
Exploring the Evolution and Provenance of Git
Versioned RDF Data

Natanael Arndta, Patrick Naumannb and Edgard Marxa,b

a Agile Knowledge Engineering and Semantic Web (AKSW)
Institute of Computer Science, Leipzig University

Augustusplatz 10, 04109 Leipzig, Germany
{arndt|marx}@informatik.uni-leipzig.de

b Hochschule für Technik, Wirtschaft und Kultur Leipzig (HTWK)
Gustav-Freytag-Str. 42A, 04277 Leipzig, Germany

patrick.naumann@stud.htwk-leipzig.de

Abstract The distributed character and the manifold possibilities for
interchanging data on the Web lead to the problem of getting hold of
the provenance of the data. Especially in the domain of digital humani-
ties and when dealing with Linked Data in an enterprise context prove-
nance information is needed to support the collaborative process of data
management. We are proposing a possibility for capturing and exploring
provenance information, based on the methodology of managing RDF
data in a tool stack on top of the decentralized source code management
system Git. This comprises a queriable history graph, the possibility to
query arbitrary revisions of a Git versioned store and in the minimal
granularity the possibility to annotate individual statements with their
provenance information.

1 Introduction

Due to the distributed and collaborative character of Linked Data and the Web
of Data in general tracking and exploring the provenance of data as well as
versioning of the data, plays a key role. Information about the same resource can
be accessible from different sources. Those information, may differ or contradict
each other, especially in curatorial work of different parties in a specific context.
Provenance may help to make assumptions about each source and help to choose
an appropriated version of the data.

Furthermore, in collaborative processes, provenance provides a good basis for
mechanisms to track down and debug the sources of errors. Tracking provenance
while allowing changes to data is a basic requirement for any version control
system. Therefore it is important to track the provenance of data at any step of
a process involving possible changes of a dataset (e.g. creation, curation, linking).

The different scenarios with respect to a setup in the context of Linked
Data can be described in the following three use cases. (1) Tracking provenance,
when importing data sets from different sources on the Web of Data. (2) Record
and explore the evolution of a vocabulary respective dataset during all update

steps of a data management process. (3) Tracking down the source or point of
introduction of a specific change to a dataset.

Especially in the domain of e-humanities when managing prosopographical
data, such as the Pfarrerbuch1 and the Catalogus Professorum2 [16], it is crucial
to track and be able to explore the provenance and evolution of the domain
data. Further use cases are the Heloise – European Network on Digital Academic
History3 [15] and “Professorial Career Patterns of the Early Modern History”4.
But also for business use cases as researched in the LEDS – Linked Enterprise
Data Services5 project and for managing library metadata as in the AMSL6

[1,13] project, means for tracking down the origin of any statement introduced
into a dataset in a collaborative data curation setup are needed.

Our aim for this work is to enable access to provenance-related metadata re-
trieved from RDF data which is managed in a Git repository. Describing prove-
nance information requires a vocabulary that can be used to express the different
aspects of the Git system. Further an appropriate transformation is required to
access the metadata.

The paper is structured as follows. The state of the art and related work is
presented and discussed in section 2. An analysis of the problem we are facing
and requirements necessary for a solution are provided in section 3. We are
presenting our approach in section 4 and demonstrate the approach using our
prototypical implementation in section 5. Finally, a conclusion is given together
with a prospect to future work in section 6.

Throughout the paper we are using the following RDF-prefix mappings:
prov: http://www.w3.org/ns/prov#, xsd: http://www.w3.org/2001/XMLSchema#,
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#, rdfs: http://www.w3.org
/2000/01/rdf-schema#, foaf: http://xmlns.com/foaf/0.1/, quitp: urn:tmp:
quitp:, quit: urn:tmp:quit:. While the URIs for quit: and quitp: are place-
holders for the URIs produced by the Quit Store and an extension of the existing
provenance vocabulary.

2 State of the Art and Related Work

In this section, we want to present currently available possibilities to express
provenance as well as other metadata relevant to evolution tracking in RDF.
With versioning systems in mind, we further summarize how metadata and
archival information can be represented, stored and accessed. Finally, we provide
a quick review of other projects that deal with the versioning of data. For our
related work, we only consider approaches which provide or use provenance in a
versioning context or can be used to support versioning systems.
1 http://aksw.org/Projects/Pfarrerbuch
2 http://aksw.org/Projects/CatalogusProfessorum
3 http://heloisenetwork.eu/
4 http://catalogus-professorum.org/projects/pcp-on-web/
5 http://www.leds-projekt.de/
6 http://amsl.technology/

http://www.w3.org/ns/prov
http://www.w3.org/ns/prov#
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema#
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2000/01/rdf-schema#
http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/
urn:tmp:quitp:
urn:tmp:quitp:
urn:tmp:quitp:
urn:tmp:quit:
urn:tmp:quit:
urn:tmp:quit:
urn:tmp:quitp:
http://aksw.org/Projects/Pfarrerbuch
http://aksw.org/Projects/CatalogusProfessorum
http://heloisenetwork.eu/
http://catalogus-professorum.org/projects/pcp-on-web/
http://www.leds-projekt.de/
http://amsl.technology/

