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Abstract. Research on recommender systems is a challenging task, as is building 

and operating such systems. Major challenges include non-reproducible research 

results, dealing with noisy data, and answering many questions such as how many 

recommendations to display, how often, and, of course, how to generate recom-

mendations most effectively. In the past six years, we built three research-article 

recommender systems for digital libraries and reference managers, and con-

ducted research on these systems. In this paper, we share some experiences we 

made during that time. Among others, we discuss the required skills to build rec-

ommender systems, and why the literature provides little help in identifying 

promising recommendation approaches. We explain the challenge in creating a 

randomization engine to run A/B tests, and how low data quality impacts the 

calculation of bibliometrics. We further discuss why several of our experiments 

delivered disappointing results, and provide statistics on how many researchers 

showed interest in our recommendation dataset.  

Keywords: recommender system, digital library, reference management 

1 Introduction 

Recommender systems is a fascinating topic for both researchers and industry. Re-

searchers find in recommender systems a topic that is relevant for many disciplines: 

machine learning, text mining, artificial intelligence, network analysis, bibliometrics, 

databases, cloud computing, scalability, data science, visualization, human computer 

interaction, and many more. That makes research in recommender systems interesting 

and creates many opportunities to cooperate with other researchers. For industry, rec-

ommender systems offer an opportunity to provide additional value to customers by 

helping them finding relevant items. Recommender systems may also provide a justifi-

cation to store user-related data, which may be used for generating additional revenue. 
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In addition, recommender systems may even become a major part of the business 

model, as companies such as Netflix, Spotify, and Amazon demonstrate. 

Over the past six years, we built, operated, and researched three research-article rec-

ommender systems in the context of digital libraries and reference management. The 

work was often rewarding, but also challenging and occasionally even painful. We 

share some of our experiences in this article. This article is not a research article but a 

mixture of a project report, lessons learned, text-book, and summary of our previous 

research, enriched with some novel research results.1 

The primary audience of this article are researchers and developers who think about 

developing a real-world recommender system for research purposes, or for integrating 

the recommender system on-top of a real product. While our focus lies on recommender 

system in the context of digital libraries and reference managers, researchers and de-

velopers from other disciplines may also find some relevant information in our article. 

As this paper is an invited paper for the “5th International Workshop on Bibliometric-

enhanced Information Retrieval”, we particularly discuss our work in the context of 

bibliometric-enhanced recommender systems and information retrieval. 

2 Our Recommender Systems  

2.1 SciPlore MindMapping 

In 2009, we introduced SciPlore MindMapping (Beel, Gipp, & Mueller, 2009). The 

software enabled researchers to manage their references, annotations, and PDF files in 

mind-maps. In these mind-maps, users could create categories that reflect their research 

interests or that represent sections of a new manuscript. Users could then sort their PDF 

files, annotations, and references in these categories. In 2011, we integrated a recom-

mender system in SciPlore MindMapping (Beel, 2011). The system was rather simple. 

Whenever users selected a node in a mind-map, the text of the node was sent as search 

query to Google Scholar, and the first three results of Google Scholar were shown as 

recommendations. 

2.2 Docear 

Docear2 is the successor of SciPlore MindMapping, pursuing the same goal, i.e. ena-

bling researchers to manage their references, annotations, and PDF files in mind maps 

(Beel, Gipp, Langer, & Genzmehr, 2011).3  In contrast to SciPlore MindMapping, 

Docear has more features, a neater interface, and a more sophisticated recommender 

system (Beel, Langer, Genzmehr, & Nürnberger, 2013; Beel, Langer, Gipp, & 

Nürnberger, 2014). The recommender system features a comprehensive user modeling 

                                                           
1 The data and scripts we used for the novel analyses is available at http://data.mr-dlib.org  
2 http://docear.org  
3 Currently, Docear’s recommender system is offline because we focus on the development of Mr. DLib. 
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engine, and uses Apache Lucene/Solr for content-based filtering as well as some pro-

prietary implementations of other recommendation approaches. Docear is a desktop 

software but transfers users' mind maps to Docear's servers. On the servers, Docear's 

recommender system calculates user specific recommendations. Recommendations are 

shown every couple of days to users, and users may also request recommendations ex-

plicitly. Docear has a corpus of around 2 million full-text documents freely available 

on the Web.  

