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Abstract 

Drakkar is a novel algorithm for the creation of bibliographic coupling graphs in huge 

document spaces. The algorithm approaches this as an All-Nearest Neighbour search 

problem and starts from a bipartite graph constituted by the citing publications and the 

cited references and the directed citations connecting them. The approach is inspired by 

dimensionality reduction techniques like Random Projection and Locality Sensitive Hash-

ing which use global random functions for dimension or feature selection. The proposed 

algorithm enables the use of local selection functions at the level of the individual nodes. 

For the particular case of bibliographic coupling the selection functions are based on the 

boat-shaped information distribution associated with the indegree of the cited references. 

This distribution resembles the typical symmetrical shape of a Viking ship (called ‘Drak-

kar’ in Dutch, hence the name). An experiment with several different random functions 

reveals that focussing on the end of the distribution related to the references with low 

indegree results in a graph with accurate strong links but many false negative while the 

other end of the distribution can detect most links but underestimates the strength of the 

link. The algorithm is implemented in GraphX, the library for distributed graph pro-

cessing within Spark. It is using Pregel’s messaging framework.  

 

Keywords: Nearest Neighbour Search, Bibliographic Coupling, GraphX, Pregel, Bulk 

Synchronous Parallel.  

 

Introduction 

An important challenge for large scale application of bibliographic coupling (BC) in 

global clustering exercises or large domain studies is the computational and storage re-

sources required for the creation of such BC-networks. Depending on the chosen repre-

sentation of the underlying data, different strategies for the calculation of the cosine simi-

larities can be applied.  

In a relational database one could store citing publication-citing references pairs and 

use a query that joins such a table with itself on the cited references. An aggregate func-

tion can then count the number of joint references for each publication-publication pair.  

Alternatively, data can be stored in a (sparse) matrix representation of a document-

feature space where the cosine similarity is based on the dot product of this matrix and its 

transposed. But without any optimisation this calculation would take up to O(n
2
m)-time 

for n documents and m features (cited references). Using dimensionality reduction tech-
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niques like PCA or SVD could reduce the computational complexity by lowering the m-

factor but not without an additional cost as these techniques imply a matrix decomposi-

tion which would require substantial computation time even when using an iterative im-

plementation. Based on the Johnson–Lindenstrauss lemma [1], Random Project reduces 

the high dimensional space to a subspace with much lower features while preserving the 

distance between documents. However, such a dimensionality reduction does not elimi-

nate the n-by-n document comparison and implies new projections whenever new docu-

ments that extend the feature space are added.  

The first problem of the n-by-n comparison can successfully be solved by the applica-

tion of Locality Sensitive Hashing which is a common technique applied in record linkage 

problems (eg. [2]). LSH uses several random hashing functions for mapping with high 

probability documents with a great similarity into the same buckets (see [3] or [4]). Doc-

uments that often co-occur in these buckets have a high likelihood to be similar and the 

number of pairwise cosine calculation can thus be drastically reduced by limiting it to 

those document pair with high co-occurrence. The cosine similarity can be approximated 

based on the number of co-occurrences in buckets. 

The application of LSH for bibliographic coupling comes with two main drawbacks 

that have some substantial consequences on its applicability. LSH does not solve the is-

sues that are confronted when extending the document-feature space. New hashing func-

tions have to be created and all documents have to be assigned to new buckets in order to 

be able to calculate the similarity with documents in the prior set and the newly added 

ones. The second drawback is related to the existence of false positives. Given the ex-

tremely sparse nature of bibliographic coupling it is quite likely that the set of hashing 

functions only selects those features that are absent in a large set of papers which do not 

share any reference. Consequently, these papers are all assigned to the same buckets de-

spite the distance between them. This can only be solved by increasing the number of 

hashing functions, by increasing the dimensionality of the functions or by avoiding the 

approximation of the cosine similarity by actual calculating this value. Each of these solu-

tions come with a substantial computational cost. 

This paper takes an alternative approach by exploiting the properties of a graph repre-

sentation of the underlying citation data. The creation of a bibliographic coupled network 

can be considered as an all-nearest neighbour search (ANNS) problem in a huge feature 

space represented as a bipartite graph.  

