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Abstract. Despite tremendous advances in computational models of
human analogy, a persistent challenge has been scaling up to find useful
analogies in large, messy, real-world data. The availability of large idea
repositories (e.g., the U.S. patent database) could significantly acceler-
ate innovation and discovery in a way never previously possible. Previous
approaches have been limited by relying on hand-created databases that
have high relational structure but are very sparse (e.g., predicate calcu-
lus representations). Traditional machine-learning/information-retrieval
similarity metrics (e.g., LSA) can scale to large, natural-language datasets;
however, while these methods are good at detecting surface similarity,
they struggle to account for structural similarity. In this paper, we pro-
pose to leverage crowdsourcing techniques to construct a dataset with
rich “analogy-tuning” signals, used to guide machine learning models
towards matches based on relations rather than surface features. We
demonstrate our approach with a crowdsourced analogy identification
task, whose results are used to train deep learning algorithms. Our initial
results suggest that a deep learning model trained on positive/negative
example analogies from the task can find more analogous matches than
an LSA baseline, and that incorporating behavioral signals (such as
queries used to retrieve an analogy) can further boost its performance.
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1 Introduction

Invention by analogy (i.e., transferring ideas from other domains that are struc-
turally similar to a target problem) is a powerful way to create new innovations.
For example, a car mechanic invented a new low-cost way to ease difficult child-
birth by drawing an analogy to a cork extraction method in wineries (inserting
and inflating a small plastic bag in the bottle) [12]. This award-winning device
has the potential to change lives worldwide, particularly women in developing
countries with limited medical resources.

The recent growth of online innovation repositories represents an unparal-
leled opportunity for invention by analogy. These repositories contain hundreds
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of thousands (Quirky, OpenIDEO) or millions (the U.S. patent database, the
Web) of ideas that have the potential to be applied to other structurally sim-
ilar domains. However, the scale of these repositories presents a challenge to a
person’s ability to find useful analogies.

Computational systems could greatly accelerate innovation by mining analo-
gies from these vast repositories. Indeed, decades of research on computational
models of human analogy-making have yielded tremendous advances in the abil-
ity of computational systems to explain and simulate human-like analogical
reasoning. Yet, a persistent challenge has been scaling up computational

analogy systems to reliably find useful analogies in large, messy, real-

world data. Existing approaches are limited by either relying on hand-created
databases that have high relational structure but are small, domain-specific, and
costly to keep updated [14, 17], or on machine learning approaches that can scale
to large datasets but have difficulty encoding and matching relations [5, 16].

In this paper, we propose a hybrid approach which combines crowdsourcing
with machine learning to develop a scalable approach to finding analogies in
large idea repositories. A key insight is that we aim to externalize and capture
the mental processes that humans use to find and evaluate analogies to serve
as training data for a machine learning model. The intuition is that instead of
trying to build a complete human-generated dataset or a machine learning model
driven only from existing data, the rich behavioral traces of how people query for
analogies can “tune” a more scalable computational approach towards matches
based on relations rather than surface features.

We illustrate our approach through a crowdsourced analogy identification
task where people query a repository and find analogical matches to a target.
These matches and queries are used as training data (and for feature selection)
for deep learning algorithms. Our initial results suggest that a deep learning
model trained on positive/negative example analogies from the task can find
more analogous matches than an LSA baseline, and that incorporating behav-
ioral signals (such as queries entered) can further boost its performance.

2 Related Work

Computational Analogy Systems. We argue that a crucial reason behind
the difficulty in scaling up computational analogy lies in a trade-off between
accuracy and scale in existing approaches. On the one hand, models that have
been the most successful at approaching human-level performance in analogical
matching—such as Hummel and Holyoak’s LISA analogy engine [11], Klenk and
Forbus’s [14] Companion for AP Physics problems, and Vattam and colleagues’
[17] Design Analogy to Nature Engine (DANE)—rely heavily on hand-created
databases that have high relational structure. Creating such databases involves
extensive knowledge engineering efforts. Vattam and colleagues [17] estimate
that converting a single (complex) biological system into a formal representa-
tion requires between forty and one hundred person-hours of work. Consequently,
models that rely on hand-coded relational representations have yet to be suc-
cessfully applied to large, open repositories like the U.S. Patent Database.
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Conversely, a number of machine learning approaches exist that make mini-
mal assumptions about the input data, and in particular do not require explicitly
coded relational representations. Examples include word embedding models like
Word2Vec [16], vector-space models like Latent Semantic Indexing [5], and prob-
abilistic topic modeling approaches like Latent Dirichlet Allocation [1]. While
these approaches scale well to large datasets, they have difficulty encoding re-

lational similarity. One possible reason is that these approaches tend to rely
on co-occurrence patterns between words that describe higher-level “concepts”;
however, relational categories have very sparse and diverse term distributions [8]

