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Abstract. In this work, we draw attention to a connection between
skill-based models of game outcomes and Gaussian process classification
models. The Gaussian process perspective enables a) a principled way
of dealing with uncertainty and b) rich models, specified through kernel
functions. Using this connection, we tackle the problem of predicting
outcomes of football matches between national teams. We develop a
player kernel that relates any two football matches through the players
lined up on the field. This makes it possible to share knowledge gained
from observing matches between clubs (available in large quantities) and
matches between national teams (available only in limited quantities). We
evaluate our approach on the Euro 2008, 2012 and 2016 final tournaments.

1 Introduction

Statistical models of game outcomes have a rich and diverse history, going back
almost a century: as early as 1928, Zermelo [8] proposed a simple algorithm that
infers the skill of chess players based on observed game outcomes. Zermelo’s ideas
have since been rediscovered and refined multiple times, and have been successfully
applied to various sports-related prediction problems and beyond. On the occasion
of the Euro 2016 football tournament, we revisit these ideas and highlight their
connections to modern machine learning techniques. In particular, we show how
Zermelo’s model can be cast as a Gaussian process classification model. The
Gaussian process framework provides two key advantages. First, it brings all
the benefits of Bayesian inference. In particular it provides a principled way to
deal with the uncertainty associated to noisy observations and to predictions.
Second, it opens up new modeling perspectives through the specification of kernel
functions.

Equipped with this, we investigate the problem of predicting outcomes of
football matches between national teams. We identify two key challenges, a) that
of data sparsity (national teams usually play no more than ten matches per year),
and b) that of data staleness (the team roster is constantly evolving). Taking
inspiration from the observation that national teams’ players frequently face
each other in competitions between clubs (see Figure 1), we show that these
two difficulties can be tackled by the introduction of a player kernel. This kernel
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Fig. 1. Players of national teams qualified for the Euro 2016 (top row) are playing in
clubs across Europe and beyond (bottom row). The English, German and Italian club
championships contain the most selected players.

relates any two matches through the players lined up on the field, and makes it
possible to seamlessly use matches between clubs to improve a predictive model
ultimately used for matches between national teams. In contrast to national
teams, clubs play much more frequently, and more data is available.

The remainder of this short report is organized as follows. We review related
work at the end of the present section. In Section 2, we formalize the link between
Zermelo’s ideas and Gaussian processes, and present our player kernel. Then, in
Section 3, we evaluate our predictive model on the Euro 2008, 2012 and 2016
final tournaments.

1.1 Related Work

More than two decades after Zermelo’s seminal paper [8], his model for paired
comparisons was rediscovered and popularized by Bradley and Terry [1]. Nowa-
days, the model is usually referred to as the Bradley—Terry model. In the context
of skill-based game modeling, the same model (associated to a simple online
stochastic gradient update rule) is also known as the Elo rating system [3]. It
is used by FIDE to rank chess players® and by FIFA to rank women national
football teams*, among others.

The model and related inference algorithms have been extended in various
ways; one direction that is of particular interest is the handling of uncertainty
of the estimated skill parameters. Glickman [4] proposes an extension that
simultaneously updates ratings and associated uncertainty values after each
observation. Herbrich et al. [5] propose TrueSkill, a comprehensive Bayesian

3 See: https://ratings.fide.com/.
4 See: http://www.fifa.com/fifa-world-ranking/procedure/women.html.



framework for estimating player skill in various types of games. The models and
methods described in this paper are fundamentally similar to TrueSkill, as will
be discussed in Section 2. Finally, in the context of learning users’ preferences
from pairwise comparisons, Chu and Ghahramani 2] present a Gaussian process
approach that is comparable to our work.

2 Methods

In this section, we first show how the model of pairwise comparisons proposed
by Zermelo [8] and popularized by Bradley and Terry [1] and Elo [3] can be
expressed in the Gaussian process framework. Second, we present the player
kernel, a covariance function that relates matches through lineups.

