
Reachability Graphs of Two-Transition Petri
Nets

Evgeny Erofeev? and Harro Wimmel??

Parallel Systems, Department of Computing Science
Carl von Ossietzky Universität, D-26111 Oldenburg, Germany
{evgeny.erofeev,harro.wimmel}@informatik.uni-oldenburg.de

Abstract. The reachability graph of a Petri net is a labelled transition
system that can have a very complex structure. A characterisation of
reachability graphs of Petri nets with only two transitions gives insight
into typical structures that also might occur with arbitrarily large nets.
An important means for such a characterisation is region theory, which
allows to draw conclusions from cycles occurring in labelled transition
systems. Attention is drawn especially to generalised cycles, i.e. cycles in
the underlying undirected graph. Our characterisation also gives rise to
an algorithm for the over-approximation of a given prefix-closed language
by a Petri net language.

1 Introduction

When looking at a Petri net [5] and its reachability graph we can take system
analysis or system synthesis as a point of view on their relationship. In system
analysis, we can e.g. model a system by a marked Petri net and construct its
(unique) reachability graph to analyse its behaviour [6]. In system synthesis,
a behavioural specification is typically given, and a system implementing it is
sought. For example, one may try to find a Petri net whose reachability graph
is isomorphic to a given labelled transition system [1].

Our ultimate aim is to characterise, graph-theoretically, exactly the labelled
transition systems that are synthesisable into a place/transition Petri net. To
our knowledge, such a characterisation is difficult and has not yet been achieved
in general. In the special case of binary words, there have been approaches via
pattern matching and via letter counting [2–4] which successfully lead to a char-
acterisation of Petri net synthesisable words, i.e. where the reachability graph
consists of a single, specific sequence of states without any branching.

In this paper, we try to lift this limitation a bit and find the common structure
of reachability graphs of Petri nets with only two transitions (generating sets of
binary words). Based on region theory [1], we show how these reachability graphs
can be partitioned into only a few classes each having strong common properties.

? Supported by DFG through grant Be 1267/14-1 CAVER and Graduiertenkolleg GRK-
1765 SCARE http://www.uni-oldenburg.de/en/scare/

?? Supported by DFG through grant Be 1267/15-1 ARS and grant Be 1267/16-1 ASYST

39

The classes closely depend on the presence or absence of generalised cycles in
the reachability graph (i.e. cycles in the underlying undirected graph).

In case a given behaviour cannot be synthesised, we might ask for a small
over-approximation, i.e. a reachability graph including all the required behaviour
and allowing as few as possible additional words. If the given behaviour is finite,
we can extend our results to obtain an algorithm for computing the minimal
over-approximation by computing a convex hull for a subset of N2.

In section 2 we briefly recapitulate some basic definitions about labelled tran-
sition systems, Petri nets, and regions. Section 3 describes shapes of reachability
graