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Abstract. This paper evaluates the potential for distributed business process 

workflow monitoring and management using the CBR paradigm. Recent devel-

opments in distributed computing technologies have shown capable for effi-

ciency gains from effective distribution. Current models of CBR distribution are 

discussed and an extension is proposed focusing on the challenge posed from 

large data volumes. This is shown to be also associated with more challenges in 

the quality of data and the requirement for real time processing. The proposed 

approach is presented and a novel architecture for distribution of CBR systems is 

proposed. An evaluation of the approach and architecture is conducted and pre-

sented based on a set of experiments in the area of business process workflow 

management. The experiments establish a serial execution baseline and show 

promising high speedup gains, especially at large volumes (exceeding millions) 

of cases. It is shown that at high enough data volumes, there is a clear benefit of 

distributing some of the early parts of the CBR life cycle to a finer data and pro-

cess granularity level. Such approach seems to maximise the benefit from the use 

of modern distribution technologies. Concluding, this paper signposts future ar-

eas of research leading to a more generic model that can maximise the efficiency 

gains of distribution in CBR systems. 

Keywords: Case-Based Reasoning, Distributed Architectures, Distributed 

Case-based Reasoning, Business Process Workflows 

1 Introduction 

Modern industrial environments can be complex, incorporating multiple interrelated 

business processes. Increasingly, within organisations, business processes are captured, 

monitored and controlled by enterprise software systems. A side effect emerging in 

such organisations is the generation, propagation and utilisation of large datasets on a 

daily basis. The complexity and interoperability of business processes is responsible 

for the migration of standalone and “isolated” bespoke systems to large scale, distrib-

uted ones, sometimes utilising hundreds of thousands of physical computational nodes. 

Advanced systems currently exist, which are capable of performing continuous pro-

cess monitoring and control, like Distributed Control Systems (DCSs). Such systems 
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can be responsible for storing, controlling, visualizing and analysing huge amounts of 

data related to internal business processes in real time. However, such systems usually 

rely upon human monitoring in order to reason upon workflow executions and provide 

corrective actions whenever they are required [1]. 

Human intervention can introduce high levels of uncertainty due to possible: mali-

cious user behaviour, regular occurrence of human errors and expert and / or stake-

holder absence at key business process execution stages. Additionally, such human re-

lated interventions may not be fully captured by systems and actions can be based on 

further communication and/or information exchange outside digital Business process 

monitoring systems. 

Recent advances in information systems technologies have provided new capabili-

ties for data management and exploitation of data, especially based on modern enter-

prise architectures and cloud computing. The literature shows a number of successful 

implementations related to the diagnosis and monitoring of business workflows using 

the CBR paradigm [2, 14, 16]. However, current attempts invariably focus on small-

scale systems, leaving unknowns in terms of scaling and distribution, a frequent pre-

requisite for modern industrial implementations. 

This work attempts to investigate the issues of scalability and distribution on CBR 

applications specialised on business workflow monitoring. Its structure will be as fol-

lows: Section 2 presents the relevant literature in intelligent business process manage-

ment; Section 3 discusses the key challenges of distribution and presents possible mod-

els to address the challenge and proposes an operations-efficient architecture and Sec-

tion 4 presents an evaluation that verifies its validity and performance. Finally, Section 

5 presents the conclusions from this work and proposes further work in this area. 

2 Background 

Workflows and business process are two interrelated concepts. Nowadays business pro-

cess definitions have been standardized to a large extend using industry acceptable 

standards like the Business Process Model and Notation (BPMN) [4], the XML Process 

Definition Language (XPDL) [5, 6] and the Web Services Business Process Execution 

Language (WS-BPEL) an executable language standard introduced by OASIS for spec-

ifying the behavioural aspect of business processes utilising Web Services [7]. 