2.3 Mr. DLib 

Our latest recommender system is Mr. DLib4, a machine-readable digital library that 

provides recommendations as-a-service to third parties (Beel, Gipp, & Aizawa, 2017). 

This means, third parties such as such as digital libraries and reference managers can 

easily integrate a recommender system into their product via Mr. DLib. The recom-

mender system is hosted and operated by Mr. DLib and partners only need to request 

recommendations for a specific item via a REST API (Figure 1).   

 
Figure 1: Illustration of Mr. DLib's recommendation process 

Our first pilot partner is Sowiport (Hienert, Sawitzki, & Mayr, 2015). Sowiport is op-

erated by ‘GESIS – Leibniz-Institute for the Social Sciences’, which is the largest in-

frastructure institution for the Social Sciences in Germany. Sowiport contains about 9.6 

million literature references and 50,000 research projects from 18 different databases, 

mostly relating to the social and political sciences. Literature references usually cover 

keywords, classifications, author(s) and journal or conference information and if avail-

able: citations, references and links to full texts. We additionally integrated Mr. DLib 

into the reference manager JabRef (Feyer, Siebert, Gipp, Aizawa, & Beel, 2017), and 

currently discuss the integration with two more organizations. 

                                                           
4 http://mr-dlib.org  
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Recommendations in Mr. DLib are primarily calculated with Apache Lucene / Solr, i.e. 

based on the metadata of the documents in Sowiports' corpus. We further experiment 

with stereotype and most-popular recommendations (Beel, Dinesh, Mayr, Carevic, & 

Raghvendra, 2017), as well as with enhanced content-based filtering based on key-

phrase extraction and re-ranking with Mendeley readership statistics (Siebert, Dinesh, 

& Feyer, 2017). In the future, we plan to add further recommendation approaches; es-

pecially link/citation-based approaches seem promising (Schwarzer et al., 2016).  

3 Recommender-System Development 

3.1 Required skills  

To build and operate a recommender system, more than just knowledge about recom-

mender systems and related disciplines such as text mining and machine learning is 

required. Server administration, databases, web technologies, data formats (e.g. XML 

or JSON), and data processing (crawling, parsing, transforming) are probably the most 

important ones, but also knowledge about software engineering in general (e.g. agile 

development, unit testing, etc.), scalability, data privacy laws, and project management 

is helpful. Niche knowledge that does not directly relate to recommender systems may 

also be beneficial and lead to novel recommendation approaches. For instance, 

knowledge in bibliometrics could help to develop novel re-ranking algorithms for con-

tent-based research-paper recommender systems (Cabanac, 2011). In such systems, a 

list of recommendation candidates, would be re-ranked based on e.g. how many cita-

tions the candidate papers have, or based on the h-index of the candidate papers’ au-

thors, which, however, then might strengthen the Mathew effect (Cabanac & Preuss, 

2013). We have experimented with such algorithms but were only partly successful – 

maybe because we lack the expert-knowledge in bibliometrics (Siebert et al., 2017).  

3.2  (No) help from the literature 

There are hundreds of research articles about recommender systems in Academia (Beel, 

Gipp, Langer, & Breitinger, 2016), and probably thousands of articles about recom-

mender systems in other domains. One might expect that such a large corpus of litera-

ture would provide advice on how to build a recommender system, and which recom-

mendation approaches to use. Unfortunately, this is not the case, at least in the domain 

of research-paper recommender systems. The reasons are manifold. Many recommen-

dation approaches were not evaluated at all, compared against too simple baselines, 

evaluated with too few users, or evaluated with highly tweaked datasets (Beel, Gipp, et 

al., 2016). Consequently, the meaningfulness of the results is questionable.  