Message passing 

The proposed algorithm is based on the Pregel messaging framework developed by 

Malewicz [5] at Google. This framework builds on the Bulk Synchronous Parallel model 

[6] by implementing a sequence of supersteps. These supersteps start with the parallel 

calculation of vertex properties either based on existing properties of the vertex or based 

on the incoming messages from the previous superstep. In a second step, messages are 

sent to neighbouring vertices containing calculated properties. The last step in the super-

step is the aggregation of the incoming messages at the receiving vertices. Typical Pregel 

based programs run an iteration of a superstep until some prior defined stopping criterion 

is reached.  
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Given the bipartite nature of the graph underlying our bibliographic coupling ANNS 

problem it is impossible to apply an iteration of a single superstep multiple times. There-

fore, this algorithm consists of three distinct supersteps.  

 

Superstep I. 

Step 1. Publication and references calculate their degree, thus the number of 

outgoing or incoming edges or links. 

Step 2. Each publication sends a message containing its identifier and out-

degree to cited reference across all the outgoing edges. (Dashed line in fig-

ure 1) 

Step 3. Each reference collects the received messages into an ordered list. 

Superstep II. 

Step 1. Each reference decides if it will send out the list and to which of the cit-

ing publications. If a reference decides not to send it becomes inactive 

Step 2. Each active reference sends messages across incoming links. Each mes-

sage contains a list with the identifiers and properties of those publications 

that appear after the identifier of the recipient in the ordered list. (Dotted line 

in figure 1) 

Step 3. Each publication collects the incoming messages  

Superstep III. 

Step 1. Each publication calculates the occurrence of each identifier in the 

joined set of messages. A Salton cosine similarity is now calculated based 

on the number of joint references, the out-degree of the current publication 

and the out-degree of the other publication being part of the message. 

Step 2. Each publication can now send a message to its bibliographically cou-

pled neighbour without actual edges being present. (Dash-dotted line in fig-

ure 1) 

Step 3. Publications receive incoming messages and weighted edges are created 

and no further calculations are needed. 

 
Figure 1. Schematic overview of message passing between  

two publications and one joint reference. 

Pi 

Rk 
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Several advantages are associated to this approach. Steps are performed in a sequen-

tial order and results are stored. Tasks within each step are suitable for distributed execu-

tion as they run independent from each other. References sending out messages in step 

II.2 rely solely on the information already gathered by each individual reference. Conse-

quently, each task can be performed in parallel. 

But most important for this algorithm is the ability that this framework provides to de-

fine any function to be applied at the individual reference for the selection of publications 

receiving messages with the identifiers of their neighbour publications. This selection 

function could be completely randomized and thus be analogous to the selection of di-

mensions in a LSH procedure. But it also allows for more complex functions either de-

terministic or probabilistic for the selection of active references. In a state where the indi-

vidual references have no or very limited information about the actual topology of the 

graph, it is the in-degree of each reference that is the most obvious parameter for the se-

lecting function.  

Experimental setup 

For a valid testing of the different selection scenarios, I use the amount of information 

that is being sent after the application of the selection function in step 2. This amount can 

be calculated based on the indegree of the reference and the total distribution of indegrees 

across the network. The next section introduces the required definitions and formulas for 

the calculation of the amount of passed information. 

At first, a bipartite graph G is defined by the sets of publications P, cited references R 

and edges E, with p, r and e their respective cardinality. 

 

𝐺 = (𝑃, 𝑅, 𝐸) 

𝑝 = |𝑃| 𝑎𝑛𝑑 𝑟 = |𝑅| 𝑎𝑛𝑑 𝑒 = |𝐸| 
 

The number of outgoing and incoming links is calculated as the out- and indegree of 

publication and reference.  

 

𝑜𝑢𝑡𝑑𝑒𝑔𝑖 = 𝑜𝑢𝑡𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑃𝑖 ∈ 𝑃 

𝑖𝑛𝑑𝑒𝑔𝑗 = 𝑖𝑛𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑅𝑗 ∈ 𝑅 

∑ 𝑜𝑢𝑡𝑑𝑒𝑔𝑖

𝑝

𝑖=1

= ∑ 𝑖𝑛𝑑𝑒𝑔𝑗

𝑟

𝑗=1

= 𝑒 

The indegree for the references in the graph ranges from 1 to some highest value nmax. 

References not cited by any publication are not included in the graph. Each reference can 

be assigned to a set of references with the same indegree.  

