

Use of Locality Sensitive Hashing (LSH) Algorithm to

Match Web of Science and SCOPUS

Mehmet Ali Abdulhayoglu1,2(0000-0002-1288-2181), Bart Thijs1(0000-0003-
0446-8332)

1ECOOM, Center for R&D Monitoring, FEB, KU Leuven, Leuven (Belgium)
2Faculty of Business and Economics, Department of Managerial Economics, Strat-

egy and Innovation, KU Leuven, Leuven (Belgium)
(mehmetali.abdulhayoglu, bart.thijs)@kuleuven.be

Abstract

The objective of this study is to find the most appropriate parameters and text
components for item-wise matching the two large bibliographic datasets: Clarivate
Analytics Web of Science (WoS) and Elsevier’s Scopus. Our focus is on detecting
exact matches, that is, no false positives are tolerated at all. To this end, we follow a
twofold matching procedure. First, a locality sensitive hashing (LSH) algorithm [15]
is applied, which provides fast approximate nearest neighbours and similarities, in
order to obtain WoS-Scopus pair suggestions. We experiment with three different
combinations of text components (i.e., only publication titles, titles + journal names,
co-author names + titles + journals) as input for the matching process. In addition,
different values for LSH input parameters (i.e., number of random vectors, number of
different random vector sets, number of neighbours, similarity threshold) are tested.
Second, for each suggested pair, different heuristics are applied to identify those pair
of records that indeed refer to the same publication. For example, the pairs are classi-
fied as correct matches if the journal name, volume, issue and begin page do match.
We achieved the best results when only titles were matched and 50-50-50-0.80 or
100-30-30-0.80 input parameters are used. We observe that at least 70% of WoS pub-
lications are also indexed by Scopus. Last but not the least, when the parameters lead-
ing to the best matching results were applied, it took just about an hour to match 1.6
million vs 2.2 million.

Keywords: locality sensitive hashing (lsh), character n-gram, information retrieval

from bibliographic databases, bibliographic database overlap

1 Introduction
In a previous paper [1], we had suggested a string matching system for short texts

to find out whether given bibliographic references are indexed in a bibliographic
database (BDB). In that paper, we used character 3-grams for this task comparing
them with an approach based word unigrams. We respectively obtained an accuracy
of 96.0% and 94.7% for character 3-grams and word unigrams when a cosine similari-
ty threshold of 0.60 was used. We searched about 8,500 references within more than
35 million publications indexed in a bibliographic database (BDB) namely Clarivate

BIR 2017 Workshop on Bibliometric-enhanced Information Retrieval

30

mailto:mehmetali.abdulhayoglu@kuleuven.be

Analytics Web of Science database (WoS). We showed that character 3-grams could
be more useful to obtain correct matches when erroneous or misspelling texts appear.
Decreasing the required heavy manual job, the system works well when thousands of
references are searched in a BDB with several millions of indexed papers. For exam-
ple, we could obtain the matching results in 1 hour when those references were
matched with 1.8 million papers published in 2007. However, from our experiences,
when the number of publications is increased up to 50 thousands to be searched with-
in the same source, the computation time reaches about 8 hours or so. This is because
complexity of our system is still O(kn2) even though we could decrease k to a certain
degree.

As a result, that procedure is not applicable when millions of records need to be
searched in a BDB, for example, a task of measuring the overlap between two BDBs.
Similar overlapping tasks have already been addressed by IR researchers [16]. In
bibliometrics, this task has been of interest and achieved either on the journal level or
with a limited number of articles since the paper based approach is daunting due to
the high volume of indexed articles. However, two BDBs may index different publi-
cations from the same journal issue as [14] stated and hence an article based approach
may yield more reliable results or confirm the previous literature results. In this con-
text, we carried out an article based overlapping process for WoS and Elsevier’s
SCOPUS which are the two most extensive BDBs.

With the recent technological advances in distributed computing, such previously
tedious tasks can be accomplished. To fulfill this as a complementary approach to our
previous procedure, we applied another method based on locality sensitive hashing
(LSH), which is an algorithm aiming to find approximate nearest neighbors [9]. To
this end, we used a Spark (http://spark.apache.org/) library, which can be found in
https://github.com/soundcloud/cosine-lsh-join-spark. This library is an implementa-
tion of [15] where the authors have built their work on [10] and [3] who are the pio-
neers of this fast algorithm. The details about the algorithm are given in the subse-
quent section.

