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Abstract. A method for approximating smooth functions has been de-
veloped using non-polynomial basis obtained by mapping of Fourier se-
ries domain to the segment [−1, 1]. High rate of convergence and stability
of the method is justified theoretically for four types of coordinate map-
pings, the dependencies of approximation error on values of derivatives
of approximated functions are obtained. Algorithms for expanding of
functions into series with coupled basis composed of Chebyshev polyno-
mials and designed non-polynomial functions are implemented. It was
shown that for functions having high order of smoothness and extremely
steep gradients in the vicinity of bounds of segment the accuracy of pro-
posed method cardinally exceeds that of Chebyshev’s approximation. For
such functions method allows to reach an acceptable accuracy using only
𝑁 = 10 basis elements (relative error does not exceed 1 per cent)

Keywords: singular perturbation, small parameter, coordinate map-
ping, boundary value problem, Fourier series, Chebyshev polynomial,
non-polynomial basis, estimate of convergence rate, collocation method

1 Introduction

By now, a huge amount of urgent scientific and technological problems reduces
to boundary value problems for differential equations having pronounced singu-
larities of boundary layer type. The most popular approaches to solving them are
based on construction of computational grids with piecewise linear/polynomial
approximation of the unknown function in each cell of grid [1]. Such approaches
provide relatively low rate of convergence and lead to essential refinement of grid
in the vicinity of boundary layer and consequently to growth of computational
costs and errors. In [2,3] methods of coordinate transformations were developed
which allow to decrease the influence of mentioned effect due to application of
special coordinate mappings eliminating the singularity. Nevertheless, the anal-
ysis of key issue concerning the smoothness of such transformations and its
influence on the quality of approximation method is absent. Frequently, authors
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restrict their self by transforming uniform or more special grid and performing
numerical experiments using finite difference or spectral methods [2]– [5].

In the present paper a step aside from the traditional grid approaches is made
and the approximations based on mapping of Fourier series domain to the seg-
ment [−1, 1] are used to approximate functions having singularities of boundary
layer type. One of such mappings assigned by function cos(𝑥) transforms Fourier
basis to basis composed of Chebysev polynomials. A special feature inherent to
these bases is the absence of saturation of corresponding approximations [6]. It
means that using Fourier and Chebyshev bases allows to obtain the asymptotic
of error of best polynomial approximation while approximating functions having
any order of smoothness or singularities in complex plain. The loss of effective-
ness of the mentioned approximations while solving problems having singularities
of boundary layer type is caused by degradation of asymptotical properties of
best polynomial approximations with fast increase of gradients of approximated
function. In order to eliminate this problem, trigonometric Fourier basis can be
transformed into non-polynomial algebraic one retaining all its good properties
of high convergence rate and computational stability, but specially adapted to
approximation of smooth functions having singularities of boundary layer type.

2 Preliminary information. Problem description

In framework of approximation theory of continuous and smooth functions
𝑓(𝑥) (𝑥 ∈ 𝐷 ⊂ R) that are elements of spaces 𝐶(𝐷), 𝑊 𝑟

𝑝 (𝑀,𝐷) = {𝑓 ∈ 𝐶𝑟(𝐷) :

|𝑓 (𝑟)| ≤𝑀 = 𝑀(𝑟)} the following notions are often used (see for example [6]).

1. Norms of function ‖𝑓‖ = max
𝑥∈𝐷

|𝑓 |, ‖𝑓‖𝑝 =

(︂∫︀
𝐷

𝑓𝑝(𝑥)𝑑𝑥

)︂ 1
𝑝

.

2. Finite-dimensional approximating space 𝐾𝑛 with elements used for
approximation of 𝑓(𝑥) that usually are series or polynomials including 𝑛 sum-
mands or monomials.

3. Operator of approximation (or simply approximation) of function
𝑓(𝑥) is a continues mapping 𝑃𝑛 performing a projection of functional space on
approximating one (𝑃𝑛 : 𝐶(𝐷) → 𝐾𝑛 or 𝑃𝑛 : 𝑊 𝑟

𝑝 (𝑀,𝐷) → 𝐾𝑛).
4. Best approximation of function 𝑓 ∈ 𝐶(𝐷) is element 𝑒𝑛(𝑓,𝐾𝑛) ∈ 𝐾𝑛

providing the lower bound to be reached 𝜀*𝑛(𝑓,𝐾𝑛) = = 𝜀*𝑛(𝑓) = inf
𝑔∈𝐾𝑛

‖𝑓 − 𝑔‖.

5. Method without saturation (loose definition) is a method of approxi-
mation of function 𝑓(𝑥) having asymptotic of error of the best polynomial ap-
proximation for any order of smoothness of 𝑓(𝑥). Rigorous definition based on
the analysis of asymptotic of Alexandrov’s diameters is given in [6].

The results obtained in works by Lebegue, Faber, Jackson, Bernstain al-
low to separate three classes of smooth functions with fundamentally different
asymptotical behavior of errors of best approximations in space 𝐾𝑛 of algebraic
polynomials of 𝑛th power. The similar asymptotical behavior is valid for periodic
functions and trigonometrical polynomials
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I. If 𝑓(𝑥) ∈ 𝑊 𝑟
𝑝 (𝑀,𝐷) is 𝑟-times continuously differentiable function on

segment 𝐷 and all its derivatives up to order 𝑟 are bounder by value 𝑀(𝑟), then

sup
𝑓∈𝑊 𝑟

𝑝 (𝑀,𝐷)

𝜀*𝑛(𝑓,𝐾𝑛) ≤𝑀(𝑟)𝐶𝑟𝑛
−𝑟, (1)

where 𝐶𝑟 depends on 𝑟 only, [7].
II. If 𝑓(𝑥) ∈ 𝐶∞(𝐷) is infinite differentiable function with a singularity (like

pole) on complex plain, then one can find a number 𝑞 (0 < 𝑞 < 1) and a sequence
of polynomials 𝑃𝑛(𝑥), such that

‖𝑓(𝑥) − 𝑃𝑛(𝑥)‖ ≤ 𝐶𝑞𝑛, 𝑥 ∈ 𝐷, (2)

here 𝑞 < 1 is defined by location of singularity in complex plain, 𝐶 is constant, [8].
III. If 𝑓(𝑥) ∈ 𝐸𝑛𝑡 is entire function, then

𝜀*𝑛(𝑓,𝐾𝑛) ≤ 𝑀(𝑛)(diam𝐷)𝑛21−2𝑛

𝑛!
, (3)

where 𝑀(𝑛) = ‖𝑓 (𝑛)‖ = 𝑜(𝑛!). It follows from estimates of error of polynomial
interpolation (see [9]) and Cauchy–Hadamard inequality.