Note that some approaches [6] try to capture structure by focusing on partic-
ular types of words (e.g., verbs). However, parts-of-speech alone are not enough
to capture structural relations, and these methods suffer from a lot of noise.
Consequently, these systems tend to have low precision of analogical matches,
shifting the burden onto the user to sift through large amounts of false positives.
To illustrate, Fu and colleagues [7] found that, despite their approach produc-
ing structures that experts found sensible, their “far” analogies actually were
perceived as “too far”, and hurt instead of helped creative output.
Crowdsourcing and Machine Learning. We believe a possibly fruitful way
forward lies in hybrid approaches that combine crowdsourcing and machine
learning. We are inspired by related efforts in human-computer interaction that
combine these technologies to crowdsource complex cognition at scale, in par-
ticular clustering related items from rich and messy text sources [2, 9]. However,
these methods are not aimed at finding analogical clusters, which requires sup-
porting deep relational similarity rather than surface similarity.

3 Computational Analogy at Scale with Crowdsourcing

and Machine Learning

We frame the problem of finding analogies in a large dataset as a hybrid human
and machine-learning problem. We propose to use crowdsourcing to obtain rich
“analogy-tuning” signals for machine learning models by capturing the process
by which people query for and evaluate analogies. By doing so we aim to collect
not just positive/negative examples of analogies, but also implicit and explicit
behavioral traces ranging from the queries people use to look for analogies to the
keywords they believe are discriminative. We believe these behavioral traces are
vital for bridging the gap between scalable machine learning approaches and the
structured representations of prior approaches. This machine-learning approach
is related to other efforts in case-based-reasoning that use machine-learning to
reduce the need for knowledge engineering [10]. To illustrate the potential of this
approach, we present a system that seeds a deep learning model with analogy-
relevant signals harvested from a crowdsourced analogy querying task.

3.1 Crowdsourcing Task for Collecting Analogy-Tuning Signals

The goal of the crowdsourcing component is to obtain rich behavioral data (e.g.,
positive/negative examples of analogies, query sequences, keywords) that signal
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Fig. 1. Search workflow. (A) Enter queries to search for analogous documents, and
mark “possible”/“best” matching documents. (B) Screen matches (e.g., promote “pos-
sible” to “best” match, directly reject “possible”/“best” match), (C) Describe analogy
to target document. (D) View/return to prior queries (optional). (E) After sub-
mitting best match, highlight keywords in both documents that explain the analogy.

the core relational structures of documents. Guided by the psychological insight
that comparison is a powerful way to get people to attend to the core structural
features of a description [15], we decided to embed the task of providing analogy-
tuning signals within a realistic task of finding analogies.

Workers use a simple search interface to find product descriptions that are
analogous to a seed product. Figure 1 depicts the interface and the four main
components of the task: 1) searching for matches (A), 2) screening/processing

matches (B), 3) describing the analogy (C), and 4) highlighting keywords (E).
This approach yields a rich set of signals that we can use for our machine

learning models. For example:
– What queries are used, in what sequence?
– Which documents are tagged as possible matches?
– Which documents are tagged as best matches?
– Which documents are implicitly rejected (i.e., ignored in the search result

list, despite appearing before matches)?
– Which documents are directly rejected?
– How is the best match described as being analogous to the seed document?
– Which key terms are highlighted?

Importantly, this task context enables us to harvest all these rich signals from a
natural search task that is easy and familiar. Additionally, the task design could
guide the instrumentation of an interface in a user-facing computational analogy
system to yield similar signals for ongoing refinement of the underlying models.
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Deployment. We test our approach with a corpus of product descriptions from
Quirky.com, an online crowdsourced product innovation website. Quirky is rep-
resentative of the kinds of datasets we are interested in, because it is large (at the
time of writing, it hosts upwards of 10,000 product ideas), unstructured (ideas
are described in natural language), and covers a variety of domains (invention
categories), which makes cross-domain analogies possible. The following example
is representative of the length and “messiness” of product ideas in this dataset:

