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Abstract

Certified programming is one of the desirable approaches to developing
dependable software, where expected properties of programs are for-
mally proved by proof assistants such as Coq. One way for certified
programming with Coq is to define a function, give proofs for its prop-
erties in Coq, and then extract a program in OCaml. Another way
for certified programming with Coq is to import the definition from
OCaml and give proofs for its properties in Coq. Since translations in
both methods are unidirectional, we can modify only either of Coq and
OCaml. That makes it hard to develop large certified programs.

To solve this problem, we propose a new framework for certified pro-
gramming through bidirectional transformation between Coq functions
and OCaml programs. In our system, one can develop certified pro-
grams by modifying both Coq functions and OCaml programs alter-
natingly. All updates of the OCaml program are reflected to the Coq
function, and vice versa, while reusing as many parts of the original
one as possible.

1 Introduction

Certified programming is one of the desirable approaches to developing dependable software, where most expected
properties of programs are formally proved by proof assistants such as Coq [Coq16]. The CompCert verified
C compiler [Ler09] is a good model of certified programming. Products and systems developed by certified
programming have been enabled to meet the formal requirements of the highest common criteria (ISO 15408)
as “EAL7: formally verified design and tested”. For example, Trusted Logic formalized the full specification of
JavaCard using Coq and succeeded to be awarded the EAL7 [BC10].

The Coq system provides a mechanism of program extraction to support certified programming. All functions
defined in Coq can be translated into a program described in (executable) programming languages, OCaml,
Haskell, or Scheme. Thanks to the extraction mechanism, what we should do for certified programming is to
specify the definitions of functions and to prove their properties in Coq. The portion of proofs and types is
discarded by the extraction because they are not used for executing the program whose properties have already
been verified. We may develop a fully verified software through program extraction by specifying all functions
in Coq.

However, it is much harder to define functions in Coq than to write programs in generic programming languages
like OCaml even though OCaml has a close connection with Coq for historical reasons and Coq itself is written
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in OCaml. The major difference is that we must care for totality of functions and termination of recursion
in Coq. In addition, all functions have to be defined without either side effects or exception handling. These
requirements make certified programing in Coq more difficult.

In actual development with certified programming, we make a compromise by specifying functions in Coq
only for a part of the large programs. One may develop a software using both Coq and OCaml, where the whole
program is written in OCaml and a part of functions in it are verified in Coq. There are two approaches to this
mixed style of programing, prove-and-extract and import-and-prove.

In the prove-and-extract method, we define important functions in Coq and give proofs for their properties
in Coq. Then we translate them into equivalent OCaml programs by the extraction mechanism of Coq so that
they can be referred from the other user-written OCaml programs. In this style, we have to carefully specify
functions in Coq because the program extraction of Coq may generate a program that behaves equivalently but
has an unexpected type. For example, consider the following function of type nat * nat -> nat specified in
Coq:

Definition add_pair (p: nat * nat) := let (x, y) := p in x + y.

which takes a pair of natural numbers and returns their sum. The program extraction produces an OCaml
program

let add_pair = function Pair (x, y) -> add x y

that is semantically equivalent to the original one but has type (nat, nat) prod -> nat even if the OCaml
function of type nat * nat -> nat might be expected. Although some cases may be solved by the representation
mapping mechanism of Coq (e.g., Extraction Inductive), it is not easy in general to predict extracted OCaml
programs from Coq scripts.

In the import-and-prove method, we write the whole program in OCaml language and only important functions
in it are translated into functions to be accepted in Coq. Then we prove their expected properties in Coq
independently from the original program. In this style, we never suffer from the unexpected program extraction
of Coq. CFML [Cha11] and CoqOfOCaml [Cla14] are possible approaches to the import-and-prove method,
in which one can verify existing OCaml programs by translating them into Coq. However, the proof of the
properties cannot be reused if the specification of the OCaml programs is updated. We need to retranslate the
program and prove the properties from scratch. In addition, the existing approaches generate different structures
of functions in Coq. This also makes it hard to reuse the original proof for updates.

