Modelling the Impact of Code Obfuscation on Energy
Usage

Athul Raj, Jithish J and Sriram Sankaran
Amrita Center for Cybersecurity Systems and Networks
Amrita School of Engineering, Amritapuri
Amrita Vishwa Vidyapeetham
Amrita University

India

srirams@am.amrita.edu

ABSTRACT

Advancements in computing and communication technolo-
gies have given rise to low-cost embedded devices with ap-
plications in diverse domains such as Smarthome, indus-
trial automation, healthcare, transportation etc. These de-
vices are power-constrained which emphasizes the need for
lightweight security solutions. Code obfuscation has been
demonstrated to provide time-limited protection of source
code from inference or tampering attacks. However, size
of the obfuscated code increases with increase in code size
which can have a negative impact on energy consumption.
In particular, different transformations of the source code re-
sult in varying amounts of energy consumption for embedded
devices. In this work, we model the impact of algorithms for
code obfuscation on energy usage for embedded devices and
analyze the energy-security-performance trade-offs. The in-
sights from our analysis can be used to develop techniques
depending on the needs of the applications thus facilitating
efficient energy usage.

1. INTRODUCTION

The proliferation of low-cost embedded devices with ad-
vancements in computing and communication capabilities
facilitates device-to-device communication with varying ca-
pabilities. Energy Management has become one of the fore-
most concerns in mobile devices. This is primarily due to the
increasing functionality in applications which rapidly drains
battery power in these devices. In addition, security con-
tributes towards energy drain due to the significant perfor-
mance overhead of mechanisms used to secure embedded
devices. These emphasize the need for developing energy
aware security mechanisms for embedded devices. Further
these mechanisms require measurement tools for estimating
the energy consumed due to security for embedded devices.

Due to the increasing sensitivity of software applications
stored on embedded devices, mechanisms are necessary for

Copyright (©2017 for the individual papers by the papers’ authors. Copying permitted
for private and academic purposes. This volume is published and copyrighted by its
editors.

protecting their source code which runs on these devices.
Code obfuscation has been shown to provide time-limited
protection of source codes thus preventing intruders from
tampering or inference attacks. The primary role of a code
obfuscator is to apply a transformation to the original source
code thus resulting in obfuscated source code which in turn
is stored in the embedded devices. This results in obstruct-
ing the regular control flow and performing software manip-
ulations thus making it impossible to reverse engineer the
source code. In addition, code obfuscation has a consider-
able impact on performance and energy consumption which
varies for different kinds of applications.

While code obfuscation has been demonstrated to provide
time-limited protection for embedded devices, its impact on
energy consumption needs to be analyzed. In particular,
increase in size of the source code results in corresponding
increase in size of the obfuscated code thus causing a nega-
tive impact on power consumption. Further different trans-
formations of the source code result in varying amounts of
energy consumption for embedded devices. Thus a compre-
hensive energy analysis of algorithms for code obfuscation
is necessary to analyze the energy-performance trade-offs.
In addition, estimating security is necessary to analyze the
effectiveness of the obfuscation techniques. However, esti-
mating security of obfuscated code is challenging due to the
varying number of transformations applied to source codes
with increasing functionality.

In this work, we model the impact of algorithms for code
obfuscation on energy usage in embedded devices. In partic-
ular, we study different techniques for obfuscation such as
Lexical, Data and Control obfuscation and analyze their im-
pact on energy usage. We describe the experiment set-up for
measuring energy and performance and present our analysis
of energy-performance trade-offs. Our analysis conducted
using Mibench benchmarks reveals that data and control
flow obfuscation incur significant energy consumption com-
pared to lexical obfuscation. The results obtained from this
study can be used to tailor obfuscation to suit the needs
of resource-constrained devices and further analyze energy-
security-performance trade-offs.

2. RELATED WORK

Numerous approaches have studied the problem of code
obfuscation and analyzed their applicability in embedded
devices. Collberg et. al [9] presented a taxonomy of differ-
ent kinds of obfuscation which describes transformations for

securing diverse source codes. Further, there exists tools for
code obfuscation at both the hardware and software levels.
While some of the tools such as Tigress [8] and ProGuard
[18] are open-source, there exists numerous commercial tools
such as Allatori [1], Dasho [2], Zelix [5].