Proximity wristband: Control of childs in public places is very difficult and
stressing. Parents fear that their childs may go too far unexpectedly for any reason,
and that actually happens no matter how careful they are, especially in crowdy places.
Because childs always run and move. Parents can’t relax and are obliged to keep their
eyes continuously on their childs. Furthermore, the consequences of a child going too
far from his parents may be very dangerous. A wristband is put on the wrist of the child.
The wristband has a radio connection (bluetooth) with one of the parents’ smartphone,
that has been previously matched with the wristband. Parents may activate/disactivate
the alarm on the wristband by tapping on the App installed on their smartphone. When
the alarm is activated, the App detects the distance between the 2 radio connected de-
vices (the wristband and the smartphone). If the distance gets higher than the maximum
value (changeable in the settings of the App) than a speaker integrated in the bracelet
emits a loud alarm and the smartphone starts ringing. The inside of the wristband hosts
a circular conductive element that loses its metallic continuity if the wristband opens
for any reason, so if this circuit is opened the wristband is programmed to emit the
alarm and alert the parents.

We crowdsourced analogy finding within a set of 400 randomly sampled
Quirky products. Three hundred and ninety-four workers from Amazon Me-
chanical Turk collected analogies for 227 “seed” documents (median of 1 unique
analogy per seed, range of 1-10 unique analogies). Median completion time for
each seed was 10 minutes, and pay was $6/hr (or $1 per completed seed). Workers
could complete as many seeds as they wanted.

An example behavioral trace sequence from our data illustrates how the act
of comparison pushes people to focus on structure (along with the rich data
we can mine from the behavioral traces). Worker X received the “proximity
wristband” as a seed. She initially started with the query “alarm”, and tagged
as a possible match a “voltage plug” product that automatically alerts the user
if there are voltage problems for a given power outlet. She also rejected non-
analogous results like a “smart doorbell chime”. Dissatisfied with the results, she
entered a new query (“wristband”), but didn’t find any useful matches. Finally,
she entered “proximity” as a query, and tagged a product about a “digital dog
fence” as a best match, explaining that both products are about “Proximity,
keeping object within a set distance, the object has it attached.”

3.2 Task 1: Semantic Similarity from Traces

An important challenge of working with natural language is finding appropriate
semantic similarities. Many existing similarity metrics, like Word2vec [16] do
poorly on verb and adjective similarity, which are central for structural similarity.
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Fig. 2. Fragments of the query graph from our study. Nodes correspond to queries,
edges correspond to two queries that were used to find the same analogy.

We now use behavioral traces to expose similarity. We constructed a graph
from queries entered in our study: Nodes correspond to queries; there is an edge
if the queries resulted in the same analogy. In other words, if one user found an
analogy using the query “cover”, and another used “protect”, we add an edge.

Figure 2 shows fragments from this graph. By construction, the query graph
exposes a lot of the desired semantic similarity. Semantically similar verbs often
form dense clusters (e.g., protect/defend/shield), and related terms (gps/location/find)
also tend to be a short distance away. Traversing the query graph can also reveal
analogies: for example, an analogy between a dog gps and a child tracking device
(left), and between products that protect from rain, water, and sun (right). This
graph could be used to guide feature selection in a machine learning model.

3.3 Task 2: Learning Analogies

We now demonstrate how to frame analogy-finding as a machine learning prob-
lem. In this context, we are given a training set D = {(x1

i ,x
2
i , yi)}. (x

1
i ,x

2
i )

are pairs of product descriptions. Label yi 2 {0, 1} corresponds to whether the
pair was tagged as an analogy (“best match”) or as a non-analogy (ignored in
search result, directly rejected). Our goal is learn a decision function for new pairs
whose score reflects their “degree of analogy": f(✓, ( ✓(x1

i ), ✓(x
2
i ))), where  ✓(·)

is function embedding xi into a shared feature space and ✓ are model parameters.
The document model we use to demonstrate our ideas is based on convolu-

tional neural network (CNN) architecture that has shown state-of-the-art results
in many NLP tasks [13, 4]. This distributional model learns to map texts to vec-
tor representations. The objective guides the model to learn a representation
where texts tagged as analogous are close, and non-analogous texts are far.

We use a Siamese Network architecture [3], where two identical copies (same
weights) of a function are applied to two inputs. Another layer measures distance
between the two inputs, computing whether they are similar. Figure 3 shows
the main components of the architecture. We represent each word as a low-
dimensional, real-valued dense vector w 2 Rd. Each xi is thus a sequence of
vectors w, which together form a matrix Mi where column j represents the j

th

word in the input sequence.
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Dog      collar    with   built-in   GPS

Child   wristband  with  built-in  Bluetooth

∥ 𝜓 𝑥𝑖1 − 𝜓 𝑥𝑖2 ∥22 +
max(0,𝑚 − ∥ 𝜓 𝑥𝑖1 − 𝜓 𝑥𝑖2 ∥22)

Product text matrix 
(word embeddings)

Convolutional
features

Pooling Fully connected 
hidden layer

Contrastive Loss

Fig. 3. Siamese Network architecture.

