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Abstract. A Conversational Recommender System(CRS) aims to sim-
ulate the real world setting where a shopkeeper tries to learn the prefer-
ences of a user through conversation and the user, in turn, learns about the
product base. Often the preference of the user is captured in the form of
feature weights and they are updated assuming each feature is
independent. These feature weights are used in product retrieval from the
product base. The independence assumption of the features is not always a
good choice, and we will address this concern in our work. Each product in
the product base has its own prospective buyers characterized by a certain
combination of preference choices. The goal of this work is to discover
knowledge about the preference choices of prospective buyers for each
product offline and, later use it to recommend products to the users based
on their preference choices.
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1 Introduction

In Case-Based Reasoning(CBR) based approaches to product recommendation,
the product domain is treated as case base and the products are treated as cases.
Customers often do not have sufficient ideas about the case base. They tend to
learn more about the cases that may be of interest to them as they get involved
in the process of shopping. This means that the preference of the customers
evolves as they keep learning about the domain. This renders single shot recom-
mender systems ineffective. A Conversational Recommender System(CRS) tries
to overcome this drawback by constantly updating the preference of the user
based on his/her interaction with the system. Learning user preferences is cru-
cial in a recommender system. Modelling user preferences is a well-known task
in machine learning community. In Case-based recommender systems, the user
preferences are modelled as similarity function so that the products in the case
base can be ordered in a way that is reflective of the user’s order of priority. Most
similarity functions associate each feature with a weight, which can be used to
capture the preference of the user on that feature. Often each feature is assumed
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to be independent of the rest of the features, and hence each feature weight is
updated independently. Few works in literature relax this assumption([3],[4],[5]).

In this work, we propose a novel way of capturing user preferences. In the
work by Mouli et al. [5] the authors model user preferences as soft constraints
that overcome the drawback of assuming the features to be independent. We
employ a similar way of learning user preferences. However, our work markedly
differs from their work, in the way the preference knowledge is represented. Most
of the works capture user’s preference in the form of a feature weight vector. To
the best of our knowledge, our work is unique in representing user’s preference
in the form of a region in preference weight space defined by a set of constraints.
The main contribution of this work is to discover under what combinations of
preference weights each case in the case base is preferred over a set of cases that
may probably be its competitors and use this knowledge in the recommendation
process. The knowledge mined from the case base, specific to a particular case,
is represented as a region in preference weight space, which we term it as dom-
inance region of that case. The dominance region of a case can be assumed as
a way of indexing the cases in the case base, which can be used for predicting
the prospective buyers of that particular case. We propose a model, Predicted
Preference Region based Model(PPRM) based on the dominance region discov-
ered for each case in the case base. In Section 2 we will present the background
and an overview of previous works that are related to our work. In Section 3 we
will go into the details of our work followed by Evaluation and Discussion of the
results.

2 Background and Related Work

As discussed before, a CRS involves the user in a conversation which may take
several iterations before the user could settle for a case of his desire. A CRS
requires a mechanism where the preferences of the user may be learnt. A response
from the user is essential in the task of learning user preferences. There are
several ways in which a response could be obtained from the user and different
CRSs process the response in different ways to learn user preferences. The user
preferences modeled in the form of feature weights are used for case retrieval.

2.1 Preference-based feedback

In each iteration of a CRS, the system displays a set of recommended cases and
the user gives a feedback to the system based on the kind of cases recommended
to him/her. In preference based feedback systems, the buyer selects a case of his
preference from the recommended set of cases which acts as a feedback for the
system. In our work using CRS, the system needs preference feedback from the
user.