Remark 1. For smooth functions of I and III classes the accuracy of best approxi-
mations depends on maximal values of derivatives of function on 𝐷 (values of
𝑀(𝑟) and 𝑀(𝑛) in (1), (3)). For functions of class II the error can be defined
through the values of function itself beyond the segment 𝐷 on complex plain.

In order to implement the properties of best approximations in this work the
Fourier and Chebyshev series are used. Note that such approximations are equal
in a specific sense. Indeed, let 𝑓 ∈ 𝐶([−1, 1]), then performing the change of
variable 𝑥 = cos 𝜃, 𝜃 ∈ [0, 2𝜋] one can obtain 2𝜋-periodic even function 𝑓(𝜃) =

𝑓(cos 𝜃). Fourier decomposition of it is 𝑓(𝜃) =
∞∑︀
𝑘=0

𝑎𝑘 cos(𝑘𝜃). Hence

𝑓(𝑥) =

∞∑︁

𝑘=0

𝑎𝑘 cos(𝑘 arccos(𝑥)) =

∞∑︁

𝑘=0

𝑎𝑘𝑇𝑘(𝑥). (4)

In other words Chebyshev polynomials 𝑇𝑘(𝑥) can by obtained by mapping Fourier
series domain to the segment [−1, 1], see [10]. In [6] is proved that such approx-
imations presents the methods without saturation and therefore they are ex-
tremely efficient for solving problems with smooth solutions. However, if values
𝑀(𝑟), 𝐶, 𝑀(𝑛) in (1)–(3) are large, then it can be wrong.

A simple example is a boundary-value problem for differential equation of
second order with small factor 𝜀 of second derivative

𝜀
𝑑2𝑓

𝑑𝑥2
− 𝑓 = 𝜀𝑔′′(𝑥) − 𝑔(𝑥), 𝑓(−1) = 1, 𝑓(1) = −1, (5)

here 𝑥 ∈ [−1, 1], 𝑔(𝑥) is a given smooth function. Solution to the problem is

𝑓(𝑥) = 𝜉(𝑥) + 𝑔(𝑥), 𝜉(𝑥) = 𝐶1𝑒
𝐴(0.5𝑥+0.5) + 𝐶2𝑒

−𝐴(0.5𝑥+0.5),
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𝐶1 =
1 + 𝑒−𝐴

𝑒−𝐴 − 𝑒𝐴
, 𝐶2 =

1 + 𝑒𝐴

𝑒𝐴 − 𝑒−𝐴
.

Here 𝜉(𝑥) is an exponential boundary value component of 𝑓(𝑥), 𝐶1, 𝐶2, 𝐴 =√︀
1/𝜀 are constants. Table 1 shows the values of dimension of 𝐾𝑛 ensuring that

the relative errors of approximation is never higher than 1 per cent. These results
were obtained in accordance with the estimates of best polynomial approxima-
tions (1), (3), while function 𝑔(𝑥) has different orders of smoothness.

Table 1. Dimension 𝑛 ensuring that relative error of approximation
is not higher than 1 per cent

Order of The value of small parameter 𝜀
smoothness 𝜀 = 10−4 𝜀 = 10−6 𝜀 = 10−8 𝜀 = 10−10

𝑟 = 1 146 430 1 170 100 19 537 000 219 560 000
𝑟 = 2 5 997 65 952 714 010 7 643 800
𝑟 = 3 2 265 24 251 256 530 2 691 200
𝑟 = 4 1 426 15 037 157 040 1 629 500
𝑟 = 5 1 090 11 390 118 000 1 215 900
entire function 136 1 359 13 591 135 910

Thus, it can be observed that the higher order of smoothness is, the less data
is necessary for recovering solution with a desired accuracy. However, even in
the case of infinitely differentiable function a space 𝐾𝑛 of dimension of many
thousands can be required to reach considerably low accuracy of 1 per cent. This
effect is shown on Fig 1 where a graph of solution to a problem (5) is given with
𝑔(𝑥) ≡ 0 (i.e. a graph of function 𝜉(𝑥)) and logarithm of error of approximation
of 𝜉(𝑥) in space of Chebyshev polynomials

𝜈 = max
𝑥∈[−1,1]

|𝜉(𝑥) −
𝑛−1∑︀
𝑚=0

𝑎𝑚𝑇𝑚(𝑥)|.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

0 20 40 60 80 100
−15

−10

−5

0
ba

n

log
10�

x

(x)�

Fig. 1. Solution to the problem (5) with 𝜀 = 10−3 (solid line), 𝜀 = 10−4 (dash line),
𝜀 = 10−6 (dote-and-dash line): a – graph of 𝜉(𝑥); b – dependance of log10 𝜈 on 𝑛

Fig. 1 shows that the values of 𝑛, given in Table 1 for function 𝜉(𝑥) are
overestimated. This effect can be explained by concentration of Chebyshev nodes
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in the vicinity of boundary layers, see. [10], [11]. Considering a problem with
boundary layer of size 𝜌 having solution without singularities in inner part of
the segment [−1, 1], to reach an accuracy of 1 per cent one should use a basis of