To our knowledge, our attempt is the first to measure the overlap between WoS
and SCOPUS at the article level without drawing samples. Based on our application,
we managed to match millions of records from WoS with another millions of records
from SCOPUS in a manageable time. However, we need to point out that this study is
a preliminary endeavour using only the papers from one publication year, which aims
to show the possibility of managing high volume of bibliographic data. Making the
comparison of the DBs for all their indexed records remains as our future work. On
the other hand, we present different input values to be applied for the LSH algorithm
and suggest the ones outperforming the other options in terms of matching accuracy
and running time.

2 Related work

[7] gives a very comprehensive literature review about the topic while [8] briefly
gives examples of database comparisons from the library and information science

BIR 2017 Workshop on Bibliometric-enhanced Information Retrieval

31

https://github.com/soundcloud/cosine-lsh-join-spark

field. The degree of overlapping between BDBs has some indications, that is, high
overlap indicates that there is no need to have both sources which saves the funds
whereas low overlap requires to have all the sources increasing the costs [7]. The cost
issue is even more crucial when costly databases are in question such as Web of Sci-
ence and SCOPUS [6] as the most extensive bibliographic databases and our main
sources in this study.

Comparison between the two BDBs has been in question among researchers from
library and information science [2, 5, 6, 13].

3 Data

We chose articles, reviews and proceeding papers published in 2011 and indexed
in WoS or SCOPUS databases. As a result, 1,635,395 and 2,255,989 papers were
respectively retrieved and used for our application.

4 Locality-sensitive hashing (LSH)

Matching records from two distinct bibliographic databases is considered as a spe-
cial application of the nearest neighbor search problem. As opposed to approaches
such as matrix multiplication optimization [12] for between record cosine similarity
calculations we opt for locality-sensitive hashing (LSH) being another approach for
matching tasks aiming to fulfill the process with significantly lower complexity. In-
deed, the LSH algorithm we applied estimates these cosine similarities between input
vectors with a significantly low computational complexity. When calculating the
cosine similarity in a traditional way, one has to match all the items (n) having k fea-
tures in corpus leading to O(kn2) complexity. This makes it impossible to apply when
n is too large. To remedy this bottleneck, [15] apply some rules for their LSH applica-
tion.

First, it represents each vector with bit streams (called fingerprints or signatures)
via randomly chosen spherically symmetric vectors of unit length. The number of
random vectors (d) is given as input. As a result, a higher dimension is reduced to a
number of random vectors. Figure 1 depicts this process in a simple way. Note that
this figure is based on two figures by Benjamin Van Durme & Ashwin Lall in their
presentation for 48th Annual Meeting of the Association for Computational Linguis-
tics to present their paper [17] and used here with their kind permission. We merged
the related figures to present the idea into one single figure. As seen, there are two
points (A and B) and six random hash functions in the figure. Point A stands above
h1, h5 and h6 and below the other three functions. Similarly, point B stands above h1
and h5. As a result, A and B have the following respective fingerprints, [1,0,0,0,1,1]
and [1,0,0,0,1,0]. Once all fingerprints are retrieved, the list is sorted to calculate the
similarity between closest points.

Second, the algorithm applies a random permutation function a given number of
times (q) for each fingerprint. We can explain this process as follows: In the given
example above, d=6 random vectors are used to obtain fingerprints. However, for the

BIR 2017 Workshop on Bibliometric-enhanced Information Retrieval

32

same points, different fingerprints can be obtained when another 6 random vectors are
used. This means that each fingerprint will have a different place surrounded by dif-
ferent neighbours in the sorted list whenever a different random vector set is used.
The more random vector sets are introduced, the more likely it is to reach correct
matches. For each sorted list, (B) closest neighbours are retained for each vector.
Eventually, the algorithm calculates the cosine similarity between the vectors and
their neighbours and retains only those matches exceeding a similarity threshold input
value. These processes approximately reduce the computational complexity to O(dn)

and it can be run parallel thanks to its random processing. As [15] states, the higher d
and q values result in more accurate matches but with a higher calculation time. In
addition, the authors also warn that proper input values (d, q, B) differ depending on
the domain. Therefore, we tried and suggested different input values in our biblio-
graphic reference matching application.

Figure 1. Obtaining fingerprints of input vectors via randomly picked planes.