 

𝑛 = 1. . 𝑛𝑚𝑎𝑥 ∶  ∀𝑅𝑗 ∈ 𝑅: 1 ≤ 𝑖𝑛𝑑𝑒𝑔𝑗 ≤ 𝑛𝑚𝑎𝑥  ∧ ∃𝑅𝑗 ∈ 𝑅: 𝑖𝑛𝑑𝑒𝑔𝑗 = 𝑛𝑚𝑎𝑥 

∀𝑅𝑗 ∈ 𝑅:  𝑅𝑗  ∈ 𝐷(𝑛) ⟺ 𝑖𝑛𝑑𝑒𝑔𝑗 = 𝑛 

 

The amount of information to be sent by all the references in a set of same indegree n 

is equal to the product of cardinality of this set and the number of possible 2-
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combinations in a set of size n. One unit of information is the pair of the identifier of the 

citing publication and its outdegree as it is send out at step I.2. References with a degree 

of 1 will not send out any information as it is not possible to make any 2-combination in a 

set of size 1 

𝐼(𝑛) = |𝐷(𝑛)|
𝑛(𝑛 − 1)

2
 

𝐼(1) = 0 

The total information in the publication-reference network is equal to the sum of in-

formation over each of the indegree sets. 

𝐼𝑡𝑜𝑡 = ∑ 𝐼(𝑛)

𝑛𝑚𝑎𝑥

𝑛=2

 

It is not only possible to calculate the total amount of transmitted information but also 

to sum over a range of indegree values.  

𝐼(𝑛..𝑚) = ∑ 𝐼(𝑖)

𝑚

𝑖=𝑛

 

The range can be chosen with such boundaries that it accounts for a given share of the 

total information. The upper bound for the range of indegrees accounting for up to 25% of 

the total information can be defined as follows: 

𝑛 = 𝑛25% ⟺ |𝐷(𝑛)| > 0 ∧ ∀𝑚 < 𝑛25%:
𝐼(2..𝑚)

𝐼𝑡𝑜𝑡

≤
𝐼(2..𝑛25%)

𝐼𝑡𝑜𝑡

≤ 0.25   

The definition of these ranges associated with some share of information provides the 

mechanism to choose different testing scenarios with equal amount of information con-

tained in the messages being transferred from reference back to publications. These rang-

es can not only be taken from the lowest end of the indegree distribution, but also from 

the top, in the middle or a combination of bottom and top end. 

 

As table 1 shows, a combination of these four types with four different levels of shares 

of information to be transmitted defines the first sixteen scenarios to be tested. The table 1 

specifies the indegree ranges. This approach defines deterministic binary functions solely 

based on the indegree and the relevant range. References do or do not send their compiled 

list to each of their citing publications; 

 

 

Table 1. Indegree ranges used for the specified share of transmitted information 

 Bottom Middle Top Bottom + Top 

20% 2..n20% n40%..n60% n80%..nmax 2..n10% or n90%..nmax 

40% 2..n40% n30%..n70% n60%..nmax 2..n20% or n80%..nmax 

50% 2..n50% n25%..n75% n50%..nmax 2..n25% or n75%..nmax 

66% 2..n66% n17%..n83% n34%..nmax 2..n33% or n67%..nmax 

 

However, it is also possible to define probabilistic functions. The first four probabilis-

tic scenarios apply a simple random function to each message to be transmitted. The 

probability to be transmitted is equal to the given share of information and independent of 

the indegree at the level of the cited reference and independent of the size of the compiled 
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list to be sent. Analogous to the deterministic functions the shares are set to 25%, 40%, 

50% and 66% 

A last series of four ‘tailed’ scenarios combines a deterministic upper limit threshold 

with a probabilistic function for those references where the indegree exceeds the thresh-

old. This means that these references randomly select a limited set of citing publications 

that receive the compiled list. The probability to be selected can be defined as 

 

𝑃 =
𝑘

𝑛
 

 
where n is the indegree of the reference and k is equal to  

 

𝑘 = {

𝑛 | 𝑛 ≤ 𝑙

⌈
𝑙(𝑙 − 1)

2(𝑛 − 1)
⌉ | 𝑛 > 𝑙 

  

with l being the threshold. 

 

The amount of information to be sent by a set of references with the same indegree n 

can be calculated by substitution of n by k  

 

𝐼(𝑛|𝑙) = |𝐷(𝑛)|
𝑘(𝑛 − 1)

2
 

and the amount of information transmitted in the network with a given threshold l is then 

the sum over all the indegree values in the  

 

𝐼𝑡𝑜𝑡|𝑙 = ∑ 𝐼(𝑛|𝑙)

𝑛𝑚𝑎𝑥

𝑛=2

 

 
These definitions allow us to set the threshold to such a value that only a given share of 

information is used for the creation of the bibliographic coupling networks. In line with 

all the previous scenarios, thresholds are set to create tailed scenarios accounting for 20%, 

40% 50% and 66% of the total amount of information.  