There exists approaches for measuring the impact of ob-
fuscated code on energy consumption. In particular Sahin et
al. [21] profiled the energy consumption of different transfor-
mations on the Android smartphone and statistically ana-
lyzed the significance between normal and obfuscated code.
However, they claimed that energy consumption between
different methods of a particular kind of obfuscation is in-
significant. In addition, Dukovic et al. [11] profiled the
energy consumption of normal and obfuscated code at an
instruction-level and analyzed the impact of different trans-
formations.

In addition to profiling energy consumption, certain ap-
proaches have analyzed the security of obfuscated code for
diverse kinds of systems. Banescu et al. [6] measured the re-
silience of obfuscated code against reverse engineering using
tools such as tigress which contains numerous transforma-
tions. Wu et al. [26] estimated the security of different
obfuscation based techniques using approximation. In par-
ticular, their approach involves modelling the relationship
between obfuscation parameters and the corresponding im-
pact on security using regression-based techniques.

While energy and security are critical, performance is equally

necessary so as to meet real-time constraints for embedded
applications. This can be achieved using hardware obfus-
cation which is necessary to protect secret information in
circuit design. Kainth et al. [16] have developed a hardware-
assisted technique for code obfuscation for FPGA based mi-
croprocessors. Their approach involves modelling the trans-
formations on the FPGA so as to improve their performance
as well as enhance the security of the applications. Further,
the reprogrammable nature of the FPGAs makes the overall
design of techniques adaptable.

In addition, numerous works have modelled the energy
consumption of computing systems in general and embedded
devices. Economou et al. [12] and Isci et al. [15] modeled the
energy consumption of embedded devices using performance
counters. Khan et. al [17] and Sankaran et al. [23] modeled
the energy consumption of multi-core systems using a statis-
tical learning approach. Wang et al. [25] developed SPAN,
a software power monitoring tool which correlates program
segments with power consumption. Fan et al. [13] analyzed
the power consumption characteristics of data centers and
studied the optimal provisioning of resources. Sangaiah et
al. [22] developed regression models to predict the perfor-
mance of Chip Multiprocessors.

In contrast to the existing approaches, we profile the en-
ergy consumption and performance of algorithms for code
obfuscation in embedded devices. Although our work is
closely related to [11] and [21], we manually obfuscate source
code of benchmark applications which enables us to ex-
plore numerous transformations in contrast to the obfusca-
tion tools used by [11] and [21]. While tools for obfuscation
are available, they are often commerical and that we are
limited by the transformations available in those tools. In
addition, our experiments are conducted using SourceMeter,
a power measurement tool which provides accurate power
estimates.

3. BACKGROUND
3.1 Lexical Obfuscation

Lexical obfuscation is one of the basic and simplest form
of obfuscation used in software programs. It includes a wide
array of operations such as comment removal, identifier re-
naming, structured construction removal, debugging info re-
moval etc. Typically lexical obfuscation is used for identifier
renaming which may not have any impact on the security of
the source code. Thus it becomes relatively easy for the at-
tacker to understand and reverse-engineer the source code.
In addition, other techniques such as structured construc-
tion removal, debugging info removal and comment removal
may reduce the size of the source code. While lexical obfus-
cation lacks security, it has been either replaced or used in
conjunction with other techniques such as data and control
obfuscation.

3.2 Data Obfuscation

Data obfuscation provides stronger security than lexical
obfuscation by protecting data in the source code. In par-
ticular, data is protected in such a way such that it be-
comes hard to infer the functionality through code analysis.
Data obfuscation includes a wide array of operations such
as string scrambling, array restructuring and merging, data
encoding and variable reordering. For instance, value of a
variable can be changed to include numerous different vari-
ables. Thus the value of the variable can be determined by
fusing the contents of the created variables. Similarly, arrays
can be restructured by creating arbitrary number of new ar-
rays and merging them with existing ones. Techniques for
data obfuscation have been described in [10] and [20]. Thus
by combining different kinds of techniques for data obfus-
cation, overall security can be enhanced. However, size of
the obfuscated code may increase which causes a negative
impact on power and execution time.