In this paper, we propose a new framework which combines both advantages of the prove-and-extract and
import-and-prove methods. Our key idea is a bidirectional transformation between Coq functions and OCaml
programs. In our system, one can develop certified programs by modifying both Coq functions and OCaml
programs alternatingly. All updates of the OCaml program are reflected to the Coq function, and vice versa,
while reusing as many parts of the original one as possible.

Our system is designed so as to meet the following requirements:

• The specification of functions are given in OCaml so that we can obtain the advantage of the import-
and-proof style for certified programming. Since we need to combine with the other user-written OCaml
programs in the final product, the specification should be provided by OCaml instead of Coq.

• OCaml programs are translated into Coq with preserving as much information as possible. Initial translation
just generates an equivalent Coq script from the OCaml program. If the translation has been done before,
Coq-specific portions, in particular statements and their proofs, should be left as they are. The user may
have to revise the proof of properties of a function in Coq if its definition is updated in OCaml.

• Updates in Coq are reflected to OCaml as far as needed so that we can modify the definition of types
and functions in Coq (without changing their behaviors) to make it easy to verify their properties. The
translated Coq functions may be too complicated to treat for certification because OCaml has a less powerful
type system than Coq (e.g., partial type application). Hence the Coq script should be modifiable and the
modification should be reflected to OCaml whenever needed.

• Whatever is common between Coq and OCaml should be synchronized so that we can modify as flexibly as
possible in the both side of Coq and OCaml. One may prefer to use the syntax only allowed in one side, e.g.,
inlined pattern in OCaml and binding variables sharing the same type in Coq. The system should translate
them correctly and be preserved as much as possible against updating.



Figure 1: Possible scenario for our system

All of these requirements are achieved by combining with four bidirectional transformations between five data,
Coq script text, Coq AST, common data, OCaml AST, and OCaml program text. Two bidirectional transforma-
tions between text and AST are implemented with BiYacc [KZH16] which preserving comments and indentations
appropriately. The other two between ASTs are implemented with BiGUL [ZZK+16] which is a formally-verified
bidirectional language.

2 System overview

This section explains how users develop a program through bidirectional transformation between Coq and OCaml,
giving a possible scenario using our system and a concrete example of practical situations.

2.1 Possible scenario

Figure 1 shows a possible scenario using our system as follows:

1. We first write an OCaml program P0 to be verified. Our system translates it into a function D0 in Coq.

2. When the function definition in Coq is required to change for making it easier for the users to prove its
property, we may modify the definition and give the proof. Our system translates the modified function D1

into a new OCaml program P1 which is obtained by updating with a possibly small modification.

3. When the specification of the OCaml program is required to be changed due to updates of the other user-
written program, we may modify the translated program P1 to one that satisfies the requirement. Our
system translates the updated program P2 into a new function definition D2 in Coq as a possibly small
modification for D1.

4. The proof should be modified in general because the function definition is changed. Most of the original
proof may be reused for the modification. Our system does not try to translate the updated script in Coq
unless the function definition is changed.

This is a typical scenario for certified programming using our system, where can modify both OCaml programs
and their corresponding functions in Coq. The ‘possibly small modification’ requirement in steps 2 and 3 is
fulfilled by a put-based implementation written in BiGUL as mentioned later. Our solution in the current
implementation may not be optimal, though. What should be emphasized here is that both Coq script and
OCaml program can be a ‘source’ of bidirectional transformation in terms of bidirectional lenses [FGM+07]. The
‘view’ is an internal data which contains common information of the both languages.

2.2 Example of the usage

We shall show a concrete example of the usage of our system. Consider the case where the user initially writes
an OCaml program:

type ’a binary_tree =

| Leaf of ’a

| Node of ’a binary_tree * ’a binary_tree

let rec size (bt : int binary_tree) : int = match bt with

| Leaf i -> i + 1

| Node (bt1, bt2) -> size bt1 + size bt2



where the type declaration specifies a polymorphic type binary_tree with a type variable ’a and the let rec

declaration defines a recursive function that computes a size of binary trees by summing up all integer values at
leaves after incrementing by one. Our system translates the OCaml program into a script in Coq:

Inductive binary_tree ( A : Type ) : Type :=

| Leaf : A -> binary_tree A

| Node : binary_tree A * binary_tree A -> binary_tree A.