2.1 Pairwise Comparisons as Gaussian Process Classification

Suppose that we observe outcomes of comparisons between two objects (e.g.,
two players or two teams) in a universe of objects denoted 1,..., M. We begin
by restricting ourselves to binary outcomes, i.e., we assume that one of the two
objects wins. Zermelo [8] postulates that each object u can be represented by
a parameter w, € R, indicative of its relative chances of winning against an
opponent. Given these parameters, the probability of observing the outcome
“u wins against v” (denoted by w > v) is given by w,/(w, + w,). Using the
reparametrization w, = e®+, this can be rewritten as

1 1
Plu>=v) = = 1
(u>v) 1+ exp[—(su — 8»)] 1+exp(—sTx)’ (1)
where s = [s;] and * € RM is such that x, = 1, v, = —1 and z; = 0 for

1 # u,v. As such, the pairwise comparison model can be seen as a special case
of logistic regression, where the feature vector simply indicates the winning and
losing objects. Furthermore, logistic regression is itself a special case of Gaussian
process classification [7, Ch. 3]. A Gaussian process f(x) ~ GP(m(x), k(x,2))
is defined by a mean function m(x) and a positive semi-definite covariance (or
kernel) function k(x,x’). Given any finite collection of points x1,...,xx, the
Gaussian process sampled at these points has a multivariate Gaussian distribution

[f(@1) ... f(zx)] = N(m, K),

where m; = m(z;) and K;; = k(x;, ;). It is not hard to show that if s ~
N(0,0%I), then f(x) = sz is a Gaussian process with m(z) = 0 and k(zx, z’) =
o2x " x’. This enables the interpretation of (1) as the likelihood of a Gaussian
process classification model with the logit link function.

The Gaussian process viewpoint shifts the focus from the representation of
the function f(x) (in the case of (1), a linear function) to the correlation between
two function evaluations, as defined by the kernel function k(x, ). Intuitively,

the model can simply be specified by how similar any two match outcomes



are expected to be. Furthermore, the Gaussian process viewpoint also makes it
possible to take advantage of the vast amount of literature and software related
to accurate, efficient and scalable inference.

Handling draws. Rao and Kupper [6] propose an extension of the pairwise
comparison model for ternary (win, draw, loss) outcomes. In this extension, the
two different types of outcomes have probabilities

1
Plu>v) = and P(u=v) = (e** — 1)P(u = v)P(v = u),
(0 0) = T oty a4 P =) = (€ = )P o) P - )
where a > 0 is an additional hyperparameter controlling the draws. Because a
draw can be written as the product of a win and a loss, model inference can still
be performed using only a binary Gaussian process classification model, with
minimal changes needed to the link function.

2.2 The Player Kernel

We now consider an application to football and propose a method to quantify
how similar two match outcomes are expected to be. Denote by P the number of
distinct players appearing in a dataset of matches. We define a team’s lineup as
the set consisting of the 11 players starting the match. For a given match, let
W and L be the lineups of the winning and losing teams, respectively. Define
z € RP such that 2z, =1if pe W, 2z, = —1if p € £ and 2, = 0 otherwise. We
then define the player kernel as

k(z,2') =0%2"2.

Intuitively, the function is positive if the same players are lined up in both
matches, and the same players win (respectively lose). The function is negative
when players win one match, but lose the other. Finally, the function is zero, e.g.,
when the lineups are completely disjoint.

This kernel implicitly projects every match into the space of players, and
defines a notion of similarity in this space. In the case of national teams qualified
to Euro final tournaments, we find that this approach is very useful: a significant
part of national teams’ players take part in one of the main European leagues
and play with or against each other. International club competitions (such as
the UEFA Champions League) further contribute to the “connectivity” among
players. Figure 2 illustrates the similarity of matches across different competitions
in 2011-2012.