𝑛 ≈ 3/
√
𝜌 (6)

Chebyshev polynomials for approximation of unknown function. In the consid-
ered case 𝜌 ≈ 5.6/𝐴 (here condition 𝜉(𝜌) = 0.1 is used). Appearance of expres-
sion

√
𝜌 in the denominator of fraction is caused by concentration of Cheby-

shev nodes. Indeed, uniformly distributed zeroes of trigonometrical monomials
cos(𝑘𝜃) are concentrated in the vicinity of points ±1 under the map 𝑥 = cos(𝜃)
(see fig. 2 a). Moreover as cos(𝜃) ∼ 1−𝜃2/2 when 𝜃 → 0 and the first Chebyshev
node 𝑥1 = cos(𝜃1) = cos𝜋/2𝑛, then |1 − 𝑥1| ∼ 𝜋2/8𝑛2. Further, the empiri-
cal requirement that even three nodes should lay on the boundary layer gives

3|1 − 𝑥1| ≤ 𝜌 or 𝑛 ≈ 3𝜋

2
√

2
√
𝜌

that corresponds to (6).

3 Description of a method

For efficient approximation of function having boundary layer component a mod-
ification of map 𝑥 = cos(𝜃) that transformed Fourier basis to Chebyshev one (4)
is proposed. According to (6) a natural requirement is to use stronger concen-
tration of zeroes of basis functions in the vicinity of segment borders (see 2 b).

Let us assume that 𝐷 = [−1, 1]. Define a function 𝑥 = æ(𝑦) : [−1, 1] → [−1, 1]
satisfying the following basic requirements:

1) function æ(𝑦) is bijective mapping, æ(1) = 1, æ(−1) = −1;
2) æ(𝑦) is an infinite differentiable or even entire function;
3) an inverse function 𝑦 = æ−1(𝑥) can be expressed in analytical form or easily

computed;
4) a derivative æ′(𝑦) in the vicinity of points ±1 is close to zero.

Note that concentration of zeroes of basis functions in the vicinity of segment
borders can be obtained due to the last requirement. One of possible forms of
function æ(𝑦) is given on fig 2 b.

For approximation of function 𝑓(𝑥), 𝑥 ∈ [−1, 1] let us consider the expansion
of 2𝜋-periodic even function 𝑓(æ(cos 𝜃)) (𝜃 ∈ R) into Fourier series:

𝑓(æ(𝑦)) = 𝑓(æ(cos 𝜃)) ≈
𝑛−1∑︁

𝑘=0

𝑎𝑘 cos(𝑘𝜃). (7)

As a result one obtains

𝑓(𝑥) ≈ 𝑃𝑛(𝑥) =

𝑛−1∑︁

𝑘=0

𝑎𝑘 cos[𝑘 arccos(æ−1(𝑥))]. (8)
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Fig. 2. Concentration of nodes of trigonometrical monomials cos(𝑛𝜃) as 𝑛 = 11 (indi-
cated by arrows): a – using mapping 𝑦 = cos(𝜃), b – using mapping 𝑥 = æ(𝑦)

Here we denote 𝑦 = cos 𝜃. Thus, the basis of approximating space 𝐾𝑛 can be
specified as 𝐵𝑘(𝑥) = cos[𝑘 arccos(æ−1(𝑥))], where zeroes of 𝐵𝑘(𝑥) are 𝑥𝑘𝑚 =

æ

(︂
cos

(2𝑚+ 1)𝜋

2𝑘

)︂
, 𝑘,𝑚 = 0, ..., 𝑛 − 1. Note, that under the properties 1, 3,

æ(𝑦), 𝐵𝑘(𝑥) are bijective easily computed functions.

Lemma 1. Approximation (8) is equivalent to expansion of function 𝑓(æ(𝑦))
into series with basis consists of Chebyshev polynomials 𝑇𝑘(𝑦) = cos(𝑘 arccos(𝑦)),
that is why

1) for approximations (8) error estimations of best approximations (1)–(3) hold;

2) elements of matrices B𝑛 – 𝑏𝑘𝑚 = 𝐵𝑘(𝑥𝑛𝑚), 𝑘,𝑚 = 0, ..., 𝑛− 1 do not depend
on æ.

The proof of Lemma 1 is obvious taking into account (8) and that Cheby-
shev and Fourier expansions are approximations without saturation. The second
condition of Lemma 1 concerns numerical approximation of 𝑓 by collocation
method with nodes 𝑥𝑛𝑚. Lemma declares that such a method is universal, its
properties do not depend on the choice of function æ(𝑦).

To settle a key question on rate of growth of coefficients 𝑀(𝑟), 𝑀(𝑛) in
estimates (1), (3) the following property was proved.
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Lemma 2. For derivative of composed function the followin equality is valid

[𝑓(æ(𝑦))](𝑛) =

𝑛∑︁

𝑘=1

𝑓 (𝑘)(æ(𝑦))

[︂ ∑︁

𝒜𝑘𝑙=(𝛼1,...,𝛼𝑘)
𝛼1+...+𝛼𝑘=𝑛

𝐶𝑛𝑘𝑙

𝑘∏︁

𝑗=1

(æ(𝑦))(𝛼𝑗)

]︂
, (9)

where the second summation goes over all possible integer partitions of number
𝑛 – 𝒜𝑘𝑙, that consist of 𝑘 positive integer numbers 𝛼1,...,𝛼𝑘, 𝑙 = 1, ..., 𝐿; 𝐶𝑛𝑘𝑙 are
constants. Moreover ∀𝑛 as 𝑘 = 1 and 𝑘 = 𝑛 one has: 𝐿 = 1, 𝐶𝑛11 = 1, 𝐶𝑛𝑛1 = 1.

This Lemma corresponds to the well-known Fa di Bruno’s formula and can
be proved using mathematical induction technique.