2.2 More-Like-This(MLT) and weighted More-Like-This(wMLT)

In MLT, query(a vector of feature values) is the only way in which the preference
of a user is captured. The preference feedbacks given by the user in a given
iteration becomes the query for the next iteration and hence the cases in the
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next iteration are the cases that are more like the case chosen by the user in the
previous iteration[1]. There is a catch in this approach. The user may not prefer
all features of the selected case and the information on why the user rejected
the other cases in the recommended set is lost. In wMLT[1] this drawback is
overcome by assigning weights to the features. The feature weights along with
the user’s query capture the preference of the user. If the feature value present
in the preference feedback is also present in the cases rejected by the user then
the weight of the corresponding feature is reduced proportionally to the number
of rejected cases in which that feature value is present.

2.3 Critique based Recommender Systems

In critique based recommender systems, feedback is collected on specific features
of the case. In some domains, case features can be classified as “More is Bet-
ter”(MIB) and “Less is Better”(LIB). An example, in camera domain, Zoom is a
MIB feature and Price is a LIB feature. Critiques could be something like “more
of a MIB feature” or “less of a LIB feature” depending on the cases available
the case base[2]. The feature weight is updated proportionally to the difference
between the feature value of the query and the feature value of the case selected
from the recommended set.

2.4 Recommender Systems without feature independence
assumption

The drawback with all the systems discussed previously is that the feature
weights are updated in each cycle independent of the other features.

Compromise Driven Retrieval(CDR)
CDR proposed by McSherry[3] is one of the approaches that looks at features
as dependent on each other. Consider a hypothetical Camera data set given in
in Table 1, with only three features say “Price”, “Resolution”, “Optical Zoom”.
Given the query and the cases, say a user chooses Case 1. We can see that the
user is ready to pay extra 500 rupees for the gain of 5 MP in resolution and 5
X in Zoom with respect to the query. Such a choice is termed as, compromise
on Price for the gain in Resolution and Optical Zoom. The customer is ready to
compromise on Price provided the customer gains in other two features. When
given a choice between two cases that are equally similar to the user’s query, CDR
recommends a product that makes a compromise on a subset of the features on
which the other case compromises.

Price(Rs.) Resolution(MP) Optical Zoom(X)

Case 1 1000 10 10

Case 2 600 4 5

Query 500 5 5

Table 1: Toy Camera DataSet and Query
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The aim of CDR is to make sure that all possible compromises that are avail-
able in the case base are suggested to the user in the recommendation process
as we do not know in advance the compromises the user is ready to make.

Preference Constraints
In an earlier work by Pu et al. [4] the authors try to learn the preferences of
the user by learning the various tradeoffs the user is ready to make. We regard
tradeoffs as related to compromise. For example: how much is a user willing to
pay/tradeoff for added feature like ’Bluetooth’ in a mobile phone? The buyer
is made to enter his choice of compromise explicitly. Each compromise choice is
converted to a soft constraint, which is used to model buyer’s preference. The
cognitive load on the user is considerably high. In the work by Mouli et al.[5] the
authors elicit the constraints automatically based on the preference feedback of
the buyer. The user’s choice of a case out of the recommended cases is reasoned
to arrive at the feature preference of the user. For the Toy dataset in Table
1, if customer’s choice is Case 1 then it is reasoned that the utility of Case 1
is greater than the utility of Case 2. On the basis of Multi Attribute Utility
theory(MAUT)[6] and classification of features(MIB or LIB), we can arrive at a
constraint 6 × wresolution + 5 × wzoom ≥ 400 × wprice where wresolution, wzoom