3.3 Control Obfuscation

Control obfuscation obfuscates the control flow of the pro-
gram thus providing stronger security than lexical and data
obfuscation. This includes manipulating the flow of exe-
cution with irrelevant conditional statements which in turn
results in restructuring of methods, loops and statements.
Typically, restructuring consists in inlining, outlining, inter-
leaving and cloning of functions and elimination of library
calls [24] [7]. In addition, a single function is transformed
through opaque predicates, insertion of dead code etc. How-
ever, as the control flow of the program is obfuscated, it
becomes harder for the attacker to interrelate the various
sections of the program. As a result, there is an increase
in the size of the obfuscated code which negatively impacts
power consumption and execution time.

4. EXPERIMENT SET-UP

In this section, we discuss the hardware and software used
for our experiments along with the description of our power
measurement set-up for energy analysis. We use the STM32-
FODISCOVERY [19] development board from STMicroelec-
tronics as the embedded platform for measuring the energy
impact of code obfuscation. The board operates at a DC
power supply of 3V. The board consists of an ARM Cortex-
MO microcontroller with 64KB flash and 8KB RAM. In addi-
tion, Keil MDK-ARM embedded software development envi-

Figure 1: Experiment Set-up

ronment [3] is used to develop, compile and debug the soure
code as well as flash the program on the development board
for evaluating different obfuscation techniques.

Power Measurement:

Keithley’s Series 2400 Source Measure Unit (SMU) [4] is
used for measuring the power consumption of the board. It
integrates both source and measurement circuitry in a sin-
gle unit thus facilitating a fast and accurate measurement
of power consumption. Figure 1 contains the pictorial rep-
resentation of the set-up used for our experiments.

The SMU is used as the DC power source for the set-up.It
provides the required stable precision DC power supply of
3V for the embedded board. The obfuscated programs are
developed on the Keil MDK-ARM software suite running
on Windows 10 platform and flashed to the board via USB
interface. The SMU logs the power consumed by the em-
bedded board at distinct time intervals. Further we perform
comparative analysis of power traces using MATLAB.

Benchmark Applications:

We consider the following applications from the Mibench
benchmark suite [14] for comparatively analyzing the im-
pact of code obfuscation on energy usage. Similarly other
applications can be profiled and its energy impact on code
obfuscation analyzed.

Basicmath: Mathematical calculations invoving cubic func-
tion solving, square root evaluation, degrees to radian con-
version etc. on a fixed set of constants.

Bitcount: Evaluating bit manipulation capabilities by com-
puting the total number of bits in a fixed input array of
integers.

Matrixz Multiplication: Computing the matrix multiplica-
tion which is of complexity O(n®).

Vernam Clipher: Symmetric stream cipher which utilizes
Boolean XOR operation to generate the ciphertext.

5. ENERGY ANALYSIS

In this section, we analyze the energy consumption of
different code obfuscation techniques using the embedded
benchmarks. In particular, we consider obfuscation tech-
niques such as lexical, data and control flow transformations.
Within the context of data obfuscation, we transform array
data [20] for code obfuscation. In control flow obfuscation,

Table 1: Lexical, Data and Combined Obfuscation

App AP %AT %AE %AS
Matrix LO:1.15 LO:0 LO:1.14 LO:0
DO:1.5 DO:1.5 DO:0 DO:4.51
CO:1.51 CO:8 C0:9.63 | CO:21.47
Basicmath | LO:0.698 | LO:2.94 LO:3.66 LO:0
DO:2.29 DO:8.82 DO:11.32 | DO:0.99
C0O:4.13 CO0O:8.82 CO0O:13.32 | CO:10.04
Bitcount L0O:0.93 LO:0 L0O:2.36 LO:0
DO:0.18 DO:2.81 DO:3.01 DO:0.51
C0:0.124 | CO:14.1 C0O:13.8 CO0O:16.4
Vernam LO:0 LO:0 LO:0 LO:0
DO:0.25 DO:4.16 DO:4.42 DO:2.51
C0O:1.32 CO:12.6 C0:13.99 | CO:18.1

LO:Lexical Obfuscation DO:Data Obfuscation
CO:Combined Obfuscation

we perform control flow flattening, dead code insertion, ex-
tended loop condition and loop transformation. Further, we
analyze a transformation which involves a combination of
above obfuscation techniques termed as combined obfusca-
tion.