4 Analysis of four types of function æ(𝑦).

Now let us propose and investigate four types of function æ(𝑦). To this end
the following notations are necessary. Let 𝐷𝑎 ∈ 𝐷, 𝐷𝑏 ∈ 𝐷 be neighborhoods of
boundaries of segment 𝐷 representing boundary layers, 𝐷0 be a certain neighbor-
hood of central point of 𝐷. Let us denote by ‖·‖𝐿, ‖·‖𝐷 the supremum norms of
continues function on 𝐷𝑎 ∪𝐷𝑏 and on 𝐷0 correspondingly. Further, we assume
𝑎 = −1, 𝑏 = 1, ∀𝑠 < 𝑟, 𝐴𝑠‖𝑓 (𝑠)‖ = ‖𝑓 (𝑠+1)‖, where 𝐴𝑠 > 1 is constant, 𝑟 is or-
der of smoothness of 𝑓(𝑥). Typically for problems with boundary layer one has
𝐴𝑠 >> 1. Let 𝐴 = max

𝑠<𝑟
𝐴𝑠, 𝜌(𝐴) be a size of boundary layer (as it follows from

the example with exponential boundary layer, 𝜌 depends on 𝐴, see comments to

formula (6)), 𝑜(𝑓 (𝑠)) be such value that lim
𝐴1,...,𝐴𝑟−1→∞

𝑜(𝑓 (𝑠))

‖𝑓 (𝑠)‖𝐿
= 0.

I. Trigonometric function

æ(𝑦) = sin

(︂
𝜋𝑦

2

)︂
. (10)

Theorem 1. Let 𝜌2(𝐴)𝐴 → 0 as 𝐴 → ∞. For the approximation (8) with
function æ(𝑦) of form (10) the estimate (1) is valid, but constant

𝑀(𝑟) = 𝐶𝑟𝑟/2 𝑙(𝜋/2)𝑟‖𝑓 (𝑟/2)‖ + 𝑜(𝑓 (𝑟/2)) (if 𝑟 is even),

𝑀(𝑟) = 𝐶𝑟[𝑟/2]𝑙𝜌(𝐴)(𝜋/2)𝑟‖𝑓 ([𝑟/2])‖ + 𝑜(𝑓 ([𝑟/2])) (if 𝑟 is odd),

where [𝑠] denotes integer part of number 𝑠, 𝐶𝑟𝑟/2 𝑙, 𝐶
𝑟
[𝑟/2]𝑙 are coefficients of (9),

corresponding to integer partitions 𝒜𝑟/2 𝑙 = (2, ..., 2⏟  ⏞  
𝑟/2

), 𝒜[𝑟/2] 𝑙 = (2, ..., 2⏟  ⏞  
[𝑟/2]

, 1).

II. Polynomial of third power

æ(𝑦) = 𝑎𝑦3 + 𝑏𝑦2 + 𝑐𝑦 + 𝑑. (11)

After taking into account properties 1)–4) of æ(𝑦)-function one obtains 𝑏 = 𝑑 =
0, 𝑎 = 1 − 𝑐, 1 ≤ 𝑐 ≤ 1.5. Assuming 𝑝 = 𝑐, one gets

æ(𝑦) = (1 − 𝑝)𝑦3 + 𝑝𝑦, (12)

Mathematical and Information Technologies, MIT-2016 — Mathematical modeling

412



where 1 ≤ 𝑝 ≤ 1.5 is free parameter equal to the value of derivative æ′(0) and
determining the value æ′(±1): as 𝑝→ 1.5 æ′(±1) → 0.

Theorem 2. For approximation (8) with function æ(𝑦) of form (12) as 𝑝 = 1.5
and 𝜌2(𝐴)𝐴→ 0 as 𝐴→ ∞ the estimate (1) is valid, but constant

𝑀(𝑟) = 𝐶𝑟𝑟/2 𝑙3
𝑟/2‖𝑓 (𝑟/2)‖ + 𝑜(𝑓 (𝑟/2)) (if 𝑟 is even),

𝑀(𝑟) = 𝐶𝑟[𝑟/2]𝑙𝜌(𝐴)3[𝑟/2]+1‖𝑓 ([𝑟/2])‖ + 𝑜(𝑓 ([𝑟/2])) (if 𝑟 is odd),
where 𝐶𝑟𝑟/2 𝑙, 𝐶

𝑟
[𝑟/2]𝑙 are the same as in theorem 1.

Theorems 1,2 can be proved using Lemmas 1,2 and taking into account that
values of first derivatives of considered æ-functions in points ±1 vanishes. The
component ‖𝑓 (𝑟/2)‖ appears in the obtained expressions for 𝑀(𝑟) because the
second derivative of æ-functions in points ±1 are not equal to zero. This com-
ponent grows much slower than ‖𝑓 (𝑟)‖.

Remark 2. By changing in given theorems index ”𝑟” on index ”𝑛”, one can
obtain similar results for case of entire 𝑓(𝑥), namely the similar equalities for
𝑀(𝑛) from estimate (3) when æ(𝑦) has form (10), (12).

Let us consider another approach to construction of æ(𝑦)-function, it does
not require first derivative of æ(𝑦) to be equal to zero in points ±1, but requires
all the derivatives to be very small in vicinity of ±1.

III. Function
æ(𝑦) = arctan(𝑏𝑦)/̃︀𝑏, ̃︀𝑏 = arctan 𝑏. (13)

Theorem 3. If in expression (8) function æ(𝑦) of form (13) has parameter

𝑏 << 𝑛+𝑘−2

√︃
‖𝑓 (𝑘)‖𝐿
‖𝑓 (𝑘)‖𝐷

= 𝑏𝑘, ∀𝑘 = 1, 2, ..., 𝑛, (14)

then (8) satisfies the estimate of accuracy of best approximation (3) with 𝑀(𝑛)
equals for large 𝑛 and 𝐴 to the following

𝑀(𝑛) = max

(︂ ‖𝑓 (𝑛)‖𝐿
̃︀𝑏(̃︀𝑏𝑏)𝑛−1

,
‖𝑓 ′‖𝐿
̃︀𝑏

𝑛!