5 Methodology

For the applied LSH code, we tried six different input sets in an arbitrary manner.
The details are presented in the results section. We aimed to try different input values
in order to observe the changes in the running time and the number of correct match-
es. To this end, we first chose some values leading to very fast computational time
with a trade-off in accuracy. On the other hand, we tried some other values leading to
significantly more correct matches with a trade-off in the running time. So in total, we
used six different input sets to have an idea about the most optimum input values.
Note that our main goal is to show the possibility of matching high volume biblio-
graphic data and obtain as many correct matches as possible in a manageable time.
Although obtaining the results as fast as possible would be so valuable for dynamic
systems, this is not our priority in this study.

As the main sources, co-author names, publication title, source name (journal or
conference name), publication year, begin page and end page from WoS or SCOPUS

BIR 2017 Workshop on Bibliometric-enhanced Information Retrieval

33

DBs were used for our text matching procedure. We used three different scenarios as
given below.

 Co-authors + title + source name + publication year + begin page + end page

(ALL)
 Title + source (TI_SO)
 Title (TI)

The code we applied requires an input file in LIBSVM format [4]. It simply repre-
sents documents with indices and values where each index represents a character 3-

gram in our case and the value stands for the frequency of the related 3-gram appear-
ing in the document. For example, 1 1:3 2:7 12:1 14:5 … tells that reference 1 has a
character 3-gram (e.g. end) indexed as 1 appearing three times, a character 3-gram
indexed as 2 appearing seven times, a character n-gram indexed as 12 appearing once
and so on. To this end, we created text files in this format for WoS and SCOPUS for
different reference component combinations as given above.

Then for each scenario, two text files were merged into one. Moreover, the code
was originally designed to find the duplicate records in a given input text file. Since in
our case there was no need to check the pairs from the same BDB, we modified the
code in a way that it only checked the pairs where one coming from WOS and the
other from SCOPUS. Using one big text file for each of the three different scenarios,
we ran our code and made our observations in a server with 36 processors. Figure 2
depicts how we prepared the input files for a clearer understanding. Note that for each
reference combination (all reference, title + source, title) a different input file was
created.

Figure 2. Preparing input files to be used in LSH code.

Once we retrieved the pair suggestions with a similarity score higher than a desired

threshold, we followed some heuristics to confirm the results and obtained identical
matches. This step is necessary since the derived similarity scores by LSH algorithm
are estimated values thus it may offer wrong matches despite a high similarity score.

BIR 2017 Workshop on Bibliometric-enhanced Information Retrieval

34

To this end, we classified pairs as correct matches if they comply with one of the
following rules:

Rule 1. Identical source name (so) (journal or conference name),volume

(vl), issue (is) and begin page (bp) or
Rule 2. Identical so, vl, is and title (ti) when bp is null or
Rule 3. Identical so, is, bp and ti when vl is null or
Rule 4. Identical so, is, and ti when vl and bp are null.

Note that above given scenario names (ALL, TI_SO, TI) and rules (Rule 1, Rule 2

so on) are used in Table 3 when presenting the results in detail.
Here we should point out two important facts. First, in the above given rules, we

only considered identical titles for Rule 2, 3 and 4. By applying very high similarity
scores, thousands of more correct matches could be retrieved. For example, consider
the two following titles with a similarity score of 0.85 according to a 3-grams based
edit distance measure [11].

A 95-nA, 523ppm/degrees C, 0.6-mu W CMOS Current Reference Circuit with

Subthreshold MOS Resistor Ladder (WoS)

A 95-nA, 523ppm/Â°C, 0.6-Î¼WCMOS current reference circuit with sub threshold

MOS resistor ladder (SCOPUS)

In our result set, there were around 10,000 pairs having a similarity score between

0.80 and 0.99 ignored by above given four rules. Even though we can intuitively
count those pairs as correct, they still need to be checked manually especially for
micro level bibliographic analysis. Since we focus on the possibility of matching two
large datasets with a possible small manual effort in this study, we skipped that manu-
al stage and did not involve those pairs.

Second, the databases may index some source names differently. Since checking
all the source name pairs manually was not realistic, we reduced the number of pairs
by retaining only those sources involving identical publication titles with identical
begin pages and issue numbers. As a result, we ended up 3,640 source pairs to check
manually. To ease this manual job, we leveraged similarity score between source
names applying [11] and the frequencies of those pairs. Confirming the pairs having
very similar names or co-occurring a lot was easier and this allowed us to complete
the manual check within a work day. Table 1 gives some examples of such pairs.