2.1 Vocabularies

Currently, various vocabularies exist that allow the description of provenance. As
a World Wide Web Consortium (W3C) Recommendation, the PROV ontology
(PROV-O) [11] is the de-facto standard for the representation and exchange of
domain-independent provenance. The Open Provenance Model [12] predates the
PROV-O, but both use very similar approaches as their core components. Both
vocabularies model provenance data as relations between agents, entities and
activities or their respective equivalent.

Another popular standard for general-purpose metadata is Dublin Core re-
spective the Dublin Core Metadata Terms (dct) [7]. The main difference to the
prior ontologies is in their focus on expressing provenance. Both vocabularies
provide means for expressing provenance metadata. While the PROV-O is more
focused on activities that lead to a specific entity, Dublin Core focuses on the
resulting entities.

The main advantage of using domain-independent vocabularies as a core is
that they are usable by systems and tools that operate without any domain-
specific knowledge. PROV-O-Viz7 is an example of a visualization tool only
working with the data expressed according to the PROV ontology.

2.2 Modelling Patterns

One way to annotate data is reification [6, “Reified Statements”]. In standard
reification, a resource is used to denote a triple. The resource is attributed with
the subject, predicate, and object of the triple it is identifying and referring to.
Thus, metadata about the original triple can be supplied by attaching additional
attributes to this reified resource. The downside of this approach is the increase
of statements needed to describe the original triple, which is at least threefold.
Additional effort is needed for querying and matching statements with their
reified statement since every reified part has to be matched on its own.

Provenance can also be described using named graphs, whereby triples are
extended with a fourth argument, the context. A context is denoted by a URI
and thus can also be used as a subject for statements, allowing the description
or annotation of graphs with provenance information. Temporal graphs [17] is
a storage model utilizing named graphs to store the validity of triple sets, e. g.
their temporal validity, allowing stateful queries for a given point in time, by
searching all validity ranges containg that timestamp. Adepting this approach
to a git-like environment, the temporal validity is best described by the commits
a statement was added or removed. But their commit hashes cannot be used as
range indicators, since hashes have no natural ordering preventing us from doing
simple between checks.

As an alternative to the prior methods for storing metadata in RDF, Sin-
gleton properties [14] were introduced. Hereby, the predicates of a statement
are replaced with a unique equivalent, e. g. by appending consecutive numbers.
7 http://provoviz.org/

http://provoviz.org/

Those unique predicates, used as a resource, are attributed with their original
predicates and other annotations, this allows to describe the original statement.
This approach requires less overhead, in the number of triples, compared to reifi-
cation. Using this concept, Queries against a data source have to be adjusted
accordingly, since the original statements have changed.

2.3 Version Tracking Systems

Version control systems such as Subversion, Mercurial, and Git are common
tools for versioning any kind of data but especially text-based formats. By using
an appropriate serialization format, RDF data can also be stored in such ver-
sioning systems [3]. Any type of versioning system, since it is commonly used for
collaborative work, provides some basic provenance information like a commit-
ter, reasons for changes and timestamps when changes happened. In the systems
mentioned above, such information is stored in a non-semantic compliant man-
ner thus can often only be accessed with tools provided by the respective version
control system.

Git4Voc [10] describes a methodology on how to use the versioning system
Git for collaborative vocabulary development. Further they describe, how to
utilize the hook mechanism provided by Git to add additional functionality for
validation and documentation. The master branch tracks different versions of the
vocabulary while changes are done in other branches and merged back later. For
validation, a combination of local and online tools is used. After the quality check
is done and committed to the repository, a documentation for the vocabulary is
generated. Git4Voc does not provide any semantically accessible provenance but
only what is provided by Git itself. Existing tools (e.g. Git2PROV8) can provide
a semantic compliant view using the PROV ontology.

The Git2PROV tool [5] allows to generate a provenance document using the
PROV-Ontology for any public Git repository. It can be used as a web service or
can be executed locally using Node.js9. Since our aim is to provide provenance
for RDF data on graph- and triple-level Git2PROV isn’t suited as a component
since it is only able to handle provenance on a per-file-level.