)︂
+ 𝑜(𝑛!) + 𝑜(𝑓 (𝑛)). (15)

Values

𝑏 ≈ 𝑏* =
2

𝜋
𝑛−1

√︃
‖𝑓 (𝑛)‖𝐿
‖𝑓 ′‖𝐿

1

𝑛!
(16)

under condition 1.56 < 𝑏 << min
𝑘=1,...,𝑛

𝑏𝑘 provide maximal rate of decrease of right

part of (3) with growth of 𝑛 and ̃︀𝑏(̃︀𝑏𝑏)𝑛−1-time profit in accuracy in comparison
with the best polynomial approximation.

IV. Function

æ(𝑦) = ̃︀𝜇
(︂

2

1 + exp(−𝜇𝑦)
− 1

)︂
, ̃︀𝜇 =

1 + exp(−𝜇)

1 − exp(−𝜇)
. (17)
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Theorem 4. Let 𝑓(𝑥) ∈𝑊 𝑟
𝑝 (𝑀,𝐷), 𝑟 > 1 and in expression (8) function æ(𝑦)

of form (17) has parameter, satisfying the inequalities

𝜇 <<
1

𝛼𝑠
𝑊 (𝛼𝑠𝛽𝑠) = 𝜇𝑠, ∀𝑠 = 1, ..., 𝑟 − 1, 𝜇 << 𝜋 𝑟

√︃
‖𝑓 (𝑟)‖𝐿
‖𝑓 (𝑟)‖𝐷

= 𝜇0, (18)

where 𝑊 (𝑥) is the Lambert 𝑊 -function (the inverse function to 𝑥 = 𝑤 exp(𝑤)),

𝛼𝑠 =
𝑠

𝑟 − 𝑠
, 𝛽𝑠 = 4𝛼𝑠𝜋 𝑟−𝑠

√︃
‖𝑓 (𝑠+1)‖𝐿
‖𝑓 (𝑠+1)‖𝐷

. In this case (8) satisfies the estimate of

accuracy of best approximation (1) with 𝑀(𝑟) equals for large 𝑟 and 𝐴 to the
following

𝑀(𝑟) = max

(︂
‖𝑓 (𝑟)‖𝐿(2𝜇̃︀𝜇 exp(−𝜇))𝑟−1, ‖𝑓 ′‖𝐿̃︀𝜇𝑟!

)︂
+ 𝑜(𝑟!) + 𝑜(𝑓 (𝑟)). (19)

Values

𝜇 ≈ 𝜇* = −𝑊
(︂
−1

2
𝑟−1

√︃
‖𝑓 ′‖𝐿𝑟!
‖𝑓 (𝑟)‖𝐿

)︂
(20)

under condition 1.57 < 𝜇 << min
𝑠=0,1,...,𝑟−1

𝜇𝑠 provide maximal rate of decrease of

right part of (1) with growth of 𝑛 and (exp(𝜇)/(2𝜇̃︀𝜇))𝑟−1-time profit in accuracy
in comparison with the best polynomial approximation. Here it is considered the
branch of function 𝑊 (𝑥) such that 𝑊 (𝑥) → −∞ as 𝑥 ↑ 0.

Theorems 3,4 can be proved using Lemmas 1,2 and asymptotical analysis
of growth of 𝑛th derivative of 𝑓 [æ(𝑦)] with grows of 𝑛. These results can be
extended to case of estimates (1), (3).

5 Computation of approximate values of functions with
boundary value components

In this section one can find an experimental confirmation of results of theorems 1–
4 considering approximation of solution to the boundary value problem (5) with
exponential boundary layer. Detailed comments on correspondence of theoretical
and experimental data given on fig. 3–5 and in Tables 2–5, are absent. Such
correspondence becomes obvious if in theorems 1–4 one supposes the values
𝐴1, ..., 𝐴𝑛−1 to be equal to the value of 𝐴 from formula of solution 𝑓(𝑥) to
the problem (5). This identification is correct because the values of derivatives
𝑓 (𝑛)(±1) grow with a rate of 𝐴𝑛.

To implement the approximation according to (8) four considered types of
function æ(𝑦) were used, expressions for inverse functions æ−1(𝑥) were obtained
and the values of zeroes of basis functions of approximations 𝑥𝑛𝑘 were specified.

1. Sinus (sin), æ𝑠(𝑦) = sin

(︂
𝜋𝑦

2

)︂
:

æ−1
𝑠 (𝑥) =

2 arcsin𝑥

𝜋
, 𝑥𝑛𝑘 = sin

[︂
𝜋 cos( (2𝑘+1)𝜋

2𝑛 )

2

]︂
, 𝑘 = 0, ..., 𝑛− 1.
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2. Polynomial (pol), æ𝑝(𝑦) = (1 − 𝑝)𝑦3 + 𝑝𝑦:

æ−1
𝑝 (𝑥) = 𝑅

[︂
− cos

arccos 𝑧

3
+

√
3 sin

arccos 𝑧

3

]︂
,

𝑅 =

√︂
𝑝

3(𝑝− 1)
, 𝑧 =

−3
√

3𝑥
√
𝑝− 1

2𝑝3/2
,

𝑥𝑛𝑘 = (1 − 𝑝) cos3
[︂

(2𝑘 + 1)𝜋

2𝑛

]︂
+ 𝑝 cos

[︂
(2𝑘 + 1)𝜋

2𝑛

]︂
, 𝑘 = 0, ..., 𝑛− 1.

These expressions were obtained using Cardano’s method and analysis of three
branches of inverse function æ−1

𝑝 (𝑥).

