
c
y
(s

)

the number of records(106)

NO_OPT ONE_QUERY

MULTI COMB

Figure 3: Scalability experi-
ments

1

1.5

2

2.5

3

0 10 20

la
te

n
c
y
(s

)

k

MULTI COMB

Figure 4: Effect of pruning at
various k

group-by attribute is small. COMB takes longer time than
MULTI when aggregate attribute is price and group-by at-
tribute is time. This is because top-10 values of deviation
was not so large and COMB prunes a small number of data
slices. Although ONE QUERY executes the smallest num-
ber of queries among the four approaches, it takes longer
time than MULTI in all the OLAP queries. This result may
be explained by the fact that, since we used nonclustered
columnstoreindex, grouping slicing queries with respect to
the same single attributes provide the best performance.
We made scalability experiments by varying the size of the

datasets. As we can see in Figure 3, we observe that the la-
tency for the case with the pruning optimization scales well
and is constant even if the dataset size increases. This is
because the latency with the pruning optimization mainly
depends on k of top-k; even if the data size increases, re-
quired search space depends on top-k size.
We made experiments to verify the influence of k by vary-

ing the value of k. As we can see in Figure 4, we observe
that the smaller the value of k, the better the efficiency of the
pruning optimization. This is because the threshold used by
pruning becomes large when the value of k becomes small,
and pruning more data slices.
Note, for evaluating the accuracy of data slice pruning

optimization, we validate that all the algorithms obtain the
same top-k data slices in all the experiments.

6. RELATED WORK
Visual analytics tools such as Spotfire [1] and Polaris [11]

have been introduced. These tools support the analysis of
users by selecting the best visualization for a data set. The
Users must chose data slices that they want to analyze.
Visual analytics tools such as Profiler [3], Vizdeck [4] and

SEEDB [12, 13] have a function to select visualizations au-
tomatically. Profiler automatically detects exceptions in a
data set. VizDeck has a function to depict visualizations of
a data set on a dashboard. SEEDB recommend a visual-
ization result of a data slice based on distance function for
the given data slice. Sarawagi et al. [8] study an exploration
of data cubes by using data mining techniques. They ex-
plore exceptional and interesting cells (say, Sales of clothes
of March, 2014) in a cube. However, those techniques do
not explore exceptional q(D) (say, Monthly sales of clothes
of 2014). Ordonez et al. [7] incorporate parametric statis-
tical tests into analysis for interactive visualization of the
OLAP cube. The visualization identifies significant differ-
ences between two similar cuboids.

7. CONCLUSION
We propose a framework that automatically identifies data

slices that generate exceptional views for OLAP queries, and
an efficient algorithm that optimizes the data slice search.

The algorithm improves the performance by confidence in-
terval and multi-query optimization. We used real dataset
and validated that our algorithm improves the performance
eight times faster than without the optimizations.

There are various types of future work for the data slice
search. First, we extend the system to compute the devia-
tion not only from the average of whole data, but also the
deviation from the average of data clusters. Second, we in-
troduce the hierarchy between attributes, such as categories,
so that we can drill down and roll up the analysis results.
Finally, we will extend the variations of data slices by per-
mitting the combination of multiple attributes (conjunctive
condition) for slicing condition.

8. ACKNOWLEDGMENTS
This work was supported by JSPS KAKENHI Grant-in-

Aid for Scientific Research (C) 16k00154.

9. REFERENCES
[1] C. Ahlberg. Spotfire: An information exploration

environment. SIGMOD Rec, 25(4), 1996.
[2] M. Buoncristiano, G. Mecca, E. Quintarelli, M. Roveri,

D. Santoro, and L. Tanca. Database challenges for
exploratory computing. SIGMOD Rec, 44(2), 2015.

[3] S. Kandel, R. Parikh, A. Paepcke, J. M. Hellerstein, and
J. Heer. Profiler: Integrated statistical analysis and
visualization for data quality assessment. In Prc. AVI,
2012.

[4] A. Key, B. Howe, D. Perry, and C. Aragon. Vizdeck:
Self-organizing dashboards for visual analytics. In Proc.
SIGMOD, 2012.

[5] A. Madraky. Data mining text book. 2012.
[6] K. Morton, M. Balazinska, D. Grossman, and J. Mackinlay.

Support the data enthusiast: Challenges for
next-generation data-analysis systems. Proc. VLDB
Endow, 7(6), 2014.

[7] C. Ordonez, Z. Chen, and J. Garćıa-Garćıa. Interactive
exploration and visualization of olap cubes. In Proc. ACM
DOLAP Workshop, 2011.

[8] S. Sarawagi, R. Agrawal, and N. Megiddo. Discovery-driven
exploration of olap data cubes. In EDBT, 1998.

[9] T. K. Sellis. Multiple-query optimization. ACM Trans.
Database Syst, 13(1), 1988.

[10] R. J. Serfling. Probability inequalities for the sum in
sampling without replacement. The Annals of Statistics,
2(1), 1974.

[11] C. Stolte, D. Tang, and P. Hanrahan. Polaris: A system for
query, analysis, and visualization of multidimensional
databases. Commun. ACM, 51(11), 2008.

[12] M. Vartak, S. Madden, A. Parameswaran, and
N. Polyzotis. Seedb: Automatically generating query
visualizations. Proc. VLDB Endow, 7(13), 2014.

[13] M. Vartak, S. Rahman, S. Madden, A. Parameswaran, and
N. Polyzotis. Seedb: efficient data-driven visualization
recommendations to support visual analytics. Proc. VLDB
Endow, 8(13), 2015.