R43ples [8] on the other hand is a version control system completely build on
Semantic Web technology. Due to its design and internal structure versioning
only happens on graph-level instead of instance-level, therefore versioning hap-
pens for each named graph but not for the whole dataset. Revisions are stored
as deltas to its previous version to save storage space with the drawback of the
extra time required to restore older revisions. Because of its Semantic Web only
approach no command line tools like in Git are provided and all operations on
the versioning system are done via the SPARQL interface. The interface there-
fore was extended with additional, non-standard keywords. It uses the RMO vo-
cabulary, which is an extended and more domain-specific version of the PROV
ontology.
8 http://git2prov.org/
9 https://nodejs.org/

http://git2prov.org/
https://nodejs.org/

Another approach is implemented by Stardog10, a triple store with integrated
version control capabilities. The versioning module provides functionality for
tagging and difference generation between revisions. Revisions are on instance-
level since a snapshot contains all named graphs from the time the snapshot was
taken. RDF data and snapshots are stored in a relational database. The current
state of the database can be queried via a SPARQL interface. For regular queries,
the version history can be accessed by using the SERVICE keyword and the pro-
vided virtual service. The module can also execute queries on the version history
metadata. While older states of the database can be restored, to our knowledge,
they can’t be queried directly. The provided provenance contains information
about time, committer, an optional message, and changesets represented using
a vocabulary based on PROV-O, extended by means to describe changesets.

The Quit Stack is meant to support collaboration on RDF datasets in dis-
tributed setups. The Quit Store [3], as a part of this tool stack, provides a
framework for tracking and exchanging changes on a dataset in a distributed
setup. Backed by a Git repository, it provides a quad store which holds the
latest revision of all or selected RDF files. Even though any revision can be
restored with a simple checkout, loading the data into the store requires a dese-
rialization step beforehand. Through a SPARQL interface, each interaction with
the store is recorded and in case of an update, the changed graphs are serial-
ized and stored as a commit in the repository. The Quit Store does not provide
any semantic form of provenance so far. Besides the Quit Store, the Quit Stack
also provides a tool Quit Diff for comparing the graphs between recorded revi-
sions [2]. The difference between the graphs can then be represented in various
changeset vocabularies and as SPARQL Update query.

3 Problem Description

The size of provenance information, especially when providing evolutionary data
of a resource, is likely to exceed the size of the data which it is describing.
Therefore, we encourage the decoupling of data and provenance as an appropriate
way for provenance access. As a conclusion, we state ways to access detached
provenance information. For direct access, a provenance document available as
a Linked Data resource can be provided. By providing a linking e.g. prov:has_
provenance as HTTP-header or within the data itself, the provenance can be
discovered in case of need. Provenance can be made available as a separate
SPARQL service, which can be linked via prov:has_query_service and be used
for federated queries.

The focus of our work is primarily meant as a methodology for handling
provenance of Git versioned RDF data in general. The problem of selecting
an appropriate level of provenance recording, also called granularity, depends
on the use cases and technology of a specific system. To support developers
of provenance systems, Groth et al. [9] provide general aspects of provenance
10 http://stardog.com/

http://www.w3.org/ns/prov
http://www.w3.org/ns/prov#has_provenance
http://www.w3.org/ns/prov#has_provenance
http://www.w3.org/ns/prov
http://www.w3.org/ns/prov#has_query_service
http://stardog.com/

that should be considered by any provenance enabled system. The aspects were
categorized as following:

Content describes what should be contained in provenance data, whereas en-
tities, contributing sources, processes generating artifacts, versioning, justi-
fication, and entailment are relevant dimensions.

Management refers to concerns about how provenance should be captured
and maintained, including publication and access, dissemination and how a
system scales.

Use is about how user specific problems can be solved using recorded prove-
nance. Mentioned are understanding, interoperability, comparison, account-
ability, trust, imperfections, and debugging.

While not all of these aspects are in our focus, they are meant to help on
deciding on exact use cases and requirements. Based on those dimensions and
the prerequisite of handling RDF data in a Git repository, we need to consider
which processes have influenced the data and contributed to the data in form
of commits. The aspect of versioning the data is covered by Git in combination
with the Quit Store. For the category management, we have to evaluate how Git
handles provenance and how internal provenance can be accessed by the user.
As for use, we have already formulated three use cases in section 1. These use
cases mainly cover, understanding, accountability, trust, and debugging. Inter-
operability is the main focus of the Quit Store and comparison the main focus
of Quit Diff.

Furthermore the evolution of a dataset in a distributed setup is not nec-
essarily happening in a linear manner. Multiple parties are creating different
versions based on the same original data set (branch), while a consolidated ver-
sion (merge) might be created at a later stage. This introduces the problem of
finding the path, in which a change was introduced.

Resulting from our use cases and the mentioned categories we can formulate
our requirements as follows:

1. A structured representation of metadata recorded to a specific version of a
dataset

2. A queriable representation of the provenance information recorded for the
evolution of a dataset

3. Random access to any version of the dataset
4. A possibility to analyze the origin of any individual statement in a dataset
5. The resulting system should be able to handle non-linear, i. e. branched and

merged, revision histories.