Words are embedded into a low-dimension
representation and combined into a matrix
(left). Convolutional “sliding window fil-
ters” (blue) are applied to the matrix. Mul-
tiple filters are applied (different colors),
forming a feature map pooled to form an ag-
gregated signal. The pooled representation
goes through a fully connected layer. The
same weights are applied for both inputs
across all layers. Finally, distance between
inputs is computed (Contrastive Loss).

Next, our model learns to com-
pose the w into higher-level semantic
representations by applying transfor-
mations to Mi. Each vector sequence
is passed through a convolutional

layer, applying a bank of “sliding win-
dow filters" to extract local features of
small subsequences of words.

To learn non-linear patterns, con-
volutional layers are followed by ele-
mentwise activation functions. We
use the ReLU function, max(0, x).
The output of the activation func-
tion is passed through a pooling

layer, which reduces dimensionality
by aggregating information, captur-
ing pertinent patterns and filtering
noise. The pooling layer performs
max-pooling, returning the largest
value for each column. Finally, values
pass through a fully connected layer
which computes a linear transforma-
tion followed by ReLU non-linearity,

combining local features into a global semantic view of the text.
This composition of functions, from embedding words to the final layer, yields

our function  ✓(·), mapping a text input xi into a new vector representation.
Crucially, in our model  ✓(·) is shared for (x

1
i ,x

2
i ), enabling the model to learn

a symmetric representation that is invariant to the order in which the texts are
provided. Finally, our objective function is the Contrastive Loss, defined as:

L( ✓(x
1
i ), ✓(x

2
i )) = yiL

+
( ✓(x

1
i ), ✓(x

2
i )) + (1� yi)L

�
( ✓(x

1
i ), ✓(x

2
i )),

where
L

+
( ✓(x

1
i ), ✓(x

2
i )) = || ✓(x1

i )�  ✓(x
2
i ))||22

L

�
( ✓(x

1
i ), ✓(x

2
i )) = max(0,m� || ✓(x1

i )�  ✓(x
2
i ))||22.

L

+ penalizes positive pairs far apart, and L

� penalizes negative pairs (di-
rect/implicit rejected pairs, from the crowd) closer than margin m. Learning
is done with gradient descent, via backpropagation.
Results. We applied the model to the crowd-annotated Quirky data. We split
our data into training and evaluation sets, each containing distinct sets of “seed"
texts (to test the model’s ability to generalize). The training set consists of about
12500 pairs. Positive labels were assigned directly by crowd workers, while neg-
ative labels mean the pairs were implicitly rejected by not being tagged despite
being viewed by a worker. Our evaluation set comprised of roughly 3000 pairs.

The data was imbalanced, with about 10 negatives for each positive (⇡ 1, 100

positive pairs). To counter the imbalance, we use a weighted loss function. For
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the LSA baseline, we compute the Singular Value Decomposition (SVD) on the
document-term matrix, with term weights given by the TF-IDF score. Cosine
similarity is then computed for each pair. The table below shows proportion of
analogies among pairs with highest predicted scores (precision@K). For example,
looking at the top 2% predictions of our model (2% evaluation-set instances with
lowest predicted distance; about 60 pairs), 64% were tagged as positive (vs. 46%
for LSA). The overall proportion of positive labels in the test set was only 11%.
Importantly, negative labels are derived implicitly, so many pairs with negative
annotations could possibly be “mislabeled” and are actually positive.

Method Top 2% Top 5% Top 10% Top 15% Top 25%
Siamese Net 0.64 0.54 0.39 0.32 0.28

Latent Semantic Analysis 0.46 0.40 0.34 0.29 0.25

In Table 1 we show examples of seed documents and their best predicted
matches. Our model recovers both “purpose ” matches (e.g., gloves that hold
nails, and a hammer handle to store tools) as well as “mechanism” (child / dog
tracking devices). Comparing our model to LSA-based similarity, one can qual-
itatively observe that overall, LSA seems to focus more on surface similarity.
For example, when starting from a wristband that monitors child proximity,
LSA returns a baby recliner with sensors, a lawnmower connected to a wrist-
band, and skateboard shoes; our model returns a pet tracker, a wallet finder and
vehicle finder. Our model seems to “err" and return smart window blinds that
detect when homeowners are away – possibly recognizing the semantic “analogy”
between a child or pet wandering off and a homeowner being away.