    Case-based reasoning [8] has been proven an efficient mechanism in monitoring 

business process workflows [1, 2, 14, 16] and possibly a competent model upon tack-

ling uncertainty and fuzziness making use of past experiences along with extensive do-

main knowledge and expertise. Minor et al [14] have presented a CBR approach for 

representation and index-based retrieval of agile workflows, Dijkman et al [15] have 

shown a process model ranking against a repository of process models and Kapetanakis 

et al [2, 16] have proposed a generic architecture and framework, for intelligent moni-

toring of business workflows using CBR.  

However, over the past years great advances have been noted in the area of highly 

distributed systems like the HTCondor system which provided multi-scheme utilisation 

and management of resources including exploitation of idle machines processing 
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power, multiple installations and collaborations of HTCondor instances[17], the Berk-

ley Open Infrastructure for Network Computing (BOINC) [19] which utilizes device 

idle time and general projects for commodity machine utilization like Apache Hadoop 

and Spark [18, 20, 21]. 

Plaza and McGinty[13] have proposed a classification for distributed CBR systems, 

based on the magnitude of knowledge and processing of data. This work suggested that 

the CBR knowledge content for distribution purposes is correlated to the number of 

case bases present. Despite the case that most CBR systems use a single case base, 

increasingly multiple case bases appear in systems due to the complexity and multi-

provenance of data that can be seen in modern enterprise systems [3]. 

The integration and verification of such distribution techniques is becoming more 

and more challenging since it requires increased research efforts and labour.  Our re-

search work focuses on the identification of a potential effective approach and archi-

tecture for distributed CBR based implementations for large-scale business process 

workflows monitoring and management. 

3 An Enhanced Categorisation of Distributed CBR systems 

Our presented approach is driven by the current state of technology for data related 

operations, and additionally, the maximisation of operational utilisation across large 

data volumes. Our possible solution on the data volume issue comprises four main char-

acteristics, building on top of the existing classification on CBR distributed systems 

[13]: Ground-up distribution, Agent capability to process big amount of data, Single 

case base to be distributed on demand and Distributed processing units managed by 

agents; enhancing distributed CBR systems [13] with the additional aspect of the data 

volume. Apart from the extra dimension of data volume, the initial classification re-

mains the same.  

It is worth mentioning at this point that a number of issues could arise by implement-

ing distribution in a ground-up manner in terms of cases where the used algorithms are 

optimised for serial execution (such as business process workflows management and 

monitoring graph-based approaches [2,14,15,16]). In such cases, alternative algorithms 

may be used, or the distribution model may need to be adapted to provide efficiencies 

using the most appropriate type and architecture for distribution. 

3.1 The Distribution Lifecycle of CBR in Business Process Workflows 

Based on our proposed new distributed CBR component for data volume handing, this 

study proceeds further by presenting the areas on which the distribution could take 

place along with the identification of the CBR cycle’s operations to be conducted in 

each and every stage.   

The data for the CBR system could come in various forms (Figure 1) such as raw 

text data, distributed raw text data (e.g. HDFS), document based data (e.g. MongoDB, 

Elastic), and so on. For their distribution to remote processing units (agents) an agent 
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is selected (Coordinator) which may have control on the data dispatch, data redistribu-

tion, etc.  

Having distributed the case base (raw) data in various nodes based on its volume, 

the system proceeds by loading the actual cases of the case base. As already discussed, 

business process workflow cases would normally be represented using graph based for-

mats [14]. The process of graph initialisation is a computational intensive task, and 

consequently, a distributed approach could improve performance and avoid bottlenecks 

in the cycle execution. The indexing of the data may be implemented in various stages: 

At first, an initial indexing mechanism should occur at case creation stage which is 

beyond the current phase of the cycle. Moreover, post indexing could be applied at case 

loading time and / or during the similarity computations. Either approach does require 

advanced computations and processing power, which leads to this also occurring in a 

distributed manner.  
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Fig. 1. Distribution Lifecycle of CBR in business process workflows 

The case retrieval phase of the CBR cycle computes suitable similarity measures in 

order to select the most similar case. The complexity of the computed similarities varies 

depending on the algorithmic approach and techniques to be used in the process. More-

over, it is related to the case representation which in business process workflows is 

usually quite complex (graphs). In many cases, the computational complexity of graph-

based similarity algorithms is reported to be an NP-hard problem requiring heuristics 

and only computable due to the relatively small size and complexity of the graphs [15]. 