3. Function inverse to tangents (tg), æ𝑡(𝑦) =
arctan(𝑏𝑦)

arctan(𝑏)
:

æ−1
𝑡 (𝑥) =

tan(𝑥 arctan 𝑏)

𝑏
, 𝑥𝑛𝑘 =

arctan

[︂
𝑏 cos( (2𝑘+1)𝜋

2𝑛 )

]︂

arctan(𝑏)
, 𝑘 = 0, ..., 𝑛− 1.

4. Function including exponent (exp), æ𝑒(𝑦) = ̃︀𝜇
[︂

2

1 + exp(−𝜇𝑦)
− 1

]︂
:

æ−1
𝑒 (𝑥) = − 1

𝜇
ln

[︂
2

̃︀𝜇𝑥+ 1
− 1

]︂
, 𝑥𝑛𝑘 = ̃︀𝜇

[︂
2

exp
{︀
− 𝜇 cos( (2𝑘+1)𝜋

2𝑛 )
}︀

+ 1
− 1

]︂
,

𝑘 = 0, ..., 𝑛− 1.

5.1 Approximations of boundary layer component 𝜉(𝑥)

In this section results on numerical approximation of the solution 𝑓(𝑥) to the
boundary-value problem (5) are given for different values of small parameter
𝜀 = 10−3, ..., 10−10. Let us consider first the case 𝑔(𝑥) ≡ 0, then 𝑓(𝑥) = 𝜉(𝑥) is
an exponential boundary value component.

For searching the coefficients 𝑎𝑘 of the expansion (8), where 𝑘 = 0, ..., 𝑛− 1
a system of 𝑛 equations should be composed:

𝑛−1∑︁

𝑗=0

𝑎𝑗𝐵𝑗(𝑥
𝑛
𝑘 ) = 𝑓(𝑥𝑛𝑘 ).

Matrix of this system with elements bjk = 𝐵𝑗(𝑥
𝑛
𝑘 ) is 𝐶 = (bjk). Denoting column

vectors

𝛼 = (𝑎0, 𝑎1, ..., 𝑎𝑁 )𝑇 , 𝛽 = (𝑓(𝑥0), 𝑓(𝑥1), ..., 𝑓(𝑥𝑁 ))𝑇 ,

one obtains a system of linear algebraic equations (SLAE) 𝐶𝛼 = 𝛽. Finally the
coefficients of expansion (8) can be expressed in form 𝛼 = 𝐶−1𝛽.

Mathematical and Information Technologies, MIT-2016 — Mathematical modeling

415



Remark 3. It was established by computations that the growth of number of
basis function 𝑛 does not affect the condition number of matrix 𝐶. The first five
digits of it 1.4142 remain invariable while 𝑛 grows from 1 to 200. This means
that using the orthogonal transformations matrix 𝐶 can be inverted on computer
with high precision.

The algorithm of searching coefficients 𝑎𝑘, 𝑘 = 0, ..., 𝑛− 1 was implemented
on MATLAB programming language for the following values of small parameter

𝜀 = 10−3, 10−4, ..., 10−10.
For each of considered types of æ(𝑦) a grid of points (𝑧1, 𝑧2, ..., 𝑧𝐾) was gen-

erated on the segment [−1; 1]. It was used for searching the maximal deviation
of a given function 𝑓(𝑥) form its approximation 𝑃𝑛(𝑥) by enumeration over all
points. Due to the fact that function has boundary layer in the vicinity of points
−1 and 1 a grid for enumeration was composed of large amount of Chebyshev
nodes providing significant concentration of grid near the bounds of segment.
The number of nodes 𝑧1, 𝑧2, ..., 𝑧𝐾 was chosen so that the doubling of it does not
affect first 2–3 digits of error 𝜈 = max

𝑖=1,...,𝐾
|𝑓(𝑧𝑖) − 𝑃𝑛(𝑧𝑖)|.

For example if 𝜀 = 10−5 and function æ𝑡(𝑦) is used, the experiments show
that for 𝑛 = 48

as 𝐾 = 100 000 point the error 𝜈 = 2.7737 × 10−13, (21)

as 𝐾 = 200 000 points the error 𝜈 = 2.7734 × 10−13. (22)

Consequently, we conclude that number 𝐾 = 100 000 is sufficient for esti-
mating the error 𝜈 with desired accuracy.

Now let us use a single coordinate plain to represent dependencies of log10 𝜈
on the number of basis functions 𝑛 of approximation 𝑃𝑛 for different types
of function æ(𝑦) together with well known Chebyshev approximations. (see.
fig. 3, 4). Number of points for enumeration 𝐾 here is equal to a maximal one of
all 𝐾 obtained for each of considered types. Note that the values of parameters
𝑝, 𝑏, 𝜇 in these results are taken from the vicinity of their ”optimal” values (see
Table 2). Further method for searching these values is explained.

Table 2. ”Optimal” values of parameters

Parameter Value of small parameter 𝜀
of approximation 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10

𝑝 1.1 1.2 1.3 1.35 1.45 1.46 1.48 1.48
𝑏 1.2 1.6 3.5 15 35 75 300 680
𝜇 1.3 2.5 3 4.5 5.5 6.8 8.2 9.4

On given figures one can observe that the decrease of values of small pa-
rameter 𝜀 results in fast decrease of convergence rate of Chebyshev expansions.
Whereas, the methods designed using functions æ𝑡(𝑦), æ𝑒(𝑦) do not significantly
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change their convergence rate while decreasing small parameter. As it was al-
ready proved, increase of 𝑏, 𝜇 allows one to reduce the influence of steep gradient.