Even if evaluations were sound, recommendation effectiveness may vary a lot. In 

other words, only because a recommendation approach performed well in one scenario, 

does not mean it will perform well in another scenario. For instance, the TechLens team 

proposed and evaluated several content-based filtering (CBF) and collaborative filter-

ing (CF) approaches for research-paper recommendations. In one experiment, CF and 
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CBF performed similarly well (McNee et al., 2002). In other experiments, CBF outper-

formed CF (Dong, Tokarchuk, & Ma, 2009; McNee et al., 2002; Torres, McNee, Abel, 

Konstan, & Riedl, 2004), and in some more experiments CF outperformed CBF 

(Ekstrand et al., 2010; McNee, Kapoor, & Konstan, 2006; Torres et al., 2004). In other 

words: it remains speculative how CBF and CF would perform in a scenario that differs 

from one of those used in the existing evaluations.  

Some authors used bibliometrics to enhance recommender systems in digital librar-

ies. Popular metrics were PageRank (Bethard & Jurafsky, 2010), HITS (He, Pei, Kifer, 

Mitra, & Giles, 2010), Katz (He et al., 2010), citation counts (Bethard & Jurafsky, 2010; 

He et al., 2010; Rokach, Mitra, Kataria, Huang, & Giles, 2013), venues’ citation counts 

(Bethard & Jurafsky, 2010; Rokach et al., 2013), citation counts of the authors’ affilia-

tions (Rokach et al., 2013), authors’ citation count (Bethard & Jurafsky, 2010; Rokach 

et al., 2013), h-index (Bethard & Jurafsky, 2010), recency of articles (Bethard & 

Jurafsky, 2010), title length (Rokach et al., 2013), number of co-authors (Rokach et al., 

2013), number of affiliations (Rokach et al., 2013), and venue type (Rokach et al., 

2013). Again, results are not always coherent. For instance, Bethard and Jurafsky 

(2010) reported that using citation counts in the recommendation process strongly in-

creased the effectiveness of their recommendation approach, while He et al. (2010) re-

ported that citation counts slightly increased the effectiveness of their approach. 

Our own research confirms that recommendation approaches perform very differ-

ently in different scenarios. We recently applied five recommendation approaches on 

six news websites (Beel, Breitinger, Langer, Lommatzsch, & Gipp, 2016). The results 

showed that recommendation approaches performing well on one news website per-

formed poorly on others (Figure 2). For instance, the most-popular approach performed 

worst on tagesspiegel.de but best on cio.de. 

 

 
Figure 2: Recommendation Effectiveness on Different News Websites 

There are several potential reasons for the unpredictability. In some cases, different 

evaluation methods were used. In other cases variations in algorithms or user popula-

tions might have had an impact (Beel, Breitinger, et al., 2016; Beel, Langer, 

Nürnberger, & Genzmehr, 2013; Langer & Beel, 2014). However, it seems that, for 

instance, the operator of a news website cannot estimate how effective the most-popular 

recommendation approach would be until the operator has implemented and evaluated 

the approach on that particular website. Therefore, our advice is to read a recommender-

system text book to get a general idea of recommender systems (Jannach, 2014; 
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Konstan & Ekstrand, 2015; Ricci, Rokach, & Shapira, 2015). Then, choose a few rec-

ommendation frameworks and try to find the best recommendation approach for one's 

recommender system. 

 

3.3 The randomization engine 

To build an effective recommender system, A/B testing is essential. This means, the 

recommender system needs a pool of recommendation algorithms to choose from, and 

a logging mechanism to record, which algorithm was used and what the user feedback 

was (e.g. how many recommendations were clicked or downloaded). Unfortunately, in 

most situations, a simple A/B test with only two alternative algorithms will not be 

enough. In Mr. DLib, we implemented a “randomization engine” that first picks from 

several recommendation classes randomly, and then varies the parameters of the rec-

ommendation algorithms. The recommendation classes are content-based filtering 

(90% chance), stereotyping (4.9% chance), most-popular recommendations (4.9% 

chance), and random recommendations as baseline (0.2% chance). For each of the rec-

ommendation classes, the randomization engine chooses some parameters randomly. 