4 Approach

In this section, we present our approach on how to extract and explore RDF
versioned data in a distributed environment. It is build as a tool stack on top
of Git for extending it with semantic capabilities. Our approach gains all of its

versioning and storage capabilities from the underlying Git repository and the
Quit Stack [3]. As the Quit Framework itself is planned to handle just RDF
models without any further regards to semantics[3, Introduction], our approach
follows this lead. Therefore, the two main concerns are, (1) to make the already
existing provenance information from the version control system semantically
available and (2) check how and to which extend additional and domain-specific
metadata can be stored in the version control structure. We further introduce
a methodology for fast access to different versions of a dataset using named
graphs.

4.1 Storage and Data Structure

Non-semantical (Git) Semantical (RDF)

Commit prov:Activity
parent quitp:preceedingCommit
author prov:wasAssociatedWith

prov:qualifiedAssociation
author date prov:startedAtTime
committer prov:wasAssociatedWith

prov:qualifiedAssociation
committer date prov:endedAtTime
message rdfs:comment

Author and Committer prov:Agent
name rdfs:label
email foaf:mailbox

Changeset quitp:updates
quitp:graph
quitp:addition/quitp:deletion

Data prov:Entity
prov:specializationOf
prov:wasGeneratedBy

Table 1. Semantic representation of a Git commit

Our initial effort was to transform the metadata, stored in the data model of
Git to RDF making use of PROV-O. Table 1 provides an overview of attributes
used to convert a Git commit. Commits in Git can be mapped to instances of
the class prov:Activity associated with their author and committer. We follow
the idea of De Nies et al. [5] and represent the start and end time of the Activity
with the author and commit date of Git, which can be interpreted as the time till
a change was accepted. PROV-O has no concept for commenting on activities,
therefore we follow the suggestion of PROV-O and use rdfs:comment for commit
messages. Git users are prov:Agents, stored with their provided name and email.

http://www.w3.org/ns/prov
http://www.w3.org/ns/prov#Activity
urn:tmp:quitp:
urn:tmp:quitp:preceedingCommit
http://www.w3.org/ns/prov
http://www.w3.org/ns/prov#wasAssociatedWith
http://www.w3.org/ns/prov
http://www.w3.org/ns/prov#qualifiedAssociation
http://www.w3.org/ns/prov
http://www.w3.org/ns/prov#startedAtTime
http://www.w3.org/ns/prov
http://www.w3.org/ns/prov#wasAssociatedWith
http://www.w3.org/ns/prov
http://www.w3.org/ns/prov#qualifiedAssociation
http://www.w3.org/ns/prov
http://www.w3.org/ns/prov#endedAtTime
http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2000/01/rdf-schema#comment
http://www.w3.org/ns/prov
http://www.w3.org/ns/prov#Agent
http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2000/01/rdf-schema#label
http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/mailbox
urn:tmp:quitp:
urn:tmp:quitp:updates
urn:tmp:quitp:
urn:tmp:quitp:graph
urn:tmp:quitp:
urn:tmp:quitp:addition
urn:tmp:quitp:
urn:tmp:quitp:deletion
http://www.w3.org/ns/prov
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov
http://www.w3.org/ns/prov#specializationOf
http://www.w3.org/ns/prov
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov
http://www.w3.org/ns/prov#Activity
http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2000/01/rdf-schema#comment
http://www.w3.org/ns/prov
http://www.w3.org/ns/prov#Agent

We represent Git names as rdfs:label since they do not necessarily contain a full
name. For calculating changesets we use the strategy provided by Quit Diff [2].
Each update is linked to the original graph and described by graphs containing
the added and deleted statements. We store every named graph contained in a file
as an instance of prov:Entity bound to their respective object hash as it is used
in Git. Further, we link it with the respective commit via prov:wasGenerated
By and attribute its origin as prov:specializationOf. An excerpt concerning
commits and entities is provided in listings 3 and 4 in section 5.

Our next step was the enrichment of the metadata in Git with additional
information: e.g. the source specification of a dataset by recording its original
URL on the Web or a SPARQL update query on a dataset resulting in a new
commit. The main problem here was that Git itself offers no built-in feature
for storing any user-defined metadata for commits or files. What Git offers in-
stead is a functionality called git notes, which is like a commentary function
on commits. Hereby, Git creates a private branch where text files, named after
the commit they comment on, resides. While this may seem sufficient, notes can
be edited like any other file under version control and our provenance would not
be protected using Git’s hashing and signing mechanism.

Thus, for extending our provenance information we have to dig a little deeper
into Git’s internal structures [4]. The internal storage structure of Git, basically,
is just a file-system based key-value store. Git uses different types of objects
to store both, structural information and data in files and addresses them with
their sha1-hash11. The types used by Git to organize its data are blobs, trees and
commits, the types are linked as shown in fig. 1.

