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Abstract

Software process planning involves the con-
sideration of process based factors, e.g., de-
velopment strategies, but also social factors,
e.g., collaboration of developers. To facilitate
project managers in decision making during
the project, we develop an agent-based simu-
lation tool which allows them to test different
alternative future scenarios. For this, it is in-
dispensable to understand software evolution
and its influences. We cover different aspects
of software evolution with models tailored to-
wards specific questions. For the investigation
of system growth, developer networks and file
dependency graphs, we performed two case
studies of open source projects. This way, we
infer parameters close to reality and are able
to compare empirical with simulated results.

1 Introduction

In software process planning decision making is a hard
but important task for project managers. It can be of
great help to have tool support, with which the man-
ager can test the interplay of project parameters and
resulting evolutionary scenarios. Relevant parameters
may be the number of developers, their bugfixing ef-
fort, and the expected development time when decid-
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ing, e.g., about the team constellation. The bugfix-
ing effort depends on their roles, e.g., maintainers fix
more bugs. This process is iteratively repeated until
the project manager gets sufficient information. The
intended feedback loop is depicted in Figure 1.

To build an agent-based simulation tool aiding soft-
ware managers in the planning of software develop-
ment, it is important to get a deep understanding
of software evolution processes. Several factors influ-
ence how the software evolve, what evolves, and why
it evolves. According to Lehman [2], finding answers
to these questions are the research directions in soft-
ware evolution. To reduce complexity and parameters,
we build different models reflecting different shades of
software evolution and related development processes.
Since humans — in the shape of developers, users, and
testers — constitute a big driver of software evolution,
it is reasonable to approach the simulation of software
processes agent-based. Agents are autonomous indi-
viduals with a behavior specified by certain rules [3].
Developers can be considered as active agents chang-
ing the passive agents, i.e., software entities.

When tracing aspects of software evolution, we first
have to identify influencing factors concerning the
question under investigation. Thus, we learn from
the past in form of analyzing open source software
repositories, which by itself became a large research
topic in recent years (e.g., MSR !). In our approach
we combine software quality assurance issues with so-
cial and process controlled factors influencing software
development. For this, we are interested in examining
the contribution behavior of developers as well as the
nature of changes and related error-proneness. The
knowledge we gain from mining is then transfered into
our agent-based simulation model so that we retrieve
a concrete instance constructed for answering the spe-
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Figure 1: Feedback loop for project managers [1].

cific evolutionary question under investigation. In this
paper, we summarize our recent research, which con-
siders system growth, developer collaboration and be-
havior, and the evolution of software changes. This
paper presents a publication summary of our papers
[4], [1], and [5].

2 Related Work

Only few approaches exist employing simulation in the
context of software evolution and the prediction of it.
The work most related to our approach is the work
of Smith et al. [6] which proposes to use Agent-based
simulation in the context of software evolution. There,
as well the developers serve as active agents and the
software entities (here modules) constitute the pas-
sive agents. They also have requirements as a primary
stage of software modules. As metrics they consider
complexity and fitness (of purpose) of modules, which
are changed by the actions of developers. In contrast
to their work, the environment is not defined on a grid,
where the developers can fall down when moving along.
Instead we use networks, which have the additional ad-
vantage to store dependencies between entities. The
quality, in the work of Smith et al. modeled by the
fitness, is modeled by the bug distribution in our case,
but we do not consider complexity at the moment.
Other studies touching the topic are for example the
work of Wagstrom et al. [7] and Andersson et al [8].

3 Approach

In this section, we describe the background and meth-
ods which represent the foundations of our work. We
comment on methods used for software mining and
explain the underlying agent-based model of our ap-
proach.

3.1 Software Mining and Analysis

For the estimation of the simulation parameters, we
examine open source software projects, which are a
gold mine for researchers interested in software evolu-
tion and software mining. Since we are interested in
different facets of the software development process,
we collect data from projects, for which the informa-
tion of commit logs, issue tracking systems, and mail-
ing lists are available. Once the project is selected,
we use tools from data mining and analysis, machine
learning, and visualization to first understand it and
later observe behavioral rules from it. For analyses
we use the tools R [9] and Weka [10]. The observed
rules and information then serve us as input for our
simulation model.

3.2 Agent-Based Simulation Model

The current agent-based simulation model for software
evolution is an extension of our previous publication [4]
which considers only the system growth of the software
under simulation. For modeling and simulation pur-
poses we use Repast Simphony 2.