Fixpoint size ( bt : binary_tree nat ) : nat := match bt with

| Leaf _ i => i + 1

| Node _ (bt1, bt2) => size bt1 + size bt2

end.

where type int is translated into nat (type of natural numbers) in Coq by default. The user may modify nat into
Z (type of integers) without changing the type int in OCaml after reflecting the update. Although the definition
of recursive functions in Coq requires the evidence of termination in general, this kind of structural recursion is
automatically guaranteed to terminate. Because of the difference of the type systems between Coq and OCaml,
the constructors Leaf and Node have to take an additional argument for instantiating a type variable in the
polymorphic type.

The user may certify the property of the size function that it returns a positive integer for any inputs. The
Coq script is updated as:

Require Import Omega.

Inductive binary_tree ( A : Type ) : Type :=

| Leaf : A -> binary_tree A

| Node : binary_tree A * binary_tree A -> binary_tree A.

Fixpoint size ( bt : binary_tree nat ) : nat := match bt with

| Leaf _ i => i + 1

| Node _ (bt1, bt2) => size bt1 + size bt2

end.

Functional Scheme size_ind := Induction for size Sort Prop.

Theorem size_gt_zero : forall bt, 0 < size bt.

Proof.

apply (size_ind (fun bt s => 0 < s)); intros; omega.

Qed.

where the statement size_gt_zero represents the property to be certified. The user adds a few commands for
proving the statement. We do not give details of the proof here because it is not essential. In our system, this
modification does not update the original OCaml program because the definitions of types and functions are left
as they are.

Now consider the case where the specification of the size function is changed so that it counts the number
of leaves as follows:

let rec size (bt : int binary_tree) : int = match bt with

| Leaf i -> 1

| Node (bt1, bt2) -> size bt1 + size bt2

where we just modify the branch Leaf in the pattern matching of bt to be 1 instead of i + 1. For this
modification, our system updates only the definition of the size function as:

Fixpoint size ( bt : binary_tree nat ) : nat := match bt with

| Leaf _ i => 1

| Node _ (bt1, bt2) => size bt1 + size bt2

end.



Figure 2: Data flow in our system

and the other descriptions are left as it was. Since our system leaves all proofs of statements as they were, the user
might have to modify the proof of the size_gt_zero statement because the definition of the involved function
size is changed. However, in this case, fortunately, any modification is not required due to the genericity of the
omega tactic that solves Presburger arithmetic formulas. The original proof can be used without changing for
this modification.

The user may change the type of natural numbers nat into the type of integers Z and replace * in the
definition of inductive data type with -> to make it curried. This modification does not affect updates of the
OCaml program but makes it easy to prove its properties in many cases as explained in Section 3.2. In addition, if
the termination of recursive definition is not automatically detected, the user should add the proof by redefining
the function.

3 Design and implementation

We design our system so as to meet our requirements through combining four bidirectional transformations as
mentioned in Section 1. This section gives a summary of architecture of our system and how we achieve a
bidirectional transformation between a Coq script and an OCaml program.

3.1 Architecture of our system

Our system is based on combination of four bidirectional transformations as shown in Fig. 2 where common data
contains shared information between Coq and OCaml ASTs. Two outer bidirectional transformations, between
Coq script and Coq AST and between OCaml program and OCaml AST, are described in BiYacc [ZZK+16]
where the text side is a source and the AST side is a view. BiYacc makes it possible to modify an AST with
preserving comments and indentations in the text. Two inner bidirectional transformations, between Coq AST
and common data and between OCaml AST and common data, are described in BiGUL [KZH16] where the AST
side is a source and the common data side is a view. BiGUL makes it easy to write a translation between Coq
and OCaml because of its put-based semantics.