Commit

Tree

Blob

Tree Parent Autor Committer Message

Blob Tree

Data

Figure 1. Internal structure used by Git

The content of any file that is put under version control is stored as blobs
while folders are stored as trees. A tree consists of other trees and blobs respec-
tively. Each revision is represented by a commit-object consisting of metadata,
references to parent commits and a tree-object, which is considered as root.
References such as branches and tags are simply files within Git, pointing to a
commit as their entry point to the revision history.

This leaves us with only two options where additional metadata can be stored,
blobs and commits. Even though every object type could be manually created
11 Secure Hash Algorithm

http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2000/01/rdf-schema#label
http://www.w3.org/ns/prov
http://www.w3.org/ns/prov#Entity
http://www.w3.org/ns/prov
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov#wasGeneratedBy
http://www.w3.org/ns/prov
http://www.w3.org/ns/prov#specializationOf

and put into the Git storage, unused or unreferenced, objects might later be
removed by Git’s own garbage collection.

By using blobs we could store provenance data in the way as we store all our
data, but we would have to split provenance in two different representational
formats–semantical and non-semantical–which isn’t desirable. Also, saving blobs
means users are able to manually edit and commit them. While those changes can
be reverted, having such a use case is also not desirable. Therefore our decision
was to provide and obtain additional metadata as part of the commit message
as shown in listing 1. Commit messages are unstructured data, meaning it won’t
break the commit when additional structured data is provided at the start or
end of a message.
tree 31159f4524edf41e306c3c5148ed7734db1e777d
parent 3fe8fd20a44b1737e18872ba8a049641f52fb9ef
author pnaumann <patrick.naumann@stud.htwk-leipzig.de> 1487675007 +0100
committer pnaumann <patrick.naumann@stud.htwk-leipzig.de> 1487675007 +0100

Source: http://dbpedia.org/data/Leipzig.n3

Example Import

Listing 1. Git commit with additional data

More specific workflows can be added when needed. If the stored value con-
tains line breaks, e.g. a query for a transformation is stored, we support a multi
line syntax as shown in listing 2.
Query: "SELECT ?s ?p ?o {

...
}"

Listing 2. Example for multi line key-value-pair in a commit message

The two workflows we currently support for extract, transform, load processes
are importing and transforming. For an import we store quitp:Import, a subclass
of prov:Activity, together with a quitp:dataSource property. A transformation
is represented as a quitp:Transformation activity and a quitp:query property.
Both are shown in table 2.

Non-semantical Semantical

Import quitp:Import
source quitp:dataSource

Transformation quitp:Transformation
query quitp:query

Table 2. Semantic representation of metadata for describing contributions to an ex-
isting data set

urn:tmp:quitp:
urn:tmp:quitp:Import
http://www.w3.org/ns/prov
http://www.w3.org/ns/prov#Activity
urn:tmp:quitp:
urn:tmp:quitp:dataSource
urn:tmp:quitp:
urn:tmp:quitp:Transformation
urn:tmp:quitp:
urn:tmp:quitp:query
urn:tmp:quitp:
urn:tmp:quitp:Import
urn:tmp:quitp:
urn:tmp:quitp:dataSource
urn:tmp:quitp:
urn:tmp:quitp:Transformation
urn:tmp:quitp:
urn:tmp:quitp:query

4.2 Access to the Provenance Information

To access our provenance information we follow the recommendation of the
“PROV-AQ: Provenance Access and Query” (W3C Working Group Note)12.
We provide a SPARQL interface for each state in the history of the datasets in
a Git repository as well as a SPARQL service for the provenance graph. The
states and the provenance graph are built from the metadata provided by Git
and combined with the additional metadata stored in the commit messages. To
be able to query this information we have to transform it to RDF and store the
resulting graph. This is done during a synchronization process. During synchro-
nization, the store is built from the commits stored in Git, by traversing the
Git commit history of every branch from its end, until a commit is found which
already exists in the store. A quad store serves as cache, to decrease access time,
by avoiding the complete parse procedure from the actual data stored in the Git
repository. The depth of the synchronized history as well as a selection of the
relevant branches is configurable according to the users’ needs. Therefore the
needed storage space can be reduced for devices with low storage capacities, at
the cost of time for parsing graphs on-the-fly later on.

4.3 Random Access to Dataset Revisions

All revisions Instance

Graph1

Graph2

Graph3 Graph4

Graph1 Graph2

Graph3 Graph4

Figure 2. Creating a dataset from all available revisions of named graphs

The basic concept of Git is to reuse as many of its objects as possible for a
new revision, whereby only snapshots of files that actually changed are created,
instead of a full repository snapshot. Exploiting this storage structure, we are
able to randomly checkout any Git commit in linear time. We create a revision
of ever named graph in the repository, by using object hashes as a suffix. This
12 https://www.w3.org/TR/prov-aq/

https://www.w3.org/TR/prov-aq/

allows us to lookup all objects from Git’s internal tree structure to create a
virtual dataset, shown in fig. 2, containing the state of all graphs at that commit
and run queries against it. Given a commit hash, we do this by rewriting the
original URI of a named graph with their hashed equivalent of that commit and
vice versa in query results.