It is interesting to note that the player kernel corresponds to a linear model
over the players. That is, it is equivalent to assuming that there is one independent
skill parameter per player, and that the strength of a team is the sum of its players’
skills. Such a model contains a massive number of parameters (possibly much
more than the number of observations), and there is little hope to reliably estimate
every parameter. In fact, we observe that the model is “weakly” parametric: the
number of distinct players usually grows with the number of matches observed.
The kernel-based viewpoint that we take emphasizes the fact that estimating
these parameters is not necessary.
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Fig. 2. Heatmap of the magnitude of the kernel matrix for 3184 matches played over the
year preceding Euro 2012. White indicates zero correlation, a saturated color indicates
more correlation. Matches between national teams exhibit non-zero covariance with
matches of all other competitions.

Relation to TrueSkill. Our Gaussian process model coupled to the player kernel
is very similar to TrueSkill [5]. The most important difference is that we take
advantage of the dual representation and operate in the space of matches instead
of the space of players. Beyond the conceptual reasons outlined above, it makes
inference significantly less computationally intensive for the datasets that we
consider.

3 Experimental Evaluation

In this section, we evaluate our predictive model on the matches of the Euro
2008, 2012 and 2016 final tournaments and compare it to several baselines.

We collect a dataset of matches from a) official and friendly competitions
involving national teams, and b) the most prestigious European club competitions,
starting from July 15¢, 2006. There are approximately 15x more matches between
clubs than there are matches between national teams in our dataset. With respect
to the model outlined in Section 2, our final predictive model processes one
additional feature that encodes which team played at home (this feature is null
for matches played on neutral ground). We train the model using all N matches
that were played prior to the start of the competition on which we test. When
computing the kernel matrix (whether on training or on test data) we use the
starting lineups, usually announced shortly before the start of the game. It is



Table 1. Average logarithmic loss of our predictive model (PlayerKern), a model based
on national team ratings (Elo), betting odds (Odds) and a random baseline (Random)
on the final tournaments of three European championships. N is the number of training
instances, P the number of distinct players and 7" the number of test instances.

Competition N P T PlayerKern Elo Odds Random
Euro 2008 4390 7875 31 0.969 0.910 0.979 1.099
Euro 2012 15594 21735 31 0.939 1.003 0.953 1.099
Euro 2016 24887 33157 51 1.067 1.102 1.020 1.099

interesting to note that the number of distinct players P appearing in the dataset
exceeds the number of training instances in each case (the values of N and P are
shown in Table 1). We use the GPy Python library® to fit the model; inference
takes a minute for the 2008 test set (17 minutes for 2016). The predictions come
in the form of probability distributions [p"V, pP, p"] over the three outcomes (win,
draw, loss).

We compare our predictive distributions against three baselines. First, we
consider a simple Rao-Kupper model based on national team ratings obtained
from a popular Web site®. This model is similar to ours, but a) it does not
relate matches through player, and thus does not consider club outcomes, and
b) as ratings are fixed values, it does not consider uncertainty in the ratings.
Second, we consider average probabilities derived from the odds given by three
large betting companies. Third, we consider a random baseline which always
outputs [1/3,1/3,1/3]. The predictive distributions are evaluated using the
average logarithmic loss over T test instances

T
—% > [Lgy=wy logp¥ + 1y,—py log p} + 1(y,—1y logpi] .
i=1
The logarithmic loss penalizes more strongly predictions that are both confident
and incorrect. Table 1 summarizes the results.

Our predictive model performs well in 2008 and 2012, but slightly less so in
2016. It is noteworthy that the 2016 final tournament has been generally less
predictable than earlier editions. The case of the Elo baseline is interesting, as its
accuracy varies wildly. Reasons for this might include the noise due to the online
gradient updates, and the lack of proper uncertainty quantification in the ratings.
Our method, in contrast, seems to produce more conservative predictions, but
manages to achieve a more consistent performance

3.1 Conclusion

In this short report, we exposed a connection between a well-known pairwise
comparison model and Gaussian process classification, and proposed a kernel that

® See: https://sheffieldml.github.io/GPy/.
5 See: http://www.eloratings.net/.



is able to transfer knowledge across different types of football matches—those
between clubs and those between national teams. We showed that a predictive
model building on these ideas achieves a logarithmic loss that is competitive with
betting odds. In future work, we would like to investigate how to incorporate
aging into the model, i.e., how to progressively downweight older data.
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