Now let us estimate ”optimal” values of parameters 𝑝, 𝑏, 𝜇 for approximations
based on æ𝑝, æ𝑡, æ𝑒. To this end the dependencies of logarithm of error log10 𝜈
on 𝑛 and value of parameter of function æ(𝑦) were represented in Cartesian
coordinate system, see those for æ𝑡 on fig. 5, 6.
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Fig. 5. Dependencies of value log10 𝜈 on the number 𝑛 and the value of parameter 𝑏 of
method with function æ𝑡 as 𝜀 = 10−4 (a), 𝜀 = 10−6 (b), 𝜀 = 10−8 (c), 𝜀 = 10−10 (d)

The error was computed in a similar way as before, e.g. for æ𝑡 and 𝜀 = 10−8

parameter 𝑏 goes over all integer values from 0 to 100. Maximal convergence rate
is provided by such a value 𝑏 = 𝑏* that specifies maximal slope of a curve laying
in section of the represented surface by a plain 𝑏 = 𝑏* = const(or 𝑝 = const, or 𝜇
= const). For æ𝑡 and 𝜀 = 10−8 𝑏* ∈ [60; 80]. This segment is marked with circle
on the graph of fig. 6.

5.2 Approximation of solution of inhomogeneous problem (5)

Let us consider a function 𝑓(𝑥) that is solution to (5) with 𝑔(𝑥) = sin(𝜋𝑥). Here
𝑔(𝑥) provides a perturbation in inner points of domain of problem. A question
is how such perturbations can affect convergence of proposed methods.

𝑓(𝑥) = 𝐶1𝑒
𝐴( 1

2𝑥+
1
2 ) + 𝐶2𝑒

−𝐴( 1
2𝑥+

1
2 ) + sin(𝜋𝑥),

𝐶1 =
1 + 𝑒−𝐴

𝑒−𝐴 − 𝑒𝐴
, 𝐶2 =

1 + 𝑒𝐴

𝑒𝐴 − 𝑒−𝐴
, 𝐴 =

√︀
1/𝜀.

(23)
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Let 𝜈 be maximal values of deviation of approximation (8) from the values
of function (23). 𝜈 was computed in numerical experiments by enumeration over
points 𝑧1, ..., 𝑧𝐾 as it was described, for different types of æ(𝑦) and various values
of 𝑛 and 𝜀: 𝜀 = 10−3, ..., 10−10. The values of parameters 𝑝, 𝑏, 𝜇 were taken from
Table 2 excluding cases of small 𝑛. Numerical experiments showed that the
smaller 𝑛 is, the stronger appears the dependence of convergence rate on 𝑛.

While using functions æ𝑠, æ𝑝, æ𝑒 approximation errors for (23) agree with
those obtained for 𝑓(𝑥) = 𝜉(𝑥) (see fig 3, 4). ”Optimal” values of parameters 𝑝
and 𝜇 in these cases retain too. However the approximation based on æ𝑡 loose
its convergence rate much faster. This effect is explained by inequality for 𝑏 (see
estimate (14)) that turns out to be more essential than, for example, (18). Even
for moderate values of ‖𝑓 (𝑠+1)‖𝐷 (in our case ∀𝑠 ‖𝑓 (𝑠+1)‖𝐷 ≈ 1) one obtains
that value of 𝑏 should be considerably less than those given in Table 2. Then,
according to (15), 𝑀(𝑛) becomes large and the convergence rate decreases.

In order to obtain efficient approximation with function æ𝑡 a coupled basis
𝐵𝑘(𝑥)∪ 𝑇𝑚(𝑥) (𝑘 = 0, ...,𝒦, 𝑚 = 0, ...,𝑀 , 𝒦 +𝑀 = 𝑛− 2) should be used. It is
composed of designed functions 𝐵𝑘(𝑥) and Chebyshev polynomials 𝑇𝑚(𝑥):

𝑓(𝑥) ≈
𝒦∑︁

𝑘=0

𝑎𝑘𝐵𝑘(𝑥) +

𝑀∑︁

𝑚=0

𝑐𝑚𝑇𝑚(𝑥),

𝑇𝑚(𝑥) = cos(𝑚 arccos(𝑥)), 𝐵𝑘(𝑥) = cos
(︀
𝑘 arccos

[︀
tan(𝑥̃︀𝑏)/𝑏

]︀)︀
.

(24)
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The idea of a method consists in two steps: first function 𝑓(𝑥) should be

expand in basis 𝑇𝑚(𝑥) and then difference 𝑓(𝑥) −
𝑀∑︀
𝑚=0

𝑐𝑚𝑇𝑚(𝑥) should be ap-

proximated using 𝐵𝑘(𝑥). Let us compose matrices

𝛶 = (𝛾𝑚𝑖), 𝛾𝑚𝑖 = 𝑇𝑚(𝑥𝑖), where 𝑥𝑖 = cos

[︂
(2𝑖+ 1)𝜋

2(𝑀 + 1)

]︂
, 𝑚, 𝑖 = 0, ...,𝑀 ;

B = (𝑏𝑘𝑗), 𝑏𝑘𝑗 = 𝐵𝑘(𝑥𝑗), where 𝑥𝑗 =

(︂
arctan

[︀
𝑏 cos(

(2𝑗 + 1)𝜋

2(𝒦 + 1)
)
]︀)︂
/̃︀𝑏,

𝑘, 𝑗 = 0, ...,𝒦.
Introducing the notations of vectors 𝛼 = (𝑎0, ..., 𝑎𝒦), 𝛾 = (𝑐0, ..., 𝑐𝑀 ), 𝑓𝛼 =
(𝑓(𝑥0), ..., 𝑓(𝑥𝒦)), 𝑓𝛾 = (𝑓(𝑥0), ..., 𝑓(𝑥𝑀 )) one can found the coefficients of ex-
pansion in Chebysev basis 𝛾 = 𝛶−1𝑓𝛾 . Further the following SLAE was composed

B𝛼 = 𝑓𝛼 − 𝐶𝛾,

𝐶𝑗𝑚 = 𝑇𝑚(𝑥𝑗) = cos

(︂
𝑚 arccos

[︂
arctan

{︂
𝑏 cos(

(2𝑗 + 1)𝜋

2(𝒦 + 1)
)

}︂
/̃︀𝑏
]︂)︂
.

and the values of coefficients 𝑎0, ..., 𝑎𝒦 were obtained

𝛼 = B−1
[︀
𝑓𝛼 − 𝐶𝛶−1𝑓𝛾

]︀
. (25)

The computations by formula (25) can be modified. So, for small parameters
𝜀 = 10−4, 𝜀 = 10−6 the domain of distribution of Chebyshev nodes in (24)
was narrowed from segment [−1; 1] to [−0.85; 0.85] in case 𝜀 = 10−4 and to
[−0.95; 0.95] in case 𝜀 = 10−6.