For instance, when content-based filtering is chosen, the system randomly selects 

whether to use “normal” terms, or key-phrases5. When key-phrases are chosen, the sys-

tem randomly selects if key-phrases from the abstract, title, or title and abstract are 

used. Then the system randomly selects if unigrams, bigrams, or trigrams are used. 

Then the system randomly selects if one, two, three, … or twenty key-phrases are used 

to calculate document similarity.  

Once the recommendations are calculated, the randomization engine chooses ran-

domly if the recommendation candidates should be re-ranked based on bibliometrics. 

Re-ranking means that from the top x recommendations those ten documents are even-

tually recommended that have, for instance, the highest bibliometric score. Again, there 

are many parameters that are randomly chosen by the randomization engine. The engine 

selects the bibliometric (plain readership count, readership count normalized by age of 

the document, readership count normalized by the number of authors, etc.), the number 

of recommendation candidates to re-rank (10 to 100), and how the bibliometric and text 

relevance scores should be combined (bibliometric only, multiplication of scores, and 

some more variations). While we currently only work with readership data from Men-

deley, we plan to obtain additional data from sources such as Google Scholar, Scopus, 

or Microsoft Academic (Sinha et al., 2015).   

Developing such a randomization engine is a non-trivial task and we are not perfectly 

satisfied with our solution.  It occurs too often that a fallback algorithm must be used 

because the randomly assembled algorithm cannot be applied because, for instance, a 

document does not have 20 key-phrases in its title.  

                                                           
5 Keyphrases are the most meaningful phrases describing a document. Keyphrases are extracted with stem-

ming, part-of-speech tagging and other mechanisms that we describe in an upcoming paper. 
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3.4 Data quality 

Crucial for content-based recommendations is the quality of metadata. When using pub-

licly available datasets, the quality may often be good because datasets were designed 

and maybe even curated to be published. In the real-world, however, data quality is 

often low. For instance, some of the most productive “authors” in Mr. DLib’s database 

are “et al.”, “and others”, and “AnoN”. Obviously, these are no real authors. When this 

data is used e.g. to recommend papers of co-authors, or to re-rank recommendations 

based on h-index, the resulting recommendations will be of suboptimal quality.  

Cleaning data from third parties is a labor-intensive and usually boring task (it is 

much easier to motivate a colleague to implement a novel recommendation algorithm 

than convincing a colleague to spend some weeks cleaning data in a database).  Data 

cleaning becomes particularly challenging, when the data comes from a third party and 

the data are updated occasionally by the partner. In that case, one would need a process 

to decide how to deal with the updated data and judge if the new data from the partner 

is better than the manually changed data in our system. From our experience in other 

projects, we know that manually cleaning data usually causes many problems. There-

fore, we decided to do no manual data cleaning in Mr. DLib, and only apply a few 

heuristics such as ignoring “et al.” when calculating bibliometrics. 

 

 
Figure 3: Click-Through Rate (CTR) based on Processing Time 

4 Recommender-System Operation 

4.1 Ensure timely delivery of recommendations  

On the Internet, users tend to be impatient: the longer they wait for content, the less 

satisfied they become (Guse, Schuck, Hohlfeld, Raake, & Möller, 2015; Kim, Xiong, 

& Liang, 2017; Selvidge, Chaparro, & Bender, 2002). This holds true for recommender 

systems, too. We observed that the longer users had to wait for recommendations, the 

less likely they were to click a recommendation. Figure 3 shows that processing time6 

for most recommendations (34%) was between 1 and 2 seconds. These recommenda-

tions also had the highest click-through rate (CTR) of 0.15% on average. In contrast, 

recommendations that needed 7 to 8 seconds for calculation had a CTR of 0.08%.  