5 Prototypical Demonstration

With the integration into the Quit Stack [3] in mind, we chose to build our proto-
typical implementation on the same technology, namely Python in combination
with RDFlib13 for handling the RDF files and SPARQL queries, Flask14 for the
HTTP API and pygit215 to interact with Git.
quitp:commit-f0c57d5b2b a prov:Activity, quitp:Import ;

rdfs:comment """import: http://aksw.org/NormanRadtke

initial import""" ;
prov:startedAtTime "2017-03-11T13:56:57+01:00"^^xsd:dateTime ;
prov:endedAtTime "2017-03-11T13:56:57+01:00"^^xsd:dateTime ;
prov:wasAssociatedWith quitp:user-e236a58c1c ;
prov:qualifiedAssociation [a prov:Association ;

prov:agent quitp:user-e236a58c1c ;
prov:role quitp:author, quitp:committer] ;

quitp:dataSource <http://aksw.org/NormanRadtke> ;
quitp:updates quitp:update-46cadd74a5 .

quitp:commit-2cc30bc7f5 a prov:Activity, quitp:Import ;
rdfs:comment """import: http://aksw.org/NatanaelArndt

imported natanael arndt""" ;
prov:startedAtTime "2017-03-11T13:58:44+01:00"^^xsd:dateTime ;
prov:endedAtTime "2017-03-11T13:58:44+01:00"^^xsd:dateTime ;
prov:wasAssociatedWith quitp:user-e236a58c1c ;
prov:qualifiedAssociation [a prov:Association ;

prov:agent quitp:user-e236a58c1c ;
prov:role quitp:author, quitp:committer] ;

quitp:dataSource <http://aksw.org/NatanaelArndt> ;
quitp:preceedingCommit quitp:commit-f0c57d5b2b ;
quitp:updates quitp:update-c4e8149654 .

quitp:commit-d9fe8f514e a prov:Activity ;
rdfs:comment "updated who knows who" ;
prov:startedAtTime "2017-03-11T14:05:04+01:00"^^xsd:dateTime ;
prov:endedAtTime "2017-03-11T14:05:04+01:00"^^xsd:dateTime ;
prov:wasAssociatedWith quitp:user-71cd535876 ;
prov:qualifiedAssociation [a prov:Association ;

prov:agent quitp:user-71cd535876 ;
prov:role quitp:author, quitp:committer] ;

quitp:preceedingCommit quitp:commit-2cc30bc7f5 ;
quitp:updates quitp:update-5bf3ae9594, quitp:update-cb82c36f12 .

Listing 3. Converted Git repository. We omitted parts and restrict this example on
commits ...

Listings 3 and 4 show an example provenance graph created from a Git
repository. For better illustration, we omitted parts of it, e.g. updates, agents,
13 https://rdflib.readthedocs.io/
14 http://flask.pocoo.org/
15 http://www.pygit2.org/

https://rdflib.readthedocs.io/
http://flask.pocoo.org/
http://www.pygit2.org/

and roles, for they are not required for this demonstration. The first part shows a
full conversion of a repository, containing three commits and two named graphs,
the second part shows how graphs were stored. Both graphs were copied from an
external source, therefore a key-value pair was provided in the commit message
(rdfs:comment) accordingly, as shown in listing 3. With this additional metadata
a more specific activity, namely quitp:Import, was generated, together with the
attribute quitp:dataSource for the external source.
quit:radtke-46cadd74a5 prov:specializationOf quit:radtke ;

prov:wasGeneratedBy quitp:commit-2cc30bc7f5 .

quit:arndt-c4e8149654 prov:specializationOf quit:arndt ;
prov:wasGeneratedBy quitp:commit-2cc30bc7f5 .

quit:arndt-cb82c36f12 prov:specializationOf quit:arndt ;
prov:wasGeneratedBy quitp:commit-d9fe8f514e .

quit:radtke-5bf3ae9594 prov:specializationOf quit:radtke ;
prov:wasGeneratedBy quitp:commit-d9fe8f514e .

Listing 4. ... and graph revisions

As listing 4 shows, four blobs were stored by Git in those three commits. One
blob for each import, since Git needed to create a file holding the imported named
graph. The other two commits were created upon the third commit, where both
graphs were edited. This example shows, that the second commit only required
a partial snapshot, without losing any information by reusing blobs from the
previous commit. Next, we will explain how to obtain a graph containing the
exact state from that commit. When a state is requested by its commit, we
generate a mapping for all named graphs that existed in the given commit.
Because of the additional overhead, not all object-to-commit mappings exist
in the provenance graph, only those which create an object. If an object is
unchanged for a commit, the mapping is omitted, but can be taken from Git’s
internal data structure.