In our experiments, we manually obfuscated the source
code of the applications using the above transformations.
While there exists open-source and commercial tools for code
obfuscation, they are limited in terms of the number of avail-
able transformations. Thus, our goal is to explore numerous
transformations and their possible combinations and not be
restricted by the tools.

Our analysis reveals that different operations performed
by the Cortex MO microcontroller have corresponding power
consumption profiles. Thus, our goal is to analyze the im-
pact of different obfuscation techniques on the energy and
performance of embedded devices. Towards this goal, we
gather the power traces from the SMU for normal and ob-
fuscated codes pertaining to different transformations. Fur-
ther, execution time and energy consumption were estimated
for each of the applications. In particular, we compute the
percentage difference of parameters such as average power,
execution time, energy consumption and storage between
normal and obfuscated code.

Table 1 contains the power, execution time, energy and
storage results for lexical, data and combined obfuscation
while table 2 displays those for each of the transformations
in control flow obfuscation. From the table, %AP, %AT,
%AE and %AS denote the percentage difference of parame-
ters such as power consumption, execution time, energy and
storage respectively between normal and obfuscated code.

From the tables,it is evident that the change in energy
consumption ranges from 0% to 11.32% for different obfus-
cation techniques and that the maximum change is observed
in basicmath when data obfuscation is applied. In contrast,
minimum change is observed for matrix multiplication and
Vernam cipher when data and lexical obfuscation are ap-
plied respectively. In the following, we analyze the energy

Table 2: Control Flow Obfuscation

App AP AT %AE %AS
Matrix CF:1.27 CF:0 CF:1.27 CF:3.76
DI:2.17 DI:4 DI:6.26 DI:8.85
EL:2.35 EL:4 EL:6.45 EL:4.5
LT:1.87 LT:4 LT:5.95 LT:9.01
Basicmath | CF:3.62 CF:5.88 CF:9.71 CF:5.57
DI:0.95 DI:5.88 DI:6.89 DI:1.18
EL:1.21 EL:5.88 EL:7.16 EL:1.58
LT:0.38 LT:2.94 LT:3.33 LT:0.57
Bitcount CF:1.18 CF:1.4 CF:2.6 CF:3.59
DI:1.8 DI:1.41 DI:3.24 DI:3.83
EL:1.37 EL:1.41 EL:1.37 EL:4.43
LT:0.12 LT:1.41 LT:0.12 LT:1.02
Vernam CF:0.5 CF:8.33 CF:8.88 CF:3.13
DI:0.82 DI:8.33 DI:9.22 DI:2.99
EL:1.01 EL:8.33 EL:9.43 EL:3.74
LT:0.25 LT:8.33 LT:8.61 LT:2.51

CF:Control Flow Flattening DI:Deadcode Insertion
EL:Extended Loop Condition LT:Loop Transformation

and performance impact pertaining to each of the obfusca-
tion techniques.

Lezical Obfuscation:

The least values for change in energy consumption across
all applications indicate that lexical obfuscation minimally
impacts power consumption. This is due to the negligi-
ble overhead involved in carrying out the operations such
as changing variables, removing comments etc. Thus over-
all structure of the actual code is maintained with minimal
changes.

Similarly, we observe that execution time between normal
and obfuscated code remains similar for the four applica-
tions. Thus lexical obfuscation incurs minimal impact on
performance.

Data Obfuscation:

In the case of data obfuscation, we observe a noticeable
increase in energy consumption. In particular, data obfusca-
tion of basicmath consumes higher energy compared to other
transformations. This is due to the data manipulation oper-
ations such as cubic function solving, square root evaluation,
degree to radian conversion etc that are contained in data
obfuscation which incurs significant amount of computation
resulting in high energy.