Tables 3–5 show the value of approximation error 𝜈 obtained for function
(23) using Chebyshev basis and the designed ones 𝐵𝑘 with functions æ(𝑦) of
four considered types. If value of parameters of æ(𝑦) differs from those given
in Table 2 than it is explicitly indicated in brackets. So does a number of basis
functions 𝐵𝑘(𝑥) plus number of basis polynomials 𝑇𝑚(𝑥) for approximations
obtained using æ𝑡, see (24).

Table 3. Values of 𝜈 obtained for function (23) with 𝜀 = 10−6

𝑛 Chebyshev sin(𝑦) 𝑝𝑜𝑙(𝑦) exp(𝑦) tan(𝑦)

10 0.997 0.168 0.208 0.069(5.5) 0.036(60, 7 + 3)
20 0.727 0.047 0.064(1.5) 0.005 5.21× 10−4(80, 14 + 6)
30 0.359 0.007 0.025 2.4418× 10−5 7.935× 10−6(50, 23 + 7)
40 0.147 7.659× 10−4 0.001 3.679× 10−7 4.283× 10−8(14, 30 + 10)
50 0.051 5.419× 10−5 2.216× 10−5 1.936× 10−9 2.637× 10−10(14, 38 + 12)
60 0.015 8.019× 10−6 5.348× 10−7 3.738× 10−11 1.436× 10−12(9, 47 + 13)
70 0.004 7.348× 10−7 2.533× 10−8 5.473× 10−13 2.625× 10−13(9, 57 + 13)
80 7× 10−4 3.346× 10−8 7.458× 10−10 3.321× 10−13 2.26× 10−13(9, 67 + 13)
90 1.2× 10−4 2.941× 10−9 1.791× 10−11 3.375× 10−13 2.597× 10−13(9, 77 + 13)
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Table 4. Values of 𝜈 obtained for function (23) with 𝜀 = 10−8

𝑛 Chebyshev sin(𝑦) 𝑝𝑜𝑙(𝑦) exp(𝑦) tan(𝑦)

10 1.0000 0.5024 0.5903(1.5) 0.2040(7.8) 0.0463(650, 7 + 3)
20 1.0000 0.1972 0.6521 0.0366 6.0843× 10−4(180, 14 + 6)
30 0.9987 0.1119 0.2743 3.5359× 10−4 1.2506× 10−5(140, 23 + 7)
40 0.9730 0.0208 0.0873 1.0721× 10−5 5.3592× 10−8(110, 30 + 10)
50 0.8920 0.0130 0.0186 3.8726× 10−7 4.9031× 10−10(90, 39 + 11)
60 0.7705 0.0032 0.0020 8.8276× 10−9 3.4193× 10−12(90, 47 + 13)
70 0.6384 0.0011 4.28× 10−4 4.0243× 10−10 1.8532× 10−12(90, 57 + 13)
80 0.5144 3.7× 10−4 1.42× 10−4 9.3578× 10−12 1.9960× 10−12(90, 67 + 13)
90 0.4059 5.7× 10−5 1.27× 10−5 4.3484× 10−12 2.3292× 10−12(90, 77 + 13)

Table 5. Values of 𝜈 obtained for function (23) with 𝜀 = 10−10

𝑛 Chebyshev sin(𝑦) 𝑝𝑜𝑙(𝑦) exp(𝑦) tan(𝑦)

10 1.0000 1.0005 1.0003 0.3875(10.4) 0.0529(6500, 7 + 3)
20 1.0000 0.3498 0.9986 0.0391 4.7344× 10−4(4000, 13 + 7)
30 1.0000 0.2231 0.9282 0.0027 1.0203× 10−5(1200, 22 + 8)
40 1.0000 0.2041 0.7389 2.1276× 10−4 9.2063× 10−8(1100, 31 + 9)
50 1.0000 0.1418 0.5336 1.5681× 10−5 3.5014× 10−10(1100, 38 + 12)
60 1.0000 0.0700 0.3642 1.0989× 10−6 2.1094× 10−11(1100, 47 + 13)
70 1.0000 0.0226 0.2371 7.3964× 10−8 2.2963× 10−11(1100, 57 + 13)
80 0.9999 0.0223 0.1470 4.8155× 10−9 1.8534× 10−11(1100, 67 + 13)
90 0.9994 0.0124 0.0865 3.0489× 10−10 2.1706× 10−11(1100, 77 + 13)
100 0.9973 0.0041 0.0481 4.0388× 10−11 2.1034× 10−11(1100, 87 + 13)

6 Conclusion

In this work a method for approximating smooth functions having bound-
ary layer components was developed, justified and implemented. It is based on
expansion of function into series with basis consisting of non-polynomial func-
tions obtained from trigonometric Fourier one by special mapping operation.
Such representation ensures the estimations of accuracy of best polynomial ap-
proximations, but essentially reduces the values of coefficients in them. That is
why convergence can be observed starting from small number of basis elements.
Moreover the proposed approximations have good properties of numerical sta-
bility inherent to Fourier expansions.

Further development and successful application of the method is connected
with analysis of different forms of æ-function. Proposed method can be modified
for approximation of functions having singularity in inner point of domain, or
even for problems with unknown position of singularity. From the other side,
combination of these approximations with collocation methods will allow to de-
sign efficient algorithms for solving singularly-perturbed boundary value prob-
lems for differential equations.
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