 

The results from these scenarios are gauged against the original bibliographic network 

using all the publication-reference links.  

Data source and processing 

1.39 million Publications of type Article or Review indexed in the 2013 volume of 

Clarivate Analytics Web of Science (WoS) were used. In WoS, references in these publi-

cations get a specific R9-code. References to the same cited work in different publications 

are labelled with the same R9-code. Consequently, a co-occurrence of R9 –codes in the 

reference lists of two publications indicates a bibliographic coupling. Both publications 

and cited references are considered to be nodes in a large network. The reference to a 

cited document is recorded as a directed edge in the bipartite network. The final dataset  
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consists of pairs of identifiers where the first refers to the citing publication and the sec-

ond to the cited reference. 

 

Table 2. Descriptive statistics for the bi-partite network 

Number of publications p 1,391,192 

Number of cited references r 17,248,290 

Number of publication-reference pairs e 49,156,442 

Average number of references per publication p/e 35.34 

Average number of citations to references e/r 2.85 

[Data sourced from Clarivate Analytics Web of Science Core] 

 

The processing is done using the Elastic MapReduce service offered by Amazon in 

their AWS Cloud Compute environment. Several Hadoop clusters running Spark with one 

master and from five up to ten memory optimized worker instances were created. The 

bipartite network is processed by using the GraphX library which is the graph computa-

tion API within Apache’s Spark. This library provides the required methods for the de-

velopment of a bulk-synchronous messaging system. mapVertices and joinVertices are the 

two methods that can be used in the first (calculation) task in each superstep. The aggre-

gateMessage method combines second and third task which passes relevant information 

across existing edges and combines all the incoming messages using the provided func-

tion.  

Results 

The analysis started with the calculation of distribution of the indegree and the amount 

of information to be transmitted at step II.2 associated with each value of indegree found 

in the graph. As mentioned before, the unit of information to be sent is the pair of identi-

fier and outdegree of the citing publication (a pair of a Long and Int values in the Spark 

implementation).  Figure 2 plots this amount of information in a logarithmic scale for the 

obtained indegree values. The highest indegree value found was 5927 and occurred only 

once. The horizontal axis is not truly interval scaled but merely ordinal as only those 

indegree values that occur in the dataset are included. Consequently, the figure shows a 

steep increase of information near the end of the distribution for those values that are only 

observed once.  
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Figure 2. Amount of information to be transmitted by each value of observed 

indegree (x-axis: observed indegree; y-axis: amount of information) 

[Data sourced from Clarivate Analytics Web of Science Core Collection] 

 

The particular shape of the figure resembles the typical design of Viking ships (drak-

kar called in Dutch, hence the name of the algorithm) with symmetrical ends and justifies 

the selection of a given amount of information from both sides of the distribution. The 

thresholds of the indegrees are given in table 3 and allow the creation of the intervals 

required for the definition of the sixteen scenarios as presented in table 1. In the tailed 

scenarios, the thresholds are respectively set to 20, 93, 193 and 600 to obtain the same 

shares. 

 

Table 3. Upper thresholds for the selection of the associated amount of information. 

 threshold   threshold 

n10% 13  n60% 657 

n17% 26  n66% 1026 

n20% 35  n70% 1260 

n25% 53  n75% 1760 

n30% 75  n80% 2165 

n34% 98  n83% 2725 

n40% 158  n90% 4333 

n50% 326   

[Data sourced from Clarivate Analytics Web of Science Core Collection] 

 

The first test measures the recall of each scenario. This is calculated by comparing the 

final number of bibliographic coupling links of each scenario with the selected share of 

information with the number of bibliographic coupling links when using the complete 

citation graph. Using all the information present in the original publication-reference 

network of all 2013 publications resulted in 496 million weighted links between publica-

tions. This recall could also be rephrased as the ratio between the density of the biblio-
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graphic network after the application of the selection function and the density of the BC 

network without any selection. The density of the latter network is about 0.05%. Table 4 

presents these recall values for each of the twenty-four versions. The columns present the 

amount of information that is transmitted and the rows refer to the different scenarios 

being applied for the selection function.  

The first observation is that when using a pure random function the recall is almost the 

same as the selected information share. This can be observed in the sixth row. Next, the 

recall of the two scenarios that focus on those references with a low indegree (‘Bottom’ 

and ‘Tailed’) is below the value set by the pure random selection and the share of used 

information. The highest density is obtained when choosing those references with the 

highest indegree to build the bibliographic coupling network. 