Similarly, we observe a maximum increase in execution
time of 8.82 % for basicmath program followed by Vernam
cipher of 4.16% and close to negligible for matrix multiplica-
tion and bitcount benchmarks. Thus data obfuscation nega-
tively impacts performance of basicmath due to the compute
intensive operations.

Control Flow Obfuscation:

Among the four transformations for control flow obfusca-
tion, we observe maximum energy consumption for extended
loop condition and loop transformations. This is primarily
due to the increase in number of loop operations which may
be computationally intensive and that they consume more
energy compred to other transformations.

Similarly, we observe a noticeable increase in execution
time for the basicmath and Vernam cipher benchmarks due

to control obfuscation. This can be attributed to the in-
crease in the number of data manipulation operations com-
pared to other benchmark applications.

Combined Obfuscation

From the tables, it is evident that combined obfuscation
incurs a maximum impact on energy consumption. In par-
ticular we observe a maximum increase in energy consump-
tion of 13.89% for Vernam cipher followed by basicmath and
bitcount benchmarks that are at 13.32% and 13.8% respec-
tively. This is primarily due to the greater code size after
combining the techniques of obfuscation which resulted in
high energy consumption.

Similarly, combined obfuscation negatively impacts per-
formance by increasing the execution time of obfuscated pro-
grams due to combined obfuscation.

5.1 Trace Analysis

To analyze the long-term impact of code obfuscation, we
gather power traces using SMU for different obfuscation
techniques such as lexical, data and control flow transfor-
mations. Figures 2, 3 and 4 pictorially represent the results
for lexical, data and control flow transformations pertaining
to each of the applications. From the figure, it is evident
that for certain transformations such as lexical obfuscation,
power traces are similar and variations are minimal. To ex-
amine the degree of correlation between traces, we utilize a
statistical measure called Pearson correlation coefficient.

Normal Code vs Lexical Obfuscation

Power (in Watts)

750
Time (1 unit = 0.0827s)

Figure 2: Lexical Obfuscation

Pearson correlation coefficient is a statistical measure used
to estimate the degree of similarity between different kinds
of data. A value of 1.00 implies perfect correlation, while
0 and -1 indicate no-correlation and negative correlation re-
spectively. We estimate the correlation coefficient between
obfuscated code and non-obfuscated code for the transfor-
mations pertaining to each of the applications. Table 3 con-
tains the results for correlation.

From the table, we make the following inferences. Lexical
obfuscation maintains the structure information of the ac-
tual code without changing the original assembly code. This
explains the similarity in cross correlation values for normal
and lexically obfuscated code. In the case of data obfusca-
tion, it is evident from figure 3 that the power traces are
not similar. This behavior is validated by the cross corre-
lation values computed for individual power traces. Simi-
larly, transformations that involve loop operations such as
extended loop and loop transformations exhibit wide vari-
ations in control flow obfuscation. However, we observed a

Normal Code vs Data Obfuscation

Power (in Watts)

i Ciphe lormal)
5 Cipher (Obfuscatec) L

E=)
Time (1 unit = 0.0827s)

Figure 3: Data Obfuscation

maximum variation in traces in the case of combined ob-
fuscation. This is further validated by the relatively least
correlation coefficient for these transformations.

Normal Code vs Combined Obfuscation
o T T T

Power (in Watts)

50
Time (1 unit = 0.0827s)

Figure 4: Combined Obfuscation

6. ENERGY OPTIMIZATION

Our study shows that obfuscation contributes significantly
towards the energy consumed by embedded devices and that
the rate of energy consumed depends on the kind of obfus-
cation. Thus, optimizing the energy consumed due to ob-
fuscation is necessary so that systems meet a given power
budget. As mobile applications are increasingly becoming
critical and that the power consumed due to securing them
may proportionately increase, minimizing energy use is crit-
ical considering the long-term sustainability of embedded
devices.

We propose the following approaches for energy optimiza-
tion based on the insights obtained from the energy analysis.
The proposed approaches emphasize the need for lightweight
security and analysis of energy-performance-security trade-
offs for embedded devices.