Here we should mention that journals’ International Standard Serial Numbers
(ISSN) could also be exploited to match source names. However, through our ap-
proach, we already included all the ISSNs information and obtained even more rec-
ords since ISSNs might change in time thus inconsistency might appear or they might
simply be missing in BDBs. Nevertheless, this was valid for our data and it might be
significantly valuable for other similar tasks. Similarly, Digital Object Identifiers
(DOI) are very valuable to retain the correct matches since they are unique for each
publication. However, BDBs might still be short of this information. For example, in

BIR 2017 Workshop on Bibliometric-enhanced Information Retrieval

35

our case, almost one-third of the publications’ DOIs are not indexed in SCOPUS.
Like ISSN, this information can be very valuable for other similar tasks.

Table 1. Examples of WoS-SCOPUS source name pairs with their co-occurrences and simi-
larity

[Data sourced from Clarivate Analytics Web of Science Core Collection and Elseviers Scopus]

WoS

source name

SCOPUS

source name

Similarity

score

Co-occurrence

frequency

PHYSICS LETTERS A Physics Letters, Section A:
General, Atomic and Solid State

Physics

0.24 449

LANCET

The Lancet

0.50

234

IIC-INTERNATIONAL REVIEW

OF INTELLECTUAL PROPERTY
AND COMPETITION LAW

IIC International Review of In-

tellectual Property and Competi-
tion Law

0.98

33

REVISTA BRASILEIRA DE
ZOOTECNIA-BRAZILIAN

JOURNAL OF ANIMAL SCIENCE

Revista Brasileira de Zootecnia

0.46

294

ADVANCED RESEARCH ON
COMPUTER SCIENCE AND

INFORMATION ENGINEERING

Communications in Computer
and Information Science

0.44 41

The first three examples in the table are relatively easier to confirm compared to

the last one since the source names are totally different and a detailed check was
needed. Examining that pair in detail, we saw that in one source a more detailed con-
ference or journal name was given while the other indexed a general series name. In
our example, Communications in Computer and Information Science was the general
name of the series which involved ADVANCED RESEARCH ON COMPUTER

SCIENCE AND INFORMATION ENGINEERING amongst others. Confirming such
pairs may cause the manual work last longer depending on the data. Nevertheless, in
our approach the process was viable and valuable. So we accepted those manually
checked source names as identical and involved them our matching process given
above. As a result, we roughly gained 185,000 additional correct matches.

6 Results

We tried six different input values. Before giving the matching results, we would
like to discuss the computational time based on the input values. Table 2 shows ap-
proximate elapsed times based on the used input values. The numbers are based on

BIR 2017 Workshop on Bibliometric-enhanced Information Retrieval

36

the results when only titles (TI) were used. For the other two scenarios, we did not
observe significant deviations on elapsed times.

Table 2. Input values and elapsed time to obtain the matching results when using only titles

Number of

 random vectors

(d)

Number of

neighbors

(B)

Number of

permutations

(q)

Cosine

 similarity

threshold

Elapsed

time

20 5 5 0.80 3 minutes
20 20 20 0.80 11 minutes
50 50 50 0.80 1.2 hours

100 20 20 0.80 31 minutes
100 30 30 0.80 58 minutes
100 50 100 0.80 9.3 hours

In Table 2, number of random vectors (d), number of neighbours (B), number of

permutations (q) and cosine similarity threshold are given respectively starting from
the first column. For example, we retrieved some matching results having a similarity
score of higher than 0.80 in 3 minutes when 20 random vectors, 5 closest neighbours
and 5 permutations were introduced. Note that when lower cosine thresholds were
applied, computational time was affected significantly in a negative manner. For the
lower thresholds, there appeared too many identical suggestions coming from differ-
ent permuted lists which caused more computational time to sort those duplicates out.
Experiencing this bottleneck, we opted 0.80 as the threshold for our procedure. As
also seen in the table, increasing d and q input values results in more computational
cost. Table 3 gives a detailed summary of matching results according to the different
input values for each component combination. Moreover, number of correct matches
for four different cases, as given in the methodology section, is detailed.

We observed that around 70% of WoS records and 51% of SCOPUS papers could
be correctly matched in half an hour. In addition, we retrieved our results even faster
when the High Performance Computing platform at our university was employed. For
example, for the input values 50-50-50-0.80, it lasted more than 1 hour to get the
results while it was less than half an hour in the cluster environment. Computational
time can be decreased more if a cluster can be set with ideal configurations. This
remains as our future work.