3.2 Filling the gap between Coq and OCaml

Even though Coq and OCaml have similar syntax because of their close relationship, the gap between them is not
so small for translating one into another. For example, OCaml allows inlined patterns like let f (x,y) = ... in
a function definition but Coq does not, and Coq allows curried data constructors like Cons: A -> List -> List

but OCaml does not. Although such differences could be ignored just as unsupported notations, our system tries
to allow them for flexible programming in both Coq and OCaml sides. We give a brief summary for their
differences and how to deal with them in our system. For simplicity, we will explain here the bidirectional
translation between Coq and OCaml as it were directly defined without intermediate common data. The actual
translation of our system is done through an intermediate data structure which stores shared information between
Coq and OCaml. This is implemented by combining with two bidirectional transformations in BiGUL.

Type conversion

Since Coq has a more powerful type system than OCaml, the translation from Coq to OCaml either drops
some information or merges informative types into a single type. For example, a user-defined data type in Coq
is usually declared as a subtype of Type or Set depending on the usage. This information is dropped in the
translation to OCaml but preserved in the update reflection from OCaml. Another example is two types for the
numbers in Coq, nat (natural numbers) and Z (integers). Our system translates these types into the same type
int in OCaml. The update reflection of this type from OCaml to Coq preserves the original type.



Binding variables of the same type

Coq has abbreviated syntax for multiple parameters sharing the same type, while OCaml requires to declare a
type for each parameter separately. One can write (x y z:τ) for (x:τ)(y:τ)(z:τ) in Coq. In our system, the
translation from the separated style to the abbreviated one checks if the consecutive parameters have the same
type. For example, consider the case where (x y z:nat) in Coq is translated into (x:int)(y:int)(z:int) in
OCaml. When the specification in OCaml is changed to (x:int)(y:int)(z:string), our system updates the
Coq script as (x y:nat)(z:string).

Inlined parameter patterns

OCaml allows to describe a pattern as a parameter in the function definition like let f (x, y) = x + y, which
is not supported in Coq. Our system solves the problem only for a pair pattern. Introducing a new variable x_y,
this OCaml program is translated into

Definition f x_y := let (x, y) := x_y in x + y.

where two parameters x and y are extracted from x_y by the let binding. Patterns other than pairs in OCaml
can be supported in a similar way.

Locally-defined recursive functions

Coq and OCaml have different syntax to represent a recursive function in a local context. An expression
fix f x := e in Coq is evaluated to a recursive function itself, while an expression let rec f x = e in e′ in
OCaml is evaluated by e where f is bound to the recursive function. For Coq-to-OCaml translation, the expression
fix f x := e maps into (let rec f x = e in f) as default. When the expression occurs at the beginning of the
let-binding (of the same function name) like let f := (fix f x := e) in e′, the whole expression is translated
into let rec f x = e in e′. For OCaml-to-Coq translation, the expression let rec f x = e in e′ is translated
into let f := (fix f x := e) in e′.

Curried data constructors

Coq allows a curried data constructor like Node in the following definition.

Inductive binary_tree1 (A: Type): Type :=

| Leaf : A -> binary_tree1 A

| Node : binary_tree1 A -> binary_tree1 A -> binary_tree1 A.

For example, Node (Leaf 1) (Leaf 2) is a binary tree of type binary_tree1 nat. OCaml requires uncurried
style for data constructors like

type ’a binary_tree2 =

| Leaf of ’a

| Node of ’a binary_tree2 * ’a binary_tree2

where Node must take a pair of binary trees to construct a binary tree. The type variables are translated into
those in the OCaml style. As we have seen in Section 2.2, our system translates into

Inductive binary_tree2 (A: Type): Type :=

| Leaf : A -> binary_tree2 A

| Node : binary_tree2 A * binary_tree2 A -> binary_tree2 A.

where the Node constructor is not uncurried. This uncurried definition for inductive data types is known to be
quite harmful for proving the statement in Coq because its induction principle is futile unlike that of the curried
type binary_tree1.

To solve this problem, our system allows the users to change the definition in Coq into the curried one
like binary_tree1 without affecting the reflection to the OCaml programs. Accordingly, every occurrence of
Node e1 e2 in Coq is translated into Node(e′1,e′2) in OCaml where e′1 and e′2 are appropriate translations of e1
and e2, respectively.