Application-aware Obfuscation:

The primary purpose of energy analysis of different tech-
niques for code obfuscation is to develop an energy profile of
different transformations depending on the embedded plat-
form. Currently, open-source tools for code obfuscation such
as tigress [8] are not designed for embedded devices. Thus
one of the approaches is to port source code from tigress

Table 3: Pearson Correlation for Normal and Obfuscated
Code

App Lexical | Data | Control | Combined

Matrix 0.9977 0.9903 | CF:0.9950| 0.9925
DI:0.9946
EL:0.9934

LT:0.9956

BasicMath | 0.9811 0.9528 | CF:0.9005| 0.8871
DI:0.9827
EL:0.9947

LT:0.9812

0.9445 | CF:0.9874| 0.9575
DI:0.9571
EL:0.9909

LT:0.9914

BitCount 0.9922

0.9974 0.9866 | CF:0.9955| 0.9852
DI:0.9806
EL:0.9903

LT:0.9948

Vernam

CF:Control Flow Flattening DI:Deadcode Insertion
EL:Extended Loop Condition LT:Loop Transformation

to embedded devices for energy profiling. Integrating en-
ergy profiles into tigress would enable developers to develop
lightweight transformations depending on the needs of the
applications and the overall system-level power budget.

Obfuscation vs Encryption:

While obfuscation provides time-limited protection for em-
bedded devices, encryption enhances security through peri-
odic renewal of keys combined with multiple cryptographic
algorithms. There are trade-offs associated with obfusca-
tion and encryption for embedded devices and both depend
on the size of the source code that needs to be obfuscated
or encrypted. Although encryption can be part of obfusca-
tion, we have considered them to be separate in our analysis.
Our goal is to assess the energy benefits of obfuscation and
encryption and analyze their applicability in embedded ap-
plications considering their energy profile and the effectivess
of security. In addition, approaches for integrating obfus-
cation and encryption in an energy efficient manner can be
explored.

Energy-Performance-Security trade-offs:

While energy and performance of algorithms for code ob-
fuscation can be estimated, estimating security is of increas-
ing importance towards analyzing the energy-performance-
security trade-offs for embedded applications. However, es-
timating security is challenging due to the lack of avail-
able metrics. One of the approaches to estimate security is
through approximation [26], where a regression-based model
is constructed based on different security parameters per-
taining to each of the obfuscation based techniques that
are considered independent variables and the resulting se-
curity to be the dependent variable. While the approach
presented in [26] shows promise, security for different ob-
fuscation techniques need to be estimated and the resulting

energy-performance-security trade-offs analyzed.

7. CONCLUSION

In this work, we analyze the impact of code obfuscation
on energy usage for embedded devices. Particularly, we
model algorithms for code obfuscation such as Lexical, Data
and Control obfuscation and measure the energy and perfor-
mance of normal and obfuscated code using a measurement
tool. Our analysis on a set of benchmarks reveals that while
lexical obfuscation has a minimal impact on power consump-
tion, data and control obfuscation was shown to have a sig-
nificant impact in terms of performance and power consump-
tion. The insights obtained from our analysis can be used
for application-aware obfuscation, assessing the energy ben-
efits between obfuscation and encryption and analyzing the
energy-performance-security trade-offs.

8. REFERENCES

[1] Allatori java obfuscator. http://www.allatori.com/.

[2] Dasho - preemptive solutions.
http://www.preemptive.com/products/dasho.

[3] Keil mdk-arm. http://www2.keil.com/mdk5.

[4] Keithley 2400 sourcemeter.
http://www.tek.com/keithley-source-measure-
units/keithley-smu-2400-series-sourcemeter.

[5] Zelix klassmaster. hitp://www.zeliz.com/klassmaster/.

[6] S. Banescu, M. Ochoa, and A. Pretschner. A
framework for measuring software obfuscation
resilience against automated attacks. In 2015
IEEE/ACM 1st International Workshop on Software
Protection, pages 45-51, May 2015.

[7] S. Chow, Y. Gu, H. Johnson, and V. A. Zakharov. An
approach to the obfuscation of control-flow of
sequential computer programs. In Proceedings of the
4th International Conference on Information Security,
ISC ’01, pages 144-155, London, UK, UK, 2001.
Springer-Verlag.