The scenarios where either the references located at the centre of the information dis-

tributions or at the outer bounds are selected still perform better than the random scenari-

os. The largest difference between top and bottom can be observed when half the infor-

mation is used. Cutting the set of references into two subsets associated with an equal 

amount of information results in a recall of 46.8% for the lower end compared to 57.6% 

for the upper end. But relatively, when only using 20% of the available information, the 

use of the most cited references results in an BC-network with a 30% higher recall than 

based on the least cited references. Based on these observations, it would be justified to 

say the selection of the top references is a better approach. 

 

Table 4. Recall of each scenario with the associated amount of selected information 

 

20% 40% 50% 66% 

Bottom 18.5% 36.8% 46.8% 64.2% 

Between 23.4% 44.8% 54.4% 70.1% 

Top 24.2% 45.9% 56.7% 73.8% 

Bottom & 

Top 22.9% 42.5% 52.1% 68.8% 

Tailed 17.9% 36.1% 46.0% 63.3% 

Random 20.1% 40.0% 50.0% 66.0% 

[Data sourced from Clarivate Analytics Web of Science Core Collection] 

 

It should be noted that this messaging based algorithm does not result in false positive 

BC-links between two publications as messages are only passed along truly existing cita-

tion links. When using a binary approach, the precision would then be equal to 100%. 

However, as Bibliographic Coupling results in a weighted network, we can measure the 

ability of each scenario to approximate the actual strength or weight of the link. It is in 

step III.1 that the cosine similarity between publications is calculated. Given the fact that 

false positives are absent and only false negatives can occur, the weight of the link can 

never be overestimated. The effect of a selection of different scenarios on the distribution 

of link weights can be seen in figure 3.  

The top line refers to the BC-network without any selection function. None of the oth-

er scenarios has a distribution that surpasses this at any weight value. Two clear phenom-

ena can be observed from this graph. First those scenarios that do not include systemati-

cally those references with a low indegree underestimate the strong links. The top scenar-
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io with 40% of the available information is at the bottom of the graph from a weight of at 

least 0.1. But also the scenario which selects the references in the middle of the infor-

mation distribution performs lower. And a pure random function is not much better. But 

those scenarios that focus on the references with low indegree approximate the distribu-

tion of strong links. As expected, adding more information to these scenarios improves 

the results slightly at the upper end of the weight distribution.  

The second observation is that the scenarios selecting the bottom references fail pri-

marily in detecting the lower weighted links. It is in this area that the explanation can be 

found for the results presented in table 4 with respect to the lower recall of those scenari-

os.  

 

Figure 3. Comparison of distribution of weighted links across different scenarios. 

(x-axis: Strength of BC-link; y-axis: count of observed links) 

[Data sourced from Clarivate Analytics Web of Science Core Collection] 

 

It seems that closely related documents share references to poorly cited documents 

while highly cited documents receive citations from a broader range of papers covering 

multiple topics. These observations have strong implications on the choice of selection 

function. When the objective of the creation of a large scale bibliographic coupling net-

work in a computationally constrained environment is to find pairs of closely related pa-

per than the selection function should focus on the lesser cited references. Opposed to 

this, the objective could also be the clustering of the complete network in which case the 

selection functions can be restricted to the upper end of the indegree distribution.  
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Conclusions 

The application and use of large scale bibliographic coupling networks has been hin-

dered by the computational and storage resources required for the creation of these net-

works. Alternative networks based on direct citations have been used in large scale analy-

sis. The new graph messaging algorithm proposed in this paper provides an opportunity to 

produce the large scale networks through the application of different selection functions 

at the level of individual cited references. The experiments with different functions show 

that references at the lower or higher end of the indegree distribution play a different role 

in the citation network. Focussing on the bottom results in a network that approximates 

most of the strong links but is more likely to ignore the weaker ones. Shifting the focus to 

the other end creates the inverse effect: a higher recall but worse for the identification of 

strong links. The choice for a particular set of selection function thus depends on the ac-

tual objectives for the creation of these BC-networks. If global clustering is the goal then 

the upper end of the distribution is the right path while if the objective is only to delineate 

a set of documents closest related to a particular sample the lower end of the indegree is 

most relevant. Future research will investigate the applicability of this graph based nearest 

neighbour search algorithm for lexical similarity between scientific documents. 
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