Curried type constructors

Coq allows also a curried type constructor like either in the following definition:

Inductive either (A B: Type): Type :=

| Left : A -> either A B.

| Right : B -> either A B.

corresponding to

type (’a, ’b) either =

| Left of ’a

| Right of ’b

in OCaml where polymorphic type variables should be passed as a tuple. Our system assumes that all type
constructors of Coq are curried and those of OCaml are uncurried, hence it converts the curried/uncurried style
for Coq/OCaml translation.

Function expressions

OCaml has special syntax for function expressions function . . . that is equivalent to
fun x => match x with . . . end in Coq. This is a convenient syntax sugar for pattern matching func-
tions in OCaml. The translation of this expression into Coq is not so straightforward. Consider the recursive
definition of the fact function:

let rec fact = function 0 -> 1 | n -> n * fact (n - 1)

This should not be simply translated into

Fixpoint fact := fun X => match X with 0 => 1 | n => n * fact (n - 1) end.

with a fresh variable X because the recursive function must have parameters. Our system solves the problem by
translating it into

Fixpoint fact X := match X with 0 => 1 | n => n * fact (n - 1) end.

by detecting that the location is the beginning of the body of the recursive function definition.

3.3 Limitation of syntax

Our system imposes several restrictions to both Coq and OCaml. First, it is for data constructors in Coq.
We must use capital names for data constructors and partial application of data constructors are not allowed.
Second, user-defined prefix and infix operators are prohibited in OCaml. This is because of the current limitation
of the BiYacc parsers. Additionally, we only support the basic feature of Coq and OCaml. Record, type class,
and extending notation are not supported.

4 Related work

There are several approaches to certified programming by a ‘unidirectional’ translation but in both Coq-to-
OCaml and OCaml-to-Coq directions. However, we cannot combine these translations for bidirectional certified
programming we aim for.

For Coq-to-OCaml, we could use the program extraction mechanism [Let08] provided by Coq. Many existing
certified softwares such as CompCert C compiler [Ler09] were developed in this approach. For OCaml-to-Coq,
we could use CFML [Cha11] or CoqOfOCaml [Cla14]. In CFML, all function definitions in OCaml are translated
into Coq axioms, which are never translated into OCaml by the program extraction. In CoqOfOCaml, the type
of functions may be changed through translating OCaml to Coq. For example, the translation of a recursive
function adds a ‘fuel’ as an additional argument to define a corresponding terminating function because Coq does
not accept definitions of non-terminating functions. As the result of the program extraction from the translated
function, a function of a different type is obtained. Our system does not change the type of functions. The
proof of its termination can be added after the translation if Coq fails to detect the evidence of the termination.
Adding the proof will not affect the function definition in OCaml when reflecting the modification.



5 Conclusion

We proposed bidirectional certified programming which have advantages of both proof-and-extract and import-
and-proof approaches, where a Coq script and an OCaml program are modified alternatingly. Every modification
in one side is reflected into another side with preserving the original description as much as possible by combining
four bidirectional transformations. This makes it easy to prove properties in Coq and to write programs in
OCaml. Our system succeeded to translate more than half (27 out of 48) of function definitions in the List

module provided in OCaml. Most of the failures are caused by lack of exception handling in Coq.
The current implementation still imposes restriction on the style of programming, e.g., data constructors in

Coq should be capitalized, user-defined infix operators are prohibited. Although some of these restrictions come
from the limitation of BiYacc, it will be soon resolved in near future.

Additionally, our system itself is not developed by certified programming, that is, the translation is not
guaranteed to preserve the semantics. This problem is common with the program extraction of Coq [Let08] in
the proof-and-extract approach and existing work [Cha11, Cla14] in the import-and-proof approach. We wish
for BiGUL to have a facility for formally-specified semantic preserving translation because our bidirectional
translation strongly relies on BiGUL. Or otherwise we should take an approach in a way similar to the success
of CakeML [MO14] which achieves certified extraction from HOL.
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