Our results showed that when pair suggestions were retrieved based on only titles
(TI), many more identical matches were obtained. This might be because the compo-
nents like source name or co-authors name introduce more noise leading to a similari-
ty score lower than the given threshold. As we already mentioned, lowering the
threshold would end up more computational time for the applied algorithm. As a
result, we can suggest that for the given input values, using TI seems better to collect
more identical matches.

The first striking result is that applying 20-05-05 input values, we could retrieve
more than 560,000 (34.29%) and 424,000 (25.93%) identical results for WoS in three
minutes (see Table 2) when TI and TI_SO were employed respectively. On the other

BIR 2017 Workshop on Bibliometric-enhanced Information Retrieval

37

hand, for the same input values, we could only obtain 92,000 (5.63%) identical values
when applying ALL. Depending on bibliographic research aim, having more than half
million papers indexed by both sources in such a short time might be quite valuable.

Table 3. Number of identical matches between WoS and SCOPUS based on different input
values for different component combinations

[Data sourced from Clarivate Analytics Web of Science Core Collection and Elseviers Scopus]

LSH

Scenarios Rule 20-05-05 20-20-20 50-50-50 100-20-20 100-30-30 100-50-100

ALL

Rule 1 86,858 266,953 981,501 902,284 980,538

 Rule 2 4,407 13,782 46,117 42,031 46,195
 Rule 3 746 2,072 5,882 5,526 5,865

Rule 4 114 368 1,542 1,443 1,583

92,125 283,175 1,035,042 951,284 1,034,181

 SCOPUS 4.08% 12.55% 45.88% 42.17% 45.84%

 WoS 5.63% 17.32% 63.29% 58.17% 63.24%

TI_SO

Rule 1 397,688 738,454 1,077,348 1,068,364 1,076,387
 Rule 2 22,368 39,805 51,735 51,742 51,747
 Rule 3 3,453 5,373 6,356 6,355 6,356
 Rule 4 559 1,180 1,736 1,737 1,737

424,068 784,812 1,137,175 1,128,198 1,136,227

 SCOPUS 18.80% 34.79% 50.41% 50.01% 50.36%

 WoS 25.93% 47.99% 69.54% 68.99% 69.48%

TI

Rule 1 530,038 909,013 1,091,480 1,088,727 1,091,649 1,094,164
Rule 2 26,173 44,415 51,643 51,633 51,637 51,635
Rule 3 3,562 5,686 6,348 6,347 6,350 6,350
Rule 4 983 1,526 1,735 1,735 1,735 1,735

560,756 960,640 1,151,206 1,148,442 1,151,371 1,153,884

SCOPUS 24.86% 42.58% 51.03% 50.91% 51.04% 51.15%

 WoS 34.29% 58.74% 70.39% 70.22% 70.40% 70.56%

Second, among all the trials, we could automatically reach the highest number of

identical matches when either 50-50-50 (70.39%) or 100-30-30 (70.40%) input values
were used for TI. The same input values were also the best options for other two
component combinations. Note that we could indeed retrieve slightly more identical
records when 100-50-100 input values were used as given in the last column of TI
section in Table 3. However, that procedure lasted more than 9 hours (see Table 2)

BIR 2017 Workshop on Bibliometric-enhanced Information Retrieval

38

and gave only 2,500 more records compared to our best results. Here we aimed to find
some input values providing matching suggestions in a considerably short time. In
this context, the higher input values like 100-50-100 make no sense since the trade-off
does not seem valuable at all since the added value is too small with a very long com-
putational time.

Aside from number of identically matched publications given by Table 3, we
would like to discuss the cited publications. In this context, our WoS database has
1,127,239 (68.93%) cited publications in the type of article, review or proceeding
where we detected that at least 1,002,478 (88.93%) of them are also indexed by
SCOPUS. When highly cited publications are in question, similar results were ob-
tained. For example, there are 304 and 9,652 publications cited more than 500 and
100 times, respectively where 264 (86.84%) and 8,741 (90.56%) of them were found
to be indexed by both sources.

These results are in line with the related literature works that is a high overlap be-
tween two important sources has been observed. Furthermore, we grabbed more than
one million joint publications which might pave the way for detailed paper based
bibliographic analysis on common papers unlike previous works based only on jour-
nal comparison.

7 Conclusion

Two large bibliographic datasets (1.6 million vs. 2.2 million) from WoS and
SCOPUS databases were matched at paper level using locality sensitive hashing
(LSH) trying to find nearest neighbours. We experimented with different input values
required by the algorithm. As a result, we found and suggested the ones providing the
best results in terms of the number of identical matches and computational time.
Based on the suggested approach, we automatically found that at least 70% of the
publications (article, review or proceeding) indexed by WoS were also indexed by
SCOPUS. Moreover, when we examined the matching results for those publications
cited at least once, we observed more number of identical matches such that at least
88.93% of the cited publications in WoS were also cited by SCOPUS.

