
Goal-aware Analysis of Software License Risks

Fitsum Meshesha Kifetew1, Mirko Morandini1, Denisse Munante1,
Anna Perini1, Alberto Siena2, and Angelo Susi1

1 Fondazione Bruno Kessler (FBK)
kifetew,morandini,munante,perini,susi@fbk.eu

2 Delta Informatica
alberto.siena@deltainformatica.eu

Abstract. Open Source Software (OSS) components are characterised
by heterogeneous licenses that give the possibility to use, modify and of-
ten redistribute the source code. Their adoption meets several adopter’s
needs, such as cost reduction, standards alignment, and so on. However,
often OSS projects retain several different (or missing) licenses for the
various components and files, which raise risks of violations and poten-
tial legal issues, if not correctly managed. This makes necessary to un-
derstand the characteristics and implications of licensing and their rela-
tion to the adopter’s goals. In this paper we report the use of risk as-
sessment techniques to make inference about license risk exposure asso-
ciated with each business goal. We rely on existing knowledge, gathered
from domain experts, and map it onto formal models that can be auto-
matically analysed to provide some evidence about relevant license in-
formation and related risk. Goals are used to drive the software license
selection. We illustrate the approach for the case of a research and inno-
vation action project funded under the H2020 framework

Keywords: Open Source; Risk Analysis; Software Licenses

1 Introduction

Open Source Software (OSS) relies on the definition of licenses that on one had
guarantee to users the possibility to use, modify and often redistribute the source
code without paying a fee, but on the other hand include restrictions for redis-
tribution, attribution, advertising, and so on. Many different license types have
been defined over the years, and many OSS components – built on top of other
components – contain collections of different licenses. The differences among li-
censes concerns important aspects such as the possible forms of free and com-
mercial redistribution, compatibility with other licenses, forms of attribution, li-
cense modifiability, and so on. Requirements engineers start to be aware that
licensing is an important issue to face in order to support business objectives,
and that the characteristics of license texts may have a critical impact on the
commercial success of the adopter.



As with other project types, research project often deliver software artefacts
with the objective to promote research dissemination in a given field and to cre-
ate opportunity of innovation. As such, although not pursuing any commercial
objective, when releasing software, research projects need to tackle with the li-
censing problem. In the SUPERSEDE project, a prototype software has to be
delivered. The license selection is a mandatory task, whose actual implemen-
tation faces the need to (i) have experts in the license field; (ii) agree among
the various project partners; and (iii) make the best decision with respect to
the project strategic objectives. There have been numerous work that deal with
the simple OSS licensing analysis [4, 5] However, all of them seem to be limited
to numerical measurements of OSS characteristics, while the assessment of the
overall licensing relevance with respect to the adopter’s goals, is not addressed.

In this paper, we present a preliminary report about the use of a combined
RiskML+i* modelling and analysis framework to (a) build a comprehensive
model of licensing issues as well as the higher level strategic objectives, (b)
feed an automated analysis session with real data collected from existing OSS
repositories, and (c) derive some evidence about the impact of licenses on the
strategic goals, in order to drive a more aware license selection.

The paper is structured as follows: Section 2 presents the RiskML+i* mod-
elling framework; Section 3 reports the application of the modelling framework
to an European research project; finally, Section 4 concludes the paper.

2 RiskML

RiskML is [8] is a modelling language whose meta-model is integrated with
that of i* to model risky events and their relation to strategic objectives. It
borrows come modelling primitives from other i* extensions, such as the goal-risk
framework [1], to reduce the introduction of redundant constructs. The language
builds upon the main concepts of Indicator, Situation, Event and Goal. An
Indicator is an abstract representation of a measure about a certain property of
the OSS [2]. An indicator determines the evidence of being in a certain situation.
We use the concept of Situation to model the circumstances under which a
certain risk holds. A situation is satisfied if the state of affairs that it represents
holds [2, 7]. We use the concept of Event to model a change in circumstances,
with a potential negative impact on goals. The concept of Goal and, in a more
broad sense, that of Intentional are the same as in i* . Event occurrence may
happen with a certain likelihood and severity. If φ is a proposition describing an
event, lik(φ) describes the likelihood of the event. sev(φ) describes the severity
of the event. A Risk is a composed concept which expresses a lack of knowledge
about some happening and what could be the (negative) consequences on goals.
A set of relations link indicators, situations, events, and goals, and thus define
implicitly the occurrence of a risk: Expose, from a situation to an event: the
higher the evidence that the situation is satisfied, the more likely the event is
to happen (the evidence value represents the degree of confidence that a fact
is true); Protect, from a situation to an event: the higher the evidence that the



situation is satisfied, the less likely the event is to happen; Increase, from a
situation to an event: the higher the evidence that the situation is satisfied, the
more severe is the event consequence; Mitigate, from a situation to an event: the
higher the evidence that the situation is satisfied, the less severe is the event
consequence. Impact, from an event to a goal: the more the event is likely and
the more there is evidence that its consequences are severe, the more the goal is
at risk to fail. Indicate, from an indicator to a situation: the higher the value of
an indicator, the higher the evidence that the situation is satisfied.