                                                           
6 “Processing Time” is the time from receiving a request until delivering the response on side of Mr. DLib. 

It may be that a user who must wait too long, leaves the web page and does not even see the recommen-

dations. 
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The re-ranking of recommendations based on bibliometrics requires rather a lot of 

calculation (primarily due to the randomization engine and because we store many sta-

tistics when calculating the bibliometrics). Consequently, when evaluating the effec-

tiveness of bibliometric re-ranking, one need to additionally consider if the additional 

effectiveness if worth the additional time users need to wait. 

 

4.2 The need to deliver only good recommendations 

In the recommender-system community, it is often reported that a recommender system 

should try to avoid making ‘bad’ recommendations as this hurts the users’ trust. In other 

words, it is better to recommend 5 good and 5 mediocre items than recommending 

9 excellent but 1 bad item. To avoid bad recommendations, some relevance score is 

needed that indicates how good a recommendation is. Ideally, only recommendations 

above a certain threshold would then be recommended. However, at least Lucene has 

no such threshold that would allow a prediction of how relevant a recommendation is7. 

The Lucene text relevance score only allows to rank recommendations for one given 

query and compare the relevance of the results returned for that one query.  In a recent 

analysis, we found that Lucene relevance scores and CTR correlate, but still it is not 

possible to avoid “bad” recommendations (Langer & Beel, 2017).  

Even if Lucene had an “absolute” text relevance score, this score would only be able 

to prevent bad recommendations to some extent. We see a high potential in bibliomet-

rics to support recommender systems in not recommending bad items.  

4.3 Number of recommendations 

Another question that may seem simple to answer is how many recommendations to 

display? One? Two? ...Ten? We experimented in Mr. DLib with varying numbers of 

recommendations between 1 and 15 (Beierle, Aizawa, & Beel, 2017). We observed that 

the more recommendations were displayed, the lower click-through rate became 

(Figure 4). From these results, one cannot conclude how many recommendations to 

display, and more research is necessary.  

5 Recommender-System Research 

5.1 No tweaking of data 

In offline evaluations, it is common to tweak datasets. For instance, Caragea et al. re-

moved papers with fewer than ten and more than 100 citations from the evaluation 

corpus, as well as papers citing fewer than 15 and more than 50 papers (Caragea, 

Silvescu, Mitra, & Giles, 2013). From originally 1.3 million papers in the corpus, 

around 16,000 remained (1.2%). Pennock et al. removed documents with fewer than 15 

implicit ratings from the corpus (Pennock, Horvitz, Lawrence, & Giles, 2000). From 

                                                           
7 Using the standard More-Like-This or search function https://wiki.apache.org/lucene-java/ScoresAsPer-

centages  
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originally 270,000 documents, 1,575 remained (0.58%). Such tweaking and pruning of 

datasets may be convenient for the research and lead potentially to high precision. How-

ever, applying a recommendation approach to only 0.58% of the documents in a corpus, 

will lead to a very poor recall, i.e. the results that have little relevance for running a 

real-world recommender system. In other words, in a real-world recommender system 

such a tweaking would be difficult, unless one would accept that recommendations can 

be delivered only for a fraction of documents in the corpus. 

 

 
Figure 4: Number of displayed recommendations and CTR (Beierle et al., 2017)  

5.2 Accept failure 

When we reviewed over 200 research articles about recommender systems, every arti-

cle that introduced a new recommendation approach reported to outperform the state-

of-the art (Beel, Gipp, et al., 2016). We were not that lucky.  

We re-ranked content-based recommendation with readership data from Mendeley 

(Siebert et al., 2017), but results were not as good as expected. We used a key-phrase-

extraction approach to improve our content-based filtering approach, and experimented 

with a variation of parameters: we varied the text-fields from which key-phrases were 

extracted, we varied the number of key-phrases being used, and we varied the type of 

key-phrases (unigrams, bigrams, trigrams, or a mix). None of these variations per-

formed better than an out-of-the-box Apache Lucene baseline.8 We experimented with 

stereotype and most-popular recommendations, two approaches that are effective in 

domains such as movie recommendations and hotel search (Beel, Dinesh, et al., 2017). 