3.4 Task 3: Incorporating the query

We now extend our machine learning setting, adding the query as additional in-
put. Our training data is now D = {(x1

i ,x
2
i ,qi, yi)}, where qi is the user-entered

query. We apply the same representation  ✓(·) we use for x1
i ,x

2
i to qi, embedding

the query into a shared feature space. We seek to measure similarity between
seed and target in this space. Importantly, similarity should be relative in some
sense to the user’s query. We do so by using the projection of the query vector
onto the seed and target vectors – essentially “aligning" the query “concept"
with each product text. We then compute the contrastive loss as before. More
formally, we re-define the contrastive loss to incorporate the query as follows.

L

+
( ✓(x

1
i ), ✓(x

2
i ), ✓(qi)) = || ✓(qi)· ✓(x

1
i )

 ✓(x1
i )· ✓(x1

i )
 ✓(x

1
i )�

 ✓(qi)· ✓(x
2
i )

 ✓(x2
i )· ✓(x2

i )
 ✓(x

2
i )||22

and similarly for L

�. In the table below we report results for this new model
and compare it to the model without the query. Since many queries did not have
matching targets we filter the data to a smaller subset with full information
(6000 less rows). The smaller training set drops base model accuracy to .46
(from .64). Interestingly, the query information has an apparent positive effect,
compensating for lack of data and boosting accuracy from .46 to .54. These
preliminary results validate our intuition that machine learning models would
benefit from a variety of human-generated analogy-relevant signals.
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Table 1. Best matches examples. Descriptions shortened and separated by slashes.

Seed Siamese Net top matches LSA top matches
Proximity wrist-
band for children
with a bluetooth
connection to
parents’ smart-
phone. App
detects the dis-
tance, emits an
alarm if child is
too far.

A dog and cat collar that has
built-in GPS tracking. // A wal-
let phone case that can be located
with a key-chain remote control.
// Programmable smart window
blinds that can also detect when
you are away. // A vehicle finder
with a small portable electronic
device transmitting a signal from
parked car to smartphone.

Baby recliner - placing sensors on a
baby being walked by parent, learn
movement and incorporate into reclin-
ing chair. // Clamp on a lawnmower
safety bar with a pin connected to a
wristband. When user is too far pin
is pulled out and the clamp opens.
// Magnetic skateboard shoes with RF
controller for turning on and off. Could
be fabricated into a ring or wristband.

Window louvers
that stop rain
by funneling the
rain out.

Programmable window blinds. //
A window-mounted fan with sound
dampening louvers. // Lamps that
work off batteries for additional
lighting without depending on
electricity

A window-mounted fan with sound
dampening louvers. // A glare-stopper
device preventing energy-efficient win-
dows from melting sides of buildings
or vehicles // A car screen to help re-
duce excessive heat buildup when park-
ing outside.

A flat magnet
sewn into the
posterior hand of
a glove to hold
nails or screws.

A golf glove with a magnetic strip
around the wrist. // A hammer
with a handle that stores nails
and hex screwdrivers. // Tear-
proof gloves to work easily with
tools.

A glove with adhesive contours allow-
ing the user to pick up hair and lint in
hard-to-reach places. // A can opener
container device, with a magnet on
both ends to hold the can in place. //
A box that clamps onto a ladder and
holds screws, nails and small items.

Method Top 2% Top 5% Top 10% Top 15% Top 25%
Model with query 0.54 0.32 0.29 0.25 0.22

Model without query 0.46 0.33 0.23 0.20 0.16

4 Discussion and Conclusions

Overall, we believe this is a promising time to make traction on the problem
of finding analogies in complex, messy data. There is a confluence of new work
on crowdsourcing complex cognition, machine learning tools for unsupervised
learning of semantics, and hybrid approaches combining crowds and machine
judgments to get the best of both worlds. We believe there is promise in an
approach that positions the process of crowdsourced analogical knowledge base
creation as input to machine learning models, using explicit and implicit sig-
nals to augment the written text. In this paper we describe a prototype of this
approach and early results describing its potential value.

We note that the approach described here does not tackle a number of impor-
tant problems that we acknowledge as limitations. For example, we do not yet
deal with the rich relational structure inherent in the source and target analogs.
We also note that our intent is to find interesting and useful analogs in large data
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repositories, and as such we make no claims that the processes we describe match
up with those that human cognition engages in during analogical retrieval and
reasoning. However, our capture of the process by which people engage in while
searching for analogies, including the queries and keywords they use and their
perceived relevance judgments of their resulting matches, may prove valuable for
further psychological research on the process of analogical retrieval.
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