3 Goal-aware license risk analysis

In the context of the SUPERSEDE European project, the need arose, to select a
license for the software to be implemented. In order to select the proper license,
two aspects had to be taken into consideration: (a) the optimal license had to
be selected to achieve project-wide objectives, such as increasing the project
visibility and acceptance in the industry, as well as fostering the integration with
the OSS communities; and (b) an important requirement was that of choosing
a safe license combination, allowing to achieve the project objectives without
generating legal issues. In such context, the RiskML framework was used to help
in performing the right choice.

Firstly, we have built the RiskML+i* risk model, which is depicted in Fig-
ure 1. The model is generic and can be tailored to requirements for specific closed
or open source licenses for the final product, i.e. linking the model to the goals
of the adopter organisation. The model has been built using state-of-the-art lit-
erature [6] and on interviews with OSS licensing experts. The model contains 17
license indicators, such as “number of GPL licenses”, “number of MIT licenses”
and so on. Additionally, there are some indicators to capture the target license
(the license to cover the released software product, containing the OSS compo-
nents) or the linking type (i.e., whether a given OSS component is linked stati-
cally or dynamically). Some Situations are used to capture specific values of the
indicators: for example, the occurrence of particular combinations of licenses.
Risk indicators and situations are then aggregated into higher level risks, up to
the identification of the top level risks. Overall, 12 risk types have been identified:
Internal incompatibility risk. Risk that two (or more) of the adopted com-
ponents have licenses that are compatible with each other.
External incompatibility risk. Risk that the target license (licenses, in case
of dual licensing) is incompatible with one or more of the component licenses.
Lack of affinity risk. Risk that arises from the need of maintaining a given
corporate licensing scheme. It measures how this set of components, although
being compatible, deviates from the desired scheme.
Future uncertainty risk. Risk due to the low degree of freedom in the choice
of the target license.
Reduced target license set. Risk due to the low degree of freedom in the
choice of the target license because of the licenses of all components.
Declining components licenses. Risk that the project includes components



#s:gpl

i

#lgpl

i

#licenses

i

#target:GPL

i

#target:LGPL

i

Internal Static
incompatibility

MIT-GPL

Internal
incompatibility

MIT-LGPL

Internal
Static

incompatibility

External incompatibility
MIT-GPL

External incompatibility
MIT-LGPL

External
incompatibility

External
Incompatibility

Risk

#equal-
licenses

i

#compatible-
licenses

i

#license-types

i
Low affinity

fx Affinity
Risk

expose

expose

or

or
expose

Future Integration
Risk

fx

Low licensing
feeedom

expose

#p:mit

i

#d:gpl

i

#p:gpl

i

sum

sum

Internal Dynamic
incompatibility

MIT-GPL

Internal
Dynamic

incompatibility

Internal
incompatibility

OR

#mit-compat

i

sum

fx

fx

Internal
Incompatibility

Risk

expose

#p:s:mit

i

Adopter

Industry-
friendly license 

selected

Avoid 
uncompliance

Measure layer Risk layer Goal layer

Integrate with 
OSS communities

Promote 
project

—D

Fig. 1. RiskML license risk graph

released under declining licenses.
Declining target license. Risk that the selected target license is declining.
Infrequent components licenses. Risk that the project includes components
released under rare or unusual licenses.
Infrequent target license. Risk that the selected target license is rare or un-
usual.
Lack of knowledge. Risk that, because of lack of knowledge in relation to the
number of components licenses, the rest of the risk analysis is not completely
trustable.
Obsolete components licenses. Risk that the project includes components
released under obsolete licenses — a license is obsolete when at least a greater
version of the same license exists.
Obsolete target license. Risk that the selected target license is obsolete — a
license is obsolete when at least a greater version of the same license exists.

In order to drive the license selection process, the goals of the project have
been analysed. Starting from the two aspects listed above, some relevant goals
ere identified. As an example, we have:
Industry-friendly license selected This goal describes the need to select a
license that can be used by potential third parties interested in exploiting the
results of the project.