The model depicted in Figure 2 contains the en-
vironment which knows all other instances and is re-
sponsible for the creation of a configured number of
developers at simulation start-up. Furthermore, the
environment instantiates bugs at scheduled points in
time and assigns them to randomly selected software
entities, e.g., files, classes, or modules. The developer
is responsible for creating, updating, and deleting en-
tities. For the estimation of parameters we used K3b 3
in our initial case study. Through the mining process
we have recognized four different types of developers.

The Core Developer is the initial contributor be-
ing familiar with many entities and performing most
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Figure 2: Simulation model [1].

commits. The Maintainer is a person who does pri-
marily maintenance work, i.e., he fixes a large number
of bugs. Therefore, we assume he has good knowledge
about the entire project. The Major Developer knows
specific areas of the project and fixes most of the bugs
occurred in entities known by him. The Minor Devel-
oper executes less than 100 commits and performs less
bugfixes. They might be specialists who only imple-
ment one specific task or feature. In K3b there is one
core developer, one maintainer, 17 major developers,
and 106 minor developers.

To model dependencies between the agents, we have
created three networks. One to represent dependencies
between developers and software entities, one stores
information about bugs and the modules they are as-
signed to, and one represents dependencies between
software entities that are changed together several
times. Following, the networks are briefly summarized:

e DeveloperEntityNetwork: This network repre-
sents the dependencies between entities and de-
velopers. An edge is added if a developer creates
an entity or if a developer changes an entity, that
has not been created by him. Hence, this network
also provides the number of authors.

BugEntityNetwork: After the environment cre-
ated a new bug an edge is added to this network.
The edge contains information whether a bug is
fixed or not. In future models an edge may con-
tain additional information about the bugs, e.g.,
the number of fixing attempts or if a bug is re-
opened.

e ChangeCouplingNetwork: This network repre-

sents dependencies between software entities that
are changed together, including the number of
changes.

The creation and deletion of entities is responsible for
the growth of the software under simulation. The
growth depends on the number of developers, the de-
sired system size, and the simulation time. Since the
lifespan of K3b is 4044 days, we have 4044 simulation
rounds. We assume that the number of entity changes
follows a geometric distribution [4].

Table 1: Developers’ average commit behavior in K3b.
Developer #Commits | #Fixes
Core 3384 869
Maintainer 499 152
Major 445 79
Minor 10 4
Table 2: Developers’ average add, update, and delete
behavior in K3b per commit.
Developer Add | Update | Delete
Core 0.6 5.5 0.4
Maintainer | 0.9 3.5 0.3
Major 0.2 5.2 0.4
Minor 0.1 2.0 0.04

The likelihood of creating and deleting entities de-
creases with the increasing system growth. The prob-
abilities are restricted through the project size and
adjusted for each developer type with respect to the
average commit behavior shown in Table 1 and the
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Figure 3: Yearly developer-file networks of K3b [4].

average add, update, and delete behavior per commit
presented in Table 2. We assume that it is more likely
that developers update entities they already know.

4 Performed Analysis and Case Stud-
ies

We briefly summarize two of our case studies and re-
sults in this section. These studies include the sys-
tem growth in number of files, developer collaboration
depicted in developer-file networks, and the evolution
of software dependencies represented in file networks
based on change coupling. An approach for the learn-
ing of developer experience and project involvement is
also presented.

4.1 System Growth and Developer Collabora-
tion

One aspect of our preliminary case study [4] is the
growth of software systems. We measure growth in
number of files, which is reflected by the creations,
modifications, and deletions the developers perform.
For this purpose, we selected K3b with a development
time of over ten years, 125 developers and more than
6000 commits. We observed a super-linear growth
trend for K3b and used this to build a statistical model
for the growth based on changes made by developers.
Using geometric distributions for file creations, modi-
fications, and deletions, we were able to reproduce the
system growth in number of files of K3b validated by
comparing empirical and simulated results. The simu-
lated curve fits the trend as well as the concrete values
given the parameter set for K3b.

Moreover, we build developer-file networks, where a
dependency between a developer node and a file node

is added, if the developer worked on that file. The
evolution of the graph depicted in Figure 3 shows that
there is one main contributor who is the project cre-
ator (red node), whose central status is inherited by its
maintainer (blue node on the left) after 2006. More-
over, we have a low modularity factor in 2006 and 2012,
i.e., the network cannot be modularized into clusters.
There the work depends too much on a certain devel-
oper. How and why these networks evolve for other
projects is of interest for simulating developer collab-
oration behavior. As Foucalt et al. [11] stated, de-
veloper turnover can have a high impact on software
quality. To identify such turnover patterns, could also
improve the simulation of software processes.

4.2 Software Dependency Analysis

In our latest work [1], we analyzed change coupling de-
pendency graphs to understand the evolution of file de-
pendencies. The change coupling [12] degree describes
how often software entities are changed together. By
calculating the average degree as well as the average
weighted degree over the time, we trace the evolution
of the files not only in terms of the amount of depen-
dencies to other files, but also in terms of the intensity
of their relationship. For this, we used K3b for the esti-
mation of parameters and Log4j 4 for the validation of
our results. The two projects are alike in the number
of files and duration, but differ in the effort spent by
the developers. e.g., K3b comprises more developers,
especially minor developers.

For the estimation of parameters we build change
coupling dependency graphs from commit logs. If a
file is changed together with another file more than
twice, an edge is created in the network. To describe

4https://logging.apache.org/ [last visited: 10.03.2016]
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Figure 4: File dependency graphs of K3b and Log4j including network modularity m and average degree d [1].

the evolution of software dependencies in the simula-
tion we compared the resulting graphs for each year
in terms of the degree, modularity, and diameter. The
degree of a node (file) exposes the importance of the
node. The modularity indicates how good a network
can be divided into clusters, whereas the diameter de-
fines the maximum shortest path between each pair of
nodes [13].

In Figure 4 the evolution of K3b’s as well as Log4j’s
file dependency network for selected years is illus-
trated. In the case of K3b, we have a quite high aver-
age degree, which means that there are less weakly
connected entities and the networks remain quite
dense. The modularity instead is lower than in the
case of Log4j, so that the separation into clusters is
worse. For Log4j several small independent clusters
are visible, which constitute for example tests.

The empirical behavior (red) of the average change
coupling degree is shown in Figure 5. To model this
trend we used linear regression and retrieved the best
fit for a second order model (black) with an adjusted
R-squared value of 0.97 [1]. Also the simulated average
degree of the software agents is depicted. By compar-
ing the real with the simulated behavior, it is recogniz-
able that the simulation exhibits a similar trend but is
about three too low.

For validation we tried out the simulation built on
the knowledge gained from K3b with a changed pa-
rameter set according to properties of Logdj. There
we have one core developer, five major developers, and
fourteen minor developers. With the adapted distribu-
tion of developer types and size of the system, we were
able to simulate growth trends and network properties.

In Figure 6 the empirical, fitted, and simulated
average coupling degree over the years is pictured.

Therefore, the simulation works for projects which are
similar in size and duration. The projects under ex-
amination are also written in the same programming
language. We also validated the square trend and the
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average coupling degree for Log4j.

Since the roles of developer types are currently
static and we observed in our work, e.g., in the evo-
lution of developer-file networks (Figure 3) that the
roles and importance of developers can change over
time, we study the developer contribution behavior in
more detail.

4.3 Developer Contribution Behavior

Since our work exposed the need for a more fine-
grained model of developer behavior, we created a
learning model, which helps us to understand devel-
oper contribution behavior and related experience. A
first improvement of our simulation was to introduce
developer types, which are manually classified accord-
ing to their commit and bugfixing behavior. The con-
tribution behavior of developers complies with their
personal status of experience and involvement in the
project. In the analysis of contribution behavior only
the output of this status is visible. To retrieve infor-
mation about the underlying states, we employ Hidden
Markov Models (HMMs), which are stochastic models
used for discrete time observations. In doing so, we
hope to gain valuable insights for the refinement of
developer types.

The general method as described in [5] takes three
sources of data into account: version control data in
form of developer commits and bugfixes, bug tracking
system information in terms of bug comments, and
mailing list data by the number of threads opened and
answers for each developer. For every contributor in
the project these learning activities are collected for
each month. This requires a HMM which can handle
multi-dimensional observations since we have four ob-
servations for each point in time. To map this into
a comprehensible format, we classify these observa-
tions by using a threshold learner into low, medium
and high. When filtering developers with less than
twenty commits, ten active contributors remained for
the project Rekonq?®.