Again, the approaches performed not better than Apache Lucene. 

There are a few potential reasons why our experiments delivered disappointing re-

sults (besides the possibility that the recommendation approaches are just not effective). 

For instance, in case of the bibliometric re-ranking, we assume that click-through rate 

might be not appropriate to measure the re-ranking effectiveness. However, even while 

there might be plausible reasons for the results, the fact remains that many of our ex-

periments delivered rather disappointing results, but this is probably rather the rule than 

the exception in a real-world scenario.  

                                                           
8 The analysis is still in process, and the final results will be published soon.  
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5.3 Other researchers' interest in datasets 

One advantage of working on a real-world recommender system is the possibility to 

release datasets, which then can be used (and cited) by other researchers. Some datasets 

such as MovieLens are very popular in the recommender system community. The Mov-

ieLens dataset was downloaded 140,000 times in 2014 (Harper & Konstan, 2016), and 

Google Scholar lists 10,600 papers that mention the MovieLens dataset9. 

Not all datasets become that popular. In 2014, we released a dataset of Docear's rec-

ommender system (Beel et al., 2014). The datasets contained metadata of 9.4 million 

articles, including 1.8 million articles publicly available on the Web; the articles’ cita-

tion network; anonymized information on 8,059 Docear users; information about the 

users’ 52,202 mind-maps and personal libraries; and details on the 308,146 recommen-

dations that the recommender system delivered. In the 2.5 years since publication, 31 

researchers requested to download the dataset. To the best of our knowledge, none of 

these researchers has eventually analyzed the dataset and published their results.  

6 Summary & Conclusion 

Building and operating real-world recommender systems is a time-consuming and chal-

lenging task, as is research on such systems.  

To develop recommender systems, knowledge from various disciplines is required 

such as machine learning, server administration, databases, web technologies, and data 

formats. When building our own recommender systems, we could find no guidance in 

the literature. Most published research results had questionable evaluations and even if 

evaluations were sound, recommender systems seem to perform just too differently in 

different scenarios. Consequently, we used Apache Lucene as recommendation frame-

work and began from scratch. Evaluating different recommendation approaches re-

quires a randomization engine that selects and assembles recommendation algorithms 

automatically. In addition, a detailed logging mechanism is required that records which 

algorithm created which recommendation and how the user reaction was to the different 

algorithms. Another challenge lies in dealing with sub-optimal data quality from part-

ners. Due to time constraints, we decided to not manually improve the data but just 

work with what we got.  

Running a recommender system requires fast generation and delivery of recommen-

dations. Otherwise, users become dissatisfied and click-through rates decrease. Alt-

hough it is widely known that recommender systems should avoid making bad recom-

mendations, this is not easily accomplished in practice, at least if Lucene is used as 

recommendation framework. Lucene has no absolute relevance score and hence no 

mechanism to recommend only items above a certain relevance threshold.  

Research on real-world recommender systems is probably more frustrating than re-

search in a lab-environment, mostly because data cannot be tweaked that easily. Con-

sequently, we had to accept that many experiments with novel recommendation ap-

proaches failed. Similarly, while some recommendation datasets such as MovieLens 

                                                           
9 https://scholar.google.com/scholar?hl=en&q="movielens"  
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are widely used in the community, we could not yet manage to establish our datasets as 

interesting source for other researchers.  

Despite all these challenges, research on real-world recommender systems is a re-

warding and worthwhile effort. We feel that working on real systems provides much 

more relevant research results. In addition, offering a real-world open-source project 

attracts many volunteers, students, and project partners. This, in turn, enabled us to 

conduct research in many areas, and be quite productive in terms of publication output. 
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