References

1. Abdulhayoglu. M. A., Thijs. B., & Jeuris. W. (2016). Using character n-
grams to match a list of publications to references in bibliographic databases.
Scientometrics. 109(3). 1525-1546. doi: 10.1007/s11192-016-2066-3

2. Bosman. J., Mourik, I. V., Rasch. M., Sieverts. E., & Verhoeff. H. (2006).
Scopus reviewed and compared: The coverage and functionality of the cita-
tion database Scopus. including comparisons with Web of Science and
Google Scholar. Utrecht University Library.

3. Charikar. M. S. (2002). Similarity estimation techniques from rounding algo-
rithms. In Proceedings of the thiry-fourth annual ACM symposium on Theo-
ry of computing. 380-388. ACM. doi: 10.1145/509907.509965

BIR 2017 Workshop on Bibliometric-enhanced Information Retrieval

39

4. Chih-Chung Chang & Chih-Jen Lin, (2011). LIBSVM : a library for support
vector machines. ACM Transactions on Intelligent Systems and Technology.
2:27:1--27:27. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm. doi: 10.1145/1961189.1961199

5. Egghe. L. & Goovaerts. M. (2007). A note on measuring overlap. Journal of
information science. 33(2). 189-195. doi: 10.1177/0165551506075325

6. Gavel. Y. & Iselid. L. (2008). Web of Science and Scopus: a journal title
overlap study. Online information review. 32(1). 8-21. doi:
10.1108/14684520810865958

7. Gluck. M. (1990). A review of journal coverage overlap with an extension to
the definition of overlap. Journal of the American Society for Information
Science. 41(1). 43-60. doi: 10.1002/(SICI)1097-
4571(199001)41:1<43::AID-ASI4>3.0.CO;2-P

8. Hood. W. W. & Wilson. C. S. (2003). Overlap in bibliographic databases.
Journal of the American Society for Information Science and Technology.
54(12). 1091-1103. doi: 10.1002/asi.10301

9. Indyk. P. (2000). High-dimensional computational geometry. Doctoral dis-
sertation. Stanford University.

10. Indyk. P. & Motwani. R. (1998). Approximate nearest neighbours: towards
removing the curse of dimensionality. In Proceedings of the thirtieth annual
ACM symposium on Theory of computing. 604-613. ACM. doi:
10.1145/276698.276876

11. Kondrak. G. (2005). N-gram similarity and distance. In International Sympo-
sium on String Processing and Information Retrieval. 115-126. Springer Ber-
lin Heidelberg. doi: 10.1007/11575832_13

12. Kurzak, J., Alvaro, W., & Dongarra, J. (2009). Optimizing matrix multiplica-
tion for a short-vector SIMD architecture–CELL processor. Parallel Compu-
ting, 35(3), 138-150. doi: 10.1016/j.parco.2008.12.010

13. Meho. L. I. & Rogers. Y. (2008). Citation counting. citation ranking. and
h‐index of human‐computer interaction researchers: a comparison of Scopus
and Web of Science. Journal of the American Society for Information Sci-
ence and Technology. 59(11). 1711-1726. doi: 10.1002/asi.v59:11

14. Pao. M. L. (1993). Term and citation retrieval: A field study. Information
Processing & Management. 29(1). 95-112. doi: 10.1016/0306-
4573(93)90026-A

15. Ravichandran. D., Pantel. P. & Hovy. E. (2005). Randomized algorithms and
nlp: using locality sensitive hash function for high speed noun clustering.
In Proceedings of the 43rd Annual Meeting on Association for Computation-
al Linguistics. 622-629. Association for Computational Linguistics. doi:
10.3115/1219840.1219917

16. Spink, A., Jansen, B. J., Kathuria, V., & Koshman, S. (2006). Overlap
among major web search engines. Internet Research, 16(4), 419-426.

17. Van Durme. B. & Lall. A. (2010). Online generation of locality sensitive
hash signatures. In Proceedings of the ACL 2010 Conference Short Papers.
231-235. Association for Computational Linguistics.

BIR 2017 Workshop on Bibliometric-enhanced Information Retrieval

40

http://www.csie.ntu.edu.tw/~cjlin/libsvm