In Figures 7a - 7d [5] the monthly contribution be-
havior as well as the monthly mailing list activities of
these developers are visible. The project points out
one main contributor (dev 1). For the communication
activity displayed in Figure 7c and 7d it is shown, that
also other developers play an active part there. As an
explanation one can think of less experienced develop-
ers asking for help. The retrieved thresholds necessary
for the HMM learning input are listed in Table 3 and
Table 4 [5].

A developer needs for example at least 14 commits
and no bugfixes to contribute with a medium activity
and at least 35 commits and 6 bugfixes to contribute

Shttps://rekonq.kde.org/ [last visited: 10.03.2016]

in a high manner. When the training of the HMMs
for each developer is finished, we get the correspond-
ing transition matrix containing the probabilities to
switch between the different learning stages. Via the
Viterbi algorithm [14] we are able to get the most prob-
able sequence of learning states which produced the
observation sequence.

Table 3: Thresholds for classifying contribution and
communication behavior of developers.

Contributions || Communication
Threshold Commits/ Opened/
Bugfixes Responses
low < 13.8/0 <0/11
| medium || >138/0 | >0/11 |
< 34.5/5.5 <0/27.5
| high || >345/55 | >0/275 |

Table 4: Thresholds for classifying bug activity of de-
velopers.

Bug Activity
Threshold || Bug Comments/Bug Reports
low < 20.7/0
| medium [ >20.7/0 |
< 62.1/0
| high [ >621/0 |

5 Conclusion

In our case studies we showed the feasibility of agent-
based simulation for software processes. We experi-
enced that some facts as the growth and the general
commit behavior can be modeled well. But when it
comes to phenomena of software evolution, like the de-
veloper turnover mentioned in Section 4.1, which are
project-specific, it is more complex to describe. There-
fore, it could be of help to generate developer profiles
storing more information about them, and which can
serve the project manager as indicator for such an inci-
dence. Moreover, the dependencies among agents are
intricately describable. Although we were able to sim-
ulate the co-changes of K3b successfully, er lost pre-
cision in the results for Log4j. Probable solutions are
described in the next section. Summarily, simulation
turns out to be a good method for software evolution,
but the whole process including selected parameters
and dependencies needs to be considered carefully and
describing it accurately is a strenuous process.
During our experiments in simulating software pro-
cesses, we observed problems due to the lack of de-
velopment phases, which results in a more linear rep-
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Figure 7: Monthly contribution behavior and mailing list activities of the active developers contributing to the

project Rekong.

resentation of, e.g., system growth, on the simulation
side. The need of phases is also relevant for the behav-
ior of developers. Although there are different types
of developers in the simulation, they spend the same
effort and do not learn from their experiences.

6 Future Work

To include different learning types of developers, we
plan to implement the knowledge learned by the
HMDMs into the simulation. From this, we hope to re-
fine the developer types and incorporate development

strategies according to the developers’ behavior. This
model will be transfered into a learning model for de-
velopment phases like initial, development, or mainte-
nance. This originates from the fact that at different
points in time certain actions are more likely, e.g., in
the beginning of a project creations are more likely,
whereas in the end or before a release bugfixes are
common. How suitable parameters look like and if
this presents a promising approach for the inclusion
of development phases in the simulation, is an open
question for us.



Furthermore, we plan to improve the strategy for
the bug introduction. With every change in the soft-
ware a bug can be introduced with a certain prob-
ability. This probability depends on factors like the
experience of the author of the change, the number of
previous changes, and the complexity of the artifact
under change. Since we already simulate such factors,
we plan to build a heuristic (e.g., a decision tree) us-
ing this information which defines the bug introduction
probability.

Since we also have different graphs describing soft-
ware evolution in our simulation, we plan to use
them for software quality prediction. Bhattacharya
et al. [15] showed the correlation between different
kinds of networks concerning software evolution (dis-
playing developer collaboration, module dependencies,
and function calls) and quality factors like defects and
maintenance effort. For such an investigation we need
also networks displaying the structure of the software
in more detail. For this, we are currently working on
the mining of abstract syntax trees (ASTSs) retrieved
from the source code and examining the evolution of
them. This way, we hope to get a fine-grained picture
of software evolution resulting in a simulation which
puts these networks together and simulate the effect
on software quality.

For the evaluation of empirical and simulated net-
works we plan to use exponential random graph mod-
els (ERGMs) [16], which allows us to get a structural
representation of graphs, which facilitates the compa-
rability. Instead of a set of metrics, we get a whole
describing picture of structural properties.
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