As a result, the distribution of processing, can reduce performance bottlenecks within 

the system. Figure 1, shows an architecture based on this approach that allows the dis-

tribution of key elements of the CBR lifecycle for Business workflow monitoring sys-

tems. This approach and architecture has been adopted and implemented on a number 

of workflow monitoring systems in order to evaluate the approach and architecture. The 

experiments and results of the evaluation will be shown in the next section. 

125



4 Evaluation 

For the evaluation of this work we focused on the verification of the proposed CBR 

categorisation focusing on the data volume aspect. The experimental part involved two 

distinct phases: First, a similarity algorithm was developed, specifically designed for 

isomorphic and acyclic graphs [11]. Then, a number of experiments were conducted on 

a specific workflow monitoring domain. The experimental runs involved a large variety 

of case numbers ranging from: 20 to 106. 

4.1 The CBR Domain of Business Process Workflow Monitoring 

For the needs of our evaluation a business workflow monitoring system was chosen 

from the retail industry involving: new orders generation, order preparation, passing 

from the various departments and finally, the dispatching and delivery of the goods. Its 

business process definition can be seen in Figure 2. The domain knowledge was ac-

quired through past working experience within the described domain throughout all 

departments of the workflow lifecycle. Key characteristics for this system were the 

strictly defined times frames between the various actions of the described workflow as 

presented in the BPMN. 

4.2 The Links Isomorphic Graph Similarity Algorithm 

The selected business process posed increased data volumes in CBR systems leading 

to case bases with millions of cases. The domain in question had very large numbers of 

workflow instances (necessary for our evaluation purposes) as well as a fine-grained 

business process which could be easily represented in a graph-based format. The latter 

was important since the complexity of the graph representation was not our investigated 

element but instead the evaluation of the effect from increased number of stored cases. 

The business process (Figure 2) was composed by a certain number of available ac-

tions which should be present in any instance in order to have a “completed” workflow 

instance. Moreover, it was apparent that each action should take place at a given order 

which means that actions were connected with each other in a specific way. For exam-

ple, it was impossible to have an “order dispatched” before the “an order generation”. 

As a result, workflow instances of the selected BPMN could be regarded as isomorphic 

[11], given the fact that the number of actions (nodes) and the way that actions were 

connected (links) were known, fixed and unchanged. Workflow instances of the exper-

iments were known to be isomorphic and acyclic. In this respect, a similarity algorithm 

could be developed capable to measure similarities among isomorphic graphs. The idea 

behind the development of the proposed algorithm is that given the fact that all work-

flow instances have the same number of nodes and furthermore, the nodes are con-

nected in the same way, the similarity between two given graphs could be calculated 

by measuring the distances of the corresponding links between those graphs. 
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Fig. 2. Business process definition (BPMN) of the investigated business process 

Based on the above, given 2 Isomorphic and Acyclic Graphs G, G′, where: 

o G = {V, E}, with 

 V(nodes)= {v1, v2, …, vn} 

 E(edges) = {(v1, interval1, v2), (v2, interval1, v3), …, (vn-1, intervaln, vn)}, and 

o G′ = {V′, E′}, with

 V′ (nodes)= {v1
’, v2

’, …, vn
’} 

 E′ (edges) = {(v1
’, interval1

’, v2
’), (v2

’, interval1’, v3
’), …, (vn-1

’, intervaln
’, 

vn
’)}, andbb 

o Count(V) = Count(V′) since G and G′ are isomorphic, and 

o Count(E) = Count(E′) since G and G′ are isomorphic,

The similarity Sim(G, G′) can be computed by, 

𝑺𝒊𝒎(𝑮,  𝑮′) =
∑ 𝝈(𝑬𝒊,  𝑬𝒊

′)
𝒊=𝒄𝒐𝒖𝒏𝒕(𝑬)
𝒊=𝟏

𝒄𝒐𝒖𝒏𝒕(𝑬)

where 𝒄𝒐𝒖𝒏𝒕(𝑬) is the number of edges in G graph and  𝝈(𝑬𝒊,  𝑬𝒊
′), with  0 ≤

𝝈(𝑬𝒊,  𝑬𝒊
′) ≤ 1, is the similarity measure between 2 individual edges 𝑬𝒊 𝒂𝒏𝒅 𝑬𝒊

′ from

graphs G and G′ correspondingly. 

The implementation of the proposed algorithm was developed in such a way that the 

code base of the similarity computations was used in all experiments.  

4.3 Experimental Design 

The distributed CBR lifecycle was evaluated using 7 auto-generated datasets. Each da-

taset contained log entries with information related to actions occurred on workflow 

instances. Each completed workflow instance represented a new case for our experi-

ments. A typical log entry comprised various comma separated values, such as: case 
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index, event occurrence date, event name (e.g. invoice generation), personnel name, 

execution time and reasoning for delays if any. 

The data generator application was developed in full cooperation with experts from 

the organization owning the business process definition having random delays in the 

execution of actions and the provision of random reasoning for each and every time 

where a delay occurrence was introduced within the workflow instance. Having com-

pleted an extensive discussion with business stakeholders, a number of guidelines were 

established in terms of delay occurrences. Delays were classified in 4 main categories 

(0, 20, 40 and 60%). Then, business experts provided reasoning for each delay category. 

A number of business rules were established based on domain knowledge expertise. 

As an example, it was known that summer months were hectic due to increased demand 

and as a result, there was generally an overall increase on delays (10-30%). The afore 

mentioned knowledge and expertise were incorporated in the data generator application 

which was responsible for assigning random delays to each action along with random 

reasoning. Random delays were also added with an additional fluctuation factor in order 

to provide an additional level of realism.  

The serial execution experiments used SQL Server as the medium to store the case 

base whereas the distributed approach used text files. A delay threshold of 50% was 

defined which classified any workflow instance with an execution time above the 

threshold as delayed.  

The actual evaluation of the distributed CBR lifecycle was conducted by developing 

a basic implementation of a k-NN classification algorithm in order to classify any new 

case. The classification was delivered by a simple voting mechanism of the k most 

similar cases. There were 3 categories of experimental runs.  

The first was the serial execution path where case loading, retrieval, adaptation and 

classification were performed by a conventional serial execution program written in 

Python with a case base stored in a MS SQL Server 2014.  

The two additional execution run experiments represent a materialization of the pro-

posed distributed CBR lifecycle where case loading, retrieval, adaptation and classifi-

cation take place in a distributed manner.  The first distributed implementation performs 

exactly the same steps with the serial execution run so as to classify the new case com-

ing to the system, whereas the second one is an optimized version of the first by reduc-

ing the number of the data structures used though the CBR phases. 

All experiments runs were conducted on the same machine with 8 cores at 2.4 GHz 

and 16 GB RAM (DDR3 1066 MHz).  

4.4 Experimental Results 

The experiments phase was composed of 21 experimental runs of the CBR cycle. The 

initial 7 were the serial execution approach which was also used as the base line meas-

ure. Then, there were two batches of 7 runs, one for the initial distributed approach and 

a second attempt being an optimised version of the first.  
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Table 1. Experiments - CBR Cycle Execution Times 

 Cases Serial Execution  1st - Approach  2nd - Approach  

Execution Time (secs)  Execution Time (secs) Execution Time (secs) 

20 0.279 7.141 1.725 

103 0.370 7.236 1.789 

104 0.783 7.861 1.943 

105 6.322 14.112 3.685 

106 58.591 57.578 14.629 

5 * 106 1847.182 278.475 73.432 

107 2370.668 595.346 140.628 

The serial execution ran for case bases greater than 106 stored cases start to increase 

considerably in terms of execution time (secs) [Table 1]. The increase in question is 

strictly related to the underlying sorting algorithm. The sorting algorithm used in all 

cases was timesort and its implementation varies between serial and distributed ap-

proaches. Alteration of the algorithm in question is beyond the scope of this work and 

it is based on Python and PySpark implementations [9, 10].  

As indicated in Table1, both distributed lifecycle approaches outperform the serial 

execution especially for large numbers of stored cases. The first attempt begins to pro-

vide performance gains (speedup > 1) around 106 of stored cases whereas the second 

one at some point after 100000. This was due to the fact that distribution comes always 

with overheads related to the orchestration and setup of the distribution itself.  

In terms of speedup [12], the optimised distributed approach achieved a massive 

improvement of 25. This number is extremely high (Figure 3). Nonetheless, we have to 

consider that this version of the code not only uses distribution for case loading, simi-

larity computations, indexing and retrieval but also changes the implementation logic 

by reducing the used data structures utilised throughout the CBR cycle. Moreover, it is 

important to note that serial execution and distributed approaches harness two com-

pletely different forms of media for data store. The former used a relational database 

whereas the last ones utilised text files with degradation of data. The latter by itself 

increased performance since text storage is faster in retrieval operations, let alone in 

our case in which data partitioning takes place in both distributed approaches.   

Finally, the speedup reduction factor for very large number of stored cases (Table 2 

– 107 stored cases experiment).  This is strictly related to the data partitioning approach

used in both distributed approaches. The partitioning of the data, and as a result the

processing, was performed in a fixed way based on the dataset size. This is not the most

optimum scenario and further research and developed should take place on the domain

of dynamic data size aware partitioning algorithms for large datasets. This issue is also

adversely affected by the fact that we operated our experiments with a fixed size of

computational cores.
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Fig. 3. Relative execution time for serial 

and distributed experiments 

Table 2. Distributed Approaches Speedups 

Number of  

Cases 

1st Approach  2nd Approach  

Speedup Speedup 

20 0.039 0.162 

1000 0.051 0.207 

10000 0.010 0.403 

100000 0.447 1.715 

1000000 1.018 4.005 

5000000 6.633 25.155 

10000000 3.982 16.858 

5 Conclusions and future work 

This research has argued that the current perspective of distribution in CBR does not 

take into consideration the importance of data volume as a key prerequisite in the inte-

gration of distribution in CBR for business process workflows. We proposed a new 

categorisation of distributed CBR systems with a new dimension, this of data volume. 

Our research shows that gains from distribution can be found in the parts of the CBR 

cycle where data volume could generate deficiencies. In this respect,  initial CBR stages 

can be massively distributed so as to enhance the performance of CBR systems. An 

approach and associated architecture was proposed. A number of experiments were 

conducted trying to evaluate the proposed distributed CBR approach and architecture. 

The experimental results show that distribution does increase performance of the CBR 

cycle reaching high speedup factors, only at large number of stored cases which is due 

to the fact that current technology and available frameworks allow the development of 

highly optimized serial executions such as ones with extensive in memory exploitation, 

as used in our experiments to establish baseline measures.  

Further research could be on the distribution techniques and approaches to be used 

in the case representation and case retrieval. The current approach focuses on Data Vol-

ume. Further work could focus on the other associated challenges posed by large vol-

umes of data. This work aims at the production of a more generic distribution model 

and architecture. Additionally, it is expected that more research areas and challenges 

will emerge in this area, including data and process distributed pipelines, dynamic data 

size aware partitioning algorithms for large datasets. 
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