100644 blob c4e8149654 arndt.nt
100644 blob 46cadd74a5 radtke.nt

Listing 5. Content of the tree object
from the second commit. Showing two
contained files and their hashes

{ 'quit:radtke': 'quit:radtke-46cadd74a5',
'quit:arndt': 'quit:arndt-c4e8149654' }

Listing 6. Mapping for instance graph
based on Git hashes

For our example, listing 5 shows how Git stored the two named graphs from
the second commit in a tree object, while listing 6 shows our mapping, which
allows us to access any graph with the state of the second commit. As shown in
the listings above, we can obtain the missing hashes for our mapping from Git.
Any query to a graph including such mapping is rewritten to match our stored
partial snapshots instead of the requested named graphs, and translated back
after the request has finished.

5.1 Quit Blame
As an example for the usage of provenance, similar to the functionality of git
blame, we have also built a method to retrieve the origin of each individual

http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2000/01/rdf-schema#comment
urn:tmp:quitp:
urn:tmp:quitp:Import
urn:tmp:quitp:
urn:tmp:quitp:dataSource

statement in a dataset and associate it with its entry in the provenance graph.
Given an initial commit, we traverse the Git history to find the actual commit
of each statement when it was inserted and annotate it with the metadata for
that commit.

Commit 1 Commit 2 Commit 3 Commit 4 Commit 5
insert

insert delete insert

insert delete
insert

Figure 3. Example for an insert/delete chain in Git used by git-blame

The three statements that exist in the fourth commit of fig. 3 therefore,
should be matched with the commits 1, 4 and 3 respectively, since those are the
commits where the statements were introduced. We are utilizing SPARQL 1.1
features to provide values to a query, we list all quads without an annotation
and query our provenance graph with the query shown in listing 7. We also bind
the ?commit variable to the given commit.
SELECT ?s ?p ?o ?context ?commit ?name ?date WHERE {
?commit prov:endedAtTime ?date ;

prov:wasAssociatedWith ?user ;
quitp:updates ?update .

?user foaf:mbox ?email ;
rdfs:label ?name .

?update quitp:graph ?context ;
quitp:additions ?additions .

GRAPH ?additions {
?s ?p ?o

}
VALUES (?s ?p ?o ?context) {
...

}
}

Listing 7. Query for git blame implementation

Using this method on the second commit of the example from the previous
section, we get the results presented in table 3:

6 Conclusion

Tracking and exploring provenance is crucial in a collaborative environment, as
the Web of Data. In this paper we have examined, how metadata and datasets
stored in a Git repository can be enriched, processed and used semantically.
We’ve built this work on top of the foundation provided by the Quit Stack and

subject predicate object context commit committer timestamp

aksw:NormanRadtke foaf:mbox mailto:radtke@... quit:radtke f0c57d5b2b pna 2017-03-11T13:56:57+01:00
aksw:NormanRadtke rdfs:type foaf:Person quit:radtke f0c57d5b2b pna 2017-03-11T13:56:57+01:00
aksw:NatanaelArndt foaf:mbox mailto:arndt@... quit:arndt 2cc30bc7f5 pna 2017-03-11T13:58:44+01:00
aksw:NatanaelArndt rdfs:type foaf:Person quit:arndt 2cc30bc7f5 pna 2017-03-11T13:58:44+01:00

Table 3. Result of git blame adaption for the second commit

added methodologies for how Git commits, their metadata and datasets can be
used for provenance. For functionality, we adapted the git blame command to
quit blame for semantic data. Thus we are able to track the provenance on any
update operation in the dataset (use cases 1 and 2, section 1; requirement 1
section 3). With the provenance graph, we are also able to explore the recorded
data using SPARQL (use case 2, requirement 2) and due to its graph struc-
ture we are also able to represent any kind of a branched and merged history
(requirement 5). Using quit blame we are able to track down the origin of any
individual statement in a dataset (use case 3, requirement 4). With our random
access query interface we can also execute SPARQL queries on the store at the
status of any revision (requirement 3).

With the presented system we can provide access to the automatically tracked
provenance information with semantic web technology in a distributed collabo-
rative environment. In future research, one of the biggest challenges might be,
storing the RDF metadata in a more efficient way. Further the query perfor-
mance and storage overhead of the current prototypical implementation has to
be investigated.

7 Acknowledgements

This work was partly supported by a grant from the German Federal Ministry
of Education and Research (BMBF) for the LEDS Project under grant agree-
ment No 03WKCG11C and the DFG project Professorial Career Patterns of the
Early Modern History: Development of a scientific method for research on online
available and distributed research databases of academic history under the grant
agreement No GL 225/9-1.

References

1. Arndt, N., Nuck, S., Nareike, A., Radtke, N., Seige, L., Riechert, T.: AMSL: Cre-
ating a linked data infrastructure for managing electronic resources in libraries.
In: Horridge, M., Rospocher, M., van Ossenbruggen, J. (eds.) Proceedings of the
ISWC 2014 Posters & Demonstrations Track. CEUR Workshop Proceedings, vol.
Vol-1272, pp. 309–312. Riva del Garda, Italy (Oct 2014)

2. Arndt, N., Radtke, N.: Quit diff: Calculating the delta between rdf datasets under
version control. In: 12th International Conference on Semantic Systems Proceed-
ings (SEMANTiCS 2016). SEMANTiCS ’16, Leipzig, Germany (Sep 2016)

3. Arndt, N., Radtke, N., Martin, M.: Distributed collaboration on rdf datasets using
git: Towards the quit store. In: 12th International Conference on Semantic Systems
Proceedings (SEMANTiCS 2016). SEMANTiCS ’16, Leipzig, Germany (Sep 2016)

4. Chacon, S., Straub, B.: Pro git. Apress (2014)
5. De Nies, T., Magliacane, S., Verborgh, R., Coppens, S., Groth, P., Mannens, E.,

Van de Walle, R.: Git2prov: exposing version control system content as w3c prov.
In: Proceedings of the 2013th International Conference on Posters & Demonstra-
tions Track-Volume 1035. pp. 125–128 (2013)

6. Dodds, L., Davis, I.: Linked data patterns (May 2012), http://patterns.
dataincubator.org/

7. Dublin Core Metadata Initiative, et al.: DCMI metadata terms (2004), http://
dublincore.org/documents/dcmi-terms/

8. Graube, M., Hensel, S., Urbas, L.: R43ples: Revisions for triples. In: Proceedings
of the 1st Workshop on Linked Data Quality co-located with 10th International
Conference on Semantic Systems (SEMANTiCS 2014) (2014)

9. Groth, P., Gil, Y., Cheney, J., Miles, S.: Requirements for provenance on the web.
International Journal of Digital Curation 7(1), 39–56 (2012)

10. Halilaj, L., Grangel-González, I., Coskun, G., Auer, S.: Git4voc: Git-based version-
ing for collaborative vocabulary development. In: 10th International Conference on
Semantic Computing. pp. 285–292. Laguna Hills, California (Feb 2016)

11. Lebo, T., Sahoo, S., McGuinness, D., Belhajjame, K., Cheney, J., Corsar, D., Gar-
ijo, D., Soiland-Reyes, S., Zednik, S., Zhao, J.: Prov-o: The prov ontology. W3C
recommendation 30 (2013)

12. Moreau, L., Clifford, B., Freire, J., Futrelle, J., Gil, Y., Groth, P., Kwasnikowska,
N., Miles, S., Missier, P., Myers, J., et al.: The open provenance model core spec-
ification (v1. 1). Future generation computer systems 27(6), 743–756 (2011)

13. Nareike, A., Arndt, N., Radtke, N., Nuck, S., Seige, L., Riechert, T.: AMSL: Man-
aging electronic resources for libraries based on semantic web. In: Plödereder,
E., Grunske, L., Schneider, E., Ull, D. (eds.) Proceedings of the INFORMATIK
2014: Big Data – Komplexität meistern. GI-Edition—Lecture Notes in Informat-
ics, vol. P-232, pp. 1017–1026. Gesellschaft für Informatik e.V. (Sep 2014), © 2014
Gesellschaft für Informatik

14. Nguyen, V., Bodenreider, O., Sheth, A.: Don’t like rdf reification?: making state-
ments about statements using singleton property. In: Proceedings of the 23rd in-
ternational conference on World wide web. pp. 759–770. ACM (2014)

15. Riechert, T., Beretta, F.: Collaborative research on academic history using linked
open data: A proposal for the heloise common research model. CIAN-Revista de
Historia de las Universidades 19(0) (2016)

16. Riechert, T., Morgenstern, U., Auer, S., Tramp, S., Martin, M.: Knowledge engi-
neering for historians on the example of the catalogus professorum lipsiensis. In:
Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Hor-
rocks, I., Glimm, B. (eds.) Proceedings of the 9th International Semantic Web
Conference (ISWC2010). Lecture Notes in Computer Science, vol. 6497, pp. 225–
240. Springer, Shanghai, China (2010)

17. Tappolet, J., Bernstein, A.: Applied temporal rdf: Efficient temporal querying of rdf
data with sparql. In: European Semantic Web Conference. pp. 308–322. Springer
(2009)

http://patterns.dataincubator.org/
http://patterns.dataincubator.org/
http://dublincore. org/documents/dcmi-terms/
http://dublincore. org/documents/dcmi-terms/

	Exploring the Evolution and Provenance of Git Versioned RDF Data