and wprice indicates the preferences given to resolution(MIB feature), zoom(MIB
feature) and price(LIB feature) respectively. The feature values are normalized to
lie between 0 and 1. The normalisation procedure takes the type of feature(MIB
or LIB) into consideration. For a LIB feature, the highest value gets normalised
to 0 and the lowest value gets normalised to 1 and vice versa for a MIB feature.
In general, a constraint could look something like wresolution × ∆resolution +
wzoom × ∆zoom ≥ wprice × ∆price. Here the ∆ values are the differences in
the feature values. In this process, we reason why the user prefers a case over
the other case. The knowledge is captured in the form of constraints on the
preference weights of the user. The user is not required to explicitly mention
his tradeoffs as in the former work. If there are k cases in the recommended
set, we reason why a user has selected the preferred case over the k-1 cases.
Similar to the aforementioned example the preferred case can be compared with
every other case in the recommended set to get a set of k-1 constraints(tradeoff
constraints). In addition to the tradeoff constraints, we have a constraint on
preference weights, that the sum of the preference weights in a preference weights
vector is equal to 1(preference constraint). These constraints are solved for the
preference weights. The solution set is a region in the preference weight space,
which we call it as preference region. The current preference weights are updated
by considering a point that lies in this preference region and is at a minimum
distance from the current preference weights. The assumption is that the user’s
preferences don’t change much in each cycle. This approach is termed by the
authors as Compromise Driven Preference Model(CDPM).

3 Our Approach

We draw our inspiration from the idea of capturing feature dependent user’s
preferences from the work by Mouli et.al in [5]. We present our idea in Section
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3.1. The other contribution of our work is to address the assumption of CDPM
that the user’s preferences don’t change much in each cycle. The truth of this
assumption is questioned and a new way of choosing a preference weights vector
is proposed in Section 3.2.

3.1 Recommender System based on Preference and Dominance
Region

Dominance Region

A product is designed to cater to preferences of a set of users, and the set of
tradeoffs they are willing to make. For example in camera domain, people who
desire professional cameras tend to trade off ’price’ for a feature like ’zoom’.
We can safely claim that each case offers a combination of tradeoffs that is
acceptable to its target users, which is mapped to a region in preference weight
space, we term this region as dominance region. This region is the preference
region of the prospective users of a particular case. Dominance region of a case
is the predicted preference region of the prospective users of a case in the case
base. For any given case in the case base, the prediction of the dominance region
of that case is done in two steps. In the first step, we assume a hypothetical
buyer who prefers the given case over all its n nearest cases(cases in the small
neighbourhood of the case). In the next step, we determine the preference region
of the hypothetical user. We call the preference region of the hypothetical user
as the dominance region of the given case. Our hypothesis is

If a case is desirable to the user then his preference region overlaps with the
dominance region of the case.

Case Recommendation

Unlike CDPM where a single weight vector is maintained as the preference
of the user, we maintain a region of weights that we keep updating in each cycle.
In our system, the utility of a case is approximated by a combination of overlap
score and similarity score, that we call CScore. The overlap score is based on the
amount of overlap between the case’s dominance region and user’s preference
region, the similarity score is based on the distance between the case and user’s
query. In Equations 1 and 2 P,Q, PR,DRP denotes case, query, preference region
and dominance region of case P respectively. Equation 1 has the constraint that
α + β = 1. In Equation 2 euclideanDistance is the Euclidean distance between
cases P and Q positioned in the product space.

CScore(P,Q, PR) = α× overlapScore(DRP , PR) + β × similarity(P,Q) (1)

similarity(P,Q) =
1

1 + euclideanDistance(P,Q)
(2)
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Computing the amount of overlap between the dominance region and prefer-
ence region is not a straight forward task. We used Monte Carlo based technique
to find the approximate amount of overlap between the two regions. We have
a constraint that the sum of the weights of the preference vector needs to be
equal to 1. Any given preference region or dominance region should lie within the
bounding region defined by the constraint that the sum of the feature weights is
equal to 1. From this bounding region, we uniformly sampled points and recorded
if they belong to at least one of the regions or to both. The amount of inter-
section or overlap is based on Jaccard measure and is given in Equation 3. The
approximate centroid of the preference region is computed by taking the average
of the points that are uniformly sampled from the region where the sum of the
feature weights is equal to 1 and which also lies in the preference region.

overlapScore(DRP , PR) =
no. of points in both regions

no. of points in at least one region
(3)

Overlap and Similarity

The α and β in equation 1 control the weightage given to the Overlap score
and Similarity score. It is possible for a case that is less similar to the query to
have its dominance region overlapping to a greater extent with the dominance
region of the case of interest, so we want to search in the neighbourhood of the
query. The β parameter controls the amount of diversity in the recommended
cases and it is updated dynamically based on the cases chosen by the buyer
at each recommendation cycle. Initially, both α and β are set to 0.5. The rank
of the preferred case in the ordered list based on overlap score and similarity
score is used to update the parameters. If the preferred case ranks higher in the
similarity score based list than in the overlap score based list, then we assume
that the buyer is interested in looking for very similar items and hence the β
value is boosted. If this is not the case, then α value is boosted. Since α+β should
be equal to 1, we normalize the values to satisfy the constraint. Hence boosting
one of the parameters will result in the reduction of the other. A formulation for
boosting the parameter α is given in the Equation 4. A similar formula is used to
boost β too. We wanted to boost the values by a small amount proportional to
the value of the parameter. Let P be the preferred case. ρ(OverlapList, P ) is the
rank of P in the ordered list of the recommended cases based on Overlap Score.
ρ(SimilarityList, P ) is the rank of P in the the ordered list of the recommended
cases based on Similarity Score.

αnew = αold + (
ρ(SimilarityList, P )− ρ(OverlapList, P )

|recommendedList|
∗ αold) (4)

Methodology

Step 0: Computing dominance region: For each case in the case base, assume
n nearest neighbours as the competitors of the case. It is assumed that the case
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Variables
DB: Case base;
P: Preferred case;
RS: Recommended Set;
Q: Query;
PR: Preference region;
DRX : Dominance region of case X;
α: overlapScore parameter; β: similarity parameter;
Result: Desired case
initializeVariables();
setDominanceRegions();
setAlphaBetaParameters();
Q ← getInitialUserQuery();
RS ← getKNearestCases(Q,DB,k);
while Desired case /∈ RS do

P← getUsersChoice(RS);
updateAlphaBetaParameters(RS,P);
PR← getPreferenceRegion(RS,P);
Q←P;
RS← getRecommendationSet(PR,Q,α,β);

end
Algorithm 1: Overall Algorithm

under consideration is better than all its competitors. For n competitors we
get n constraints, by comparing each of the n competitors with the given case.
These constraints are solved for the feature weights. We get a region of weights
as solution set. This region is the dominance region of the case (DRcase). This
is done offline and is used in the recommendation process.

Step 1: The user gives his initial preference, usually on a subset of the fea-
tures of the case. This is the query Q.

Step 2: Initially we assume uniform weights for all features and get k nearest
cases to the query from the case base as the recommended set of cases.

Step 3: The user picks up a case as his preferred case. We compare the pre-
ferred case with each of the k − 1 recommended cases and get k − 1 tradeoff
constraints. These tradeoff constraints along with the preference constraint are
solved for the feature weights. We get a region of weights as the solution set.
This region is the preference region of the user(PR).

Step 4: The preferred case becomes the new Query. We select m nearest
neighbours based on unweighted distance measure to the Query. We remove all
cases that are in the k cases in the previously recommended set. We order the
remaining cases based on the CScore, the top k cases are shown to the user as
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the recommendations.

Step 5: We go to step 3 and continue the cycle till user is satisfied with one
of the cases from the recommended set of cases.

Variables
NN: Nearest Neighbours to Query;
Result: RS
NN← getKNearestCases(Q,DB,k);
NN←NN-RS;
RS← ∅;
for each X ∈ NN do

overlapScore← getOverlapScore(DRX ,PR);
similarity← getSimilarity(X,Q);
CScore← getCScore(overlapScore,similarity,α,β);
insertInOrderBasedOnCScore(RS,CScore,X);

end
Algorithm 2: getRecommendationSet Algorithm

3.2 Centroid-based Preference weights

To pick a single preference weight vector from the preference region, authors in
[5] have made use of an assumption that the current preference weight does not
change much from the previous iteration, which may not be true always. The
assumption may be true in the later stages of the conversation when the buyer
does not explore the domain as much as in the initial stages of the conversation.
As an attempt to work around this assumption instead of choosing a preference
vector that is nearest to the current feature weights from the preference re-
gion, we decided to choose the centroid of the preference region as the vector of
updated preference weights. The efficiency of the method is evaluated and the re-
sults are reported in the evaluation section. We call this method Centroid-based
Preference Weights Model (CPWM).