[8] C. Collberg, S. Martin, J. Myers, and B. Zimmerman.
The tigress diversifying ¢ virtualizer.
http://tigress.cs.arizona. edu.

[9] C. Collberg, C. Thomborson, and D. Low. A
taxonomy of obfuscating transformations. Technical
report, Department of Computer Science, The
University of Auckland, New Zealand, 1997.

[10] S. Drape. Generalising the array split obfuscation.
Information Sciences, 177(1):202-219, 2007.

[11] M. Dukovic and E. Varga. Load profile-based
efficiency metrics for code obfuscators. Acta
Polytechnica Hungarica, 12(5), 2015.

[12] D. Economou, S. Rivoire, and C. Kozyrakis.
Full-system power analysis and modeling for server
environments. In In Workshop on Modeling
Benchmarking and Simulation (MOBS, 2006.

[13] X. Fan, W.-D. Weber, and L. A. Barroso. Power
provisioning for a warehouse-sized computer. In
Proceedings of the 34th Annual International
Symposium on Computer Architecture, ISCA ’07,
pages 13-23, New York, NY, USA, 2007. ACM.

[14] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M.
Austin, T. Mudge, and R. B. Brown. Mibench: A free,
commercially representative embedded benchmark

(15]

(16]

(17]

(18]
(19]

20]

21]

(22]

23]

(24]

[25]

(26]

suite. In Proceedings of the Workload
Characterization, 2001. WWC-4. 2001 IEEE
International Workshop, WWC ’01, pages 3—14,
Washington, DC, USA, 2001. IEEE Computer Society.
C. Isci and M. Martonosi. Runtime power monitoring
in high-end processors: Methodology and empirical
data. Technical report, Princeton University Electrical
Eng. Dept., September 2003.

M. Kainth, L. Krishnan, C. Narayana, S. G.
Virupaksha, and R. Tessier. Hardware-assisted code
obfuscation for fpga soft microprocessors. In
Proceedings of the 2015 Design, Automation € Test in
Europe Conference & Exhibition, DATE ’15, pages
127-132, San Jose, CA, USA, 2015. EDA Consortium.
S. Khan, P. Xekalakis, J. Cavazos, and M. Cintra.
Using predictive modeling for cross-program design
space exploration in multicore systems. In Proceedings
of the 16th International Conference on Parallel
Architecture and Compilation Techniques, PACT 07,
pages 327-338, Washington, DC, USA, 2007. IEEE
Computer Society.

E. Lafortune et al. Proguard.
http://proguard.sourceforge.net, 2004.

S. Microelectronics. Stm32f0discovery. STM32F0
highperformance discovery board, User manual, 2013.
S. Praveen and P. S. Lal. Array data transformation
for source code obfuscation. Performance
Improvement, 658:6515, 2007.

C. Sahin, P. Tornquist, R. Mckenna, Z. Pearson, and
J. Clause. How does code obfuscation impact energy
usage? In Proceedings of the 2014 IEEE International
Conference on Software Maintenance and Evolution,
ICSME ’14, pages 131-140, Washington, DC, USA,
2014. IEEE Computer Society.

K. Sangaiah, M. Hempstead, and B. Taskin. Uncore
rpd: Rapid design space exploration of the uncore via
regression modeling. In Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design,
ICCAD ’15, pages 365-372, Piscataway, NJ, USA,
2015. IEEE Press.

S. Sankaran. Predictive modeling based power
estimation for embedded multicore systems. In
Proceedings of the ACM International Conference on
Computing Frontiers, CF 16, pages 370-375, New
York, NY, USA, 2016. ACM.

T. Toyofuku, T. Tabata, and K. Sakurai. Program
obfuscation scheme using random numbers to
complicate control flow. In International Conference
on Embedded and Ubiquitous Computing, pages
916-925. Springer, 2005.

S. Wang, H. Chen, and W. Shi. Span: A software
power analyzer for multicore computer systems.
Elsevier Sustainable Computing: Informatics and
Systems, page In press, 2011.

Y. Wu, H. Fang, S. Wang, and Z. Qi. A framework for
measuring the security of obfuscated software. In
Proceedings of the 2010 International Conference on
Test and Measurement, ICTM ’10, 2010.