Other/unknown

5

Number of OSS libraries

LGPL3+
31

25

31

LGPL2.1

9

BSD3
ASL2

GPL2

18

1
CC3.0

3
4

BSD4

67

CDDL
1

MIT

3

194

CPL-EPL

Number of components

Table 1. Excerpt of the gathered licensing information.

Integrate with OSS communities This goal is motivated by the will to op-
erate in the OSS context ant therefore contribute (if possible) with the commu-
nities.
Avoid uncompliance This goal makes explicit the intention to select a safe li-
censing policy, which protects the project members from licensing issues.

Each task leader was in charge of identifying and reporting the OSS com-
ponents used by the software module(s) under his responsibility. Table 1 illus-
trates an excerpt of the data produced for the analysis. The project consisted
in 4 workpackages responsible for software delivery. Overall, 25 software mod-
ules were in development in the various workpackages. The total count of OSS
components used in the various modules amounts to 194. Out of these, 176 OSS
components had a known license, belonging to 10 different license types. The
other 18 had a license whose nature was either unknown or not captured by the
model; moreover, for 1 of them if was not possible to find the license attribution.

Once collected, the data has been used to quantify the risk exposure for the
project as a whole through automated reasoning. RiskML supports automated
reasoning through a label propagation inference algorithm, which is an exten-
sion of goal reasoning techniques [3]. The algorithm is fed with numerical val-
ues, which correspond to the model input nodes (the indicators in Figure 1),
and propagates those values through the graph, until the root nodes are reached
(i.e., the goals). During this propagation, functions (added to the model as an-
notations) are used to, e.g., normalise the ranges of the indicators values, or to
provide a semantics to AND/OR operators. In the end, a numerical quantifica-
tion of a certain truth value, expressed as a real number in the range [0..1], is
assigned to root nodes.

4 Results and conclusion

We described an approach to analyse software licence risks in multi-component
software, which is goal-aware. We applied it to the analysis of the licences of
the tool-suite under development in the SUPERSEDE research project, with the



main objective of identifying potential violations as cause of strategic failures.
As a preliminary result, the performed analysis allowed to identify 5 license vi-
olations that prevented the project from achieving its goals. On the other hand,
the approach allowed use to to infer the exposure of goals to license risks in a
context of a real research project wanting to adopt open source software. License
risk models were previously built taking into account knowledge from OSS ex-
perts about compatibility and available metrics. The risks ave been put in re-
lation to goals after internal discussion sessions. The risk models were able to
capture an important part of the expert knowledge and would thus be able to
create risk awareness for non-expert analysts and managers about the impact of
risks on the organisational goals. The approach uses a label propagation algo-
rithm on the extended RiskML+i* risk model, to give evidence on license risks
and their impact on goals. Main threat to this approach stay on one side in the
difficulty to capture effectively the decision making models that are used by ex-
perts in practice, and on the other hand in the general difficulty to find correla-
tions between indicators, risk and goals.

Acknowledgement

This work is a result of the SUPERSEDE project, funded by the H2020 EU
Framework Programme under agreement number 644018. We also thank the EU
FP7 RISCOSS project for the research results exploited here.

References

1. Y. Asnar, P. Giorgini, and J. Mylopoulos. Goal-driven risk assessment in require-
ments engineering. Requir. Eng., 16(2):101–116, 2011.

2. D. Barone, L. Jiang, D. Amyot, and J. Mylopoulos. Reasoning with key performance
indicators. In P. Johannesson, J. Krogstie, and A. Opdahl, editors, The Practice of
Enterprise Modeling, volume 92 of Lecture Notes in Business Information Process-
ing, pages 82–96. Springer Berlin Heidelberg, 2011.

3. P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R. Sebastiani. Formal reasoning
techniques for goal models. J. Data Semantics, 1:1–20, 2003.

4. I. Herraiz, D. Izquierdo-Cortazar, and F. Rivas-Hernández. Flossmetrics:
Free/libre/open source software metrics. In A. Winter, R. Ferenc, and J. Knodel,
editors, CSMR, pages 281–284. IEEE, 2009.

5. D. Izquierdo-Cortazar, G. Robles, J. M. González-Barahona, and J.-C. Deprez. As-
sessing floss communities: An experience report from the qualoss project. In OSS,
page 364, 2009.

6. M. Morandini, A. Siena, and A. Susi. Risk awareness in open source component
selection. In Business Information Systems (BIS’14), 2014.

7. A. Siena, I. Jureta, S. Ingolfo, A. Susi, A. Perini, and J. Mylopoulos. Capturing
variability of law with Nòmos 2. In ER’12, LNCS 7532, pages 383–396, 2012.

8. A. Siena, M. Morandini, and A. Susi. Modelling Risks in Open Source Software
Components Selection. In ER’14, LNCS, 2014.


