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Abstract. In this paper we introduce a method for human-robot coop-
eration, specifically for assembly-like tasks. Novel approaches for coop-
eration are needed if we want to enable intuitive and natural interaction
between humans and robots in future factories. Our contribution is two-
fold: i) a framework for the representation of the cooperation task, which
allows for run-time adaptation; ii) a dynamic procedure to monitor task
execution based on AND/OR graphs. The framework has been exper-
imentally validated in a cooperation scenario in which a Baxter robot
and a human perform a screwing task together.
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1 Introduction

Human-robot cooperation (HRC) is expected to enhance and broaden the role
of robots in many real-world scenarios. A possible example is manufacturing, in
which humans and robots can play different roles in performing certain tasks,
depending on their capabilities. Our objective is to explore the use of HRC for
assembly-like tasks.

Given the high demand for adaptability and flexibility in production lines,
one possibility is to avoid any a priori defined task structure (i.e., the sequence
of operations), and to allow humans to decide which operation to perform on
the fly [1]. First examples can be found in recent literature, such as a static
architecture based on AND/OR graphs [2], a hidden semi-Markov model for
task teaching [3], a fixed task-duration AND/OR graph [4].

The robot co-worker must: i) recognise human actions, and specifically their
gestures, using a sort of gesture sensor ; ii) represent all the allowed sequences
of operations, and their mutual relationships, which we model using AND/OR
graphs [5]; iii) reason about a specific sequence of operations, as performed by the
human, i.e., understanding the cooperation context ; iv) according to the context,
select the most appropriate action to carry out at run time.
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Fig. 1: Left: the system’s architecture. Right: an example AND/OR graph.

We propose a framework for HRC (in particular for assembly) tasks allowing
for task representation and the run-time adaptation to human actions, by means
of the execution of proper robot actions. Such adaptation capabilities are enabled
by the robot’s ability to assess the cooperation context, the AND/OR graph
based task representation formalism and the employed graph traversal procedure
to adapt to human actions.

2 System’s Architecture and Task Representation

The system’s architecture, shown in Figure 1 on the left hand side, includes
a Human Action Recognition (HAR) module, a Controller module, a Planner
module and a Task Representation (TR) module.

TR encodes the cooperation task structure as an AND/OR graph. Further-
more, it interacts with Planner to determine which actions have been performed
and to provide alternatives for next actions to carry out for the human or the
robot, respectively. HAR is a sort of gesture sensor to recognise human actions,
introduced in [6]. It relies on inertial data measured at the human’s right wrist
by means of wearable devices. HAR requires the offline learning of human ges-
tures to detect. Gestures models in HAR are obtained using Gaussian Mixture
Modelling and Regression, as expected acceleration patterns. Relevant gestures
for our scenario include pick up, put down, and screwing. Online, HAR processes
the current data stream to provide a unique gesture label. Planner updates the
representation with the recognised gesture (retrieved from HAR) and the last
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robot’s actions (retrieved from Controller). Then, Planner provides suggestions
for humans or commands for the robot, accordingly.

The Controller is based on a task priority based architecture [7] and reac-
tively handles control tasks of equality (e.g. end-effector position control) and
inequality (e.g. joint limits, arm dexterity) type in real time, guaranteeing the
robot operability as well as its safety. The Controller accepts commands such
as handover, grasp object, leave object, position object, as well as initialise robot
and stop robot. Thanks to this approach, the Planner is freed from the burden
of many lower-level operative details, making it more efficient and effective.

As we anticipated, TR uses an AND/OR graph to encode the cooperation
process. An AND/OR graph G(N,H) is a structure made up of a set N of n
nodes and a set H of h hyper-arcs. Nodes in N define reachable states in the
graph. Hyper-arcs in H define transition relationships among nodes. In par-
ticular, hyper-arcs define many-to-one transition relationships between many
child nodes and one parent node. The relationship between the transitions of
a hyper-arc is considered to be in logical and, while the relationship between
different hyper-arcs of a parent node is in logical or. Both nodes and hyper-arcs
are associated with costs.

In our case, each hyper-arc hi models a set of actions Ai, where an action
aj ∈ Ai can be performed either by a human or a robot during the cooperation
process. If the order in which to execute actions in Ai is important, we treat them
as a strict sequence. Initially, all the actions in Ai are labelled as unfinished ; when
they are executed we label them as finished. If all the actions in Ai are finished,
then hi is done. Nodes can be either solved or unsolved. A node nk ∈ N is solved
if there is at least one hyper-arc hi to this node, hi is done and all its child nodes
are solved. The leaves in G are initialised as solved or unsolved at the beginning,
depending on the initial state of the cooperation. This procedure iterates going
upward to the root node of G. When the root is solved, then G is labelled as
solved. During graph traversal, nk is feasible if there is at least one hi to it such
that all its child nodes are solved. Otherwise, nk is unfeasible and hi is labelled
as active. At all times, we have a set of active hyper-arcs Ha ⊂ H in G.

The temporal task representation state S is the set of all the labelled nodes
and hyper-arcs in G. S defines the possible action alternatives for the human or
the robot in cooperation. We define as cooperation context a sequence of actions
performed by humans or robots during the cooperation, corresponding to an
allowed traversal path in G. When a new human action an is detected by HAR,
Planner interacts with TR to determine whether an belongs to an Ai such that
the latter corresponds to an hyper-arc in Ha. If this does not happen, i.e., an does
not belong to the current cooperation context, the robot enters a null mode and
waits for further knowledge to determine which traversal path in G is involved.
If there are multiple active hyper-arcs possibly involving an, the robot enters an
ambiguous mode. Otherwise, the next action to suggest or perform is defined in
G so that the overall cost of the traversal path is minimised.
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3 Examples

Figure 1 on the right hand side shows an example AND/OR graph for a coopera-
tive screwing task. The human performs actual screwing, whereas the robot picks
up the wooden piece into which screwing occurs and puts it down at the end.
There are three possible cooperation contexts. In the Figure, the corresponding
paths have different colours (red, blue, and black), and are characterised by dif-
ferent total costs, i.e., 16, 14, and 17 (node costs are zero and hyper-arc costs
are expressed in Arabic numbers).

Figure 2 illustrates the first cooperation context. When the robot positions
the plate in front of the human (a)-(d), the latter picks up the screw and the
screwdriver (e), performs screwing (f), puts down the screwdriver on the table
(g)-(h), and finally waits for the robot to finish the assembly task (i)-(l).

Figure 3 depicts the second cooperation context. With the plate located on
the table (a), the human puts the screw inside the plate hole (b)-(c), later the
robot positions the plate in front of the human (d)-(e), the human picks up the
screwdriver (f), performs the screwing (g), puts down the screwdriver on the
table (h)-(i), and waits for the robot to finish the assembly task (j)-(l).

It is noteworthy that the framework allows a human to switch between any
possible cooperation contexts on the fly simply by performing an action be-
longing to another context. HAR, TR and Planner continuously monitor human
action execution and re-plan a suitable path in G, which leads to a new reference
cooperation context.

4 Conclusions

We propose a framework allowing for the representation of cooperative tasks
using AND/OR graphs, and their execution leaving a human free to choose the
specific sequence of operations to perform among a number of alternatives. The
developed architecture is able to adapt to human actions at run-time, which are
detected as gestures using wearable devices worn at the human’s right wrist.
The framework has been validated by modelling a cooperative assembly task, in
which a human and a Baxter dual-arm manipulator perform turn-taking actions
in any allowed sequence.

References
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Fig. 2: The cooperation context associated with the red path in Figure 1.
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Fig. 3: The cooperation context associated with the blue path in Figure 1.
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