4 Evaluation

We have used camera dataset[8] with 210 cameras and PC dataset[1] with 120
computers for evaluation. We evaluate the effectiveness of our method by a usual
method conducted in preference based conversational recommender systems[7].
A case is randomly removed from the case base and the case that is most similar
to the removed case is set as the target case. A subset of feature values from the
removed case is used as the query. Three queries are formed from the removed
case, of sizes 1(Hard), 3(moderate) and 5(easy). This subset is also randomly
picked. For each of the three queries, we evaluate the system. The behaviour of
the user is simulated in each iteration by picking a case that is most similar to
the target(Similarity is used as a means of simulating a user). The selected case is
treated as the preferred case and it becomes the query for the next iteration. We
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stop the conversation cycle when the target case appears in the recommended set
of cases. The number of cycles required to reach the target is recorded. We repeat
the whole process 1000 times by randomly picking a case from the case base.
The average number of cycles required for each category is used as a measure
for comparison.

5 Results and Observations

The average number of cycles required is measured from 1000 queries for the
method based on dynamic preference based method, centroid based method and
our method and the results are as given in Table 2 and Table 3.

Query size 1 Query size 3 Query size 5

CDPM 12.82 8.51 4.47

CPWM 13.26 7.65 4.05

PPRM 7.49 3.37 2.13

Table 2: Average cycle length in Camera dataset

Query size 1 Query size 3 Query size 5

CDPM 6.99 4.55 2.27

CPWM 7.63 4.14 2.10

PPRM 3.20 1.76 1.35

Table 3: Average cycle length in PC dataset

We can see 41.5%, 60.3% and 52.3% reduction in number of cycles with
respect to the query of sizes 1, 3 and 5 respectively with PPRM when compared
to the CDPM in Camera dataset, and 54.2%, 61.3% and 40.5% reduction in
number of cycles with respect to the query of sizes 1, 3 and 5 respectively with
PPRM when compared to the CDPM in PC dataset. However, CPWM performs
very similar to the CDPM. To study the effect of the α and β parameters we ran
the experiments with different starting values of the parameters and the results
are tabulated in Table 4.

Query size 1 Query size 3 Query size 5

α = 0.75, β = 0.25 7.17 3.53 2.25

α = 0.5, β = 0.5 7.49 3.37 2.13

α = 0.25, β = 0.75 7.07 3.70 2.27

Table 4: Average cycle length in Camera DataSet for different starting values of pa-
rameters

The average cycle length does not vary much for the different initial values of
α and β. The weights get adjusted appropriately during the conversation, result-
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ing in very similar results. To study the effect of the size of nearest neighbours
from which the dominance region is predicted, we conducted the experiments for
various Competitors sizes. The results are given in Table 5. There is not much
variations in the results that could be captured from the experiments, suggesting
robustness with respect to neighbourhood size.

No. of competitors Query size 1 Query size 3 Query size 5

3 7.42 3.60 2.14

5 7.49 3.37 2.13

7 7.12 3.69 2.24

10 7.29 3.28 2.27

Table 5: Effect of Competitors size on Average Cycle length in Camera DataSet

6 Conclusion and Future Work

Our work exploits the knowledge mined from the case base and couples it with
the learnt user preference in the process of recommendation. The considerable
reduction in the number of cycles suggests the soundness of our hypothesis. In
this work the neighbours of a case is considered as the competitors of that case
in its dominance region computation, this is an assumption that could be far
from reality. To get the actual competitors of a product, we would like to use
appropriate datasets and evaluate our work by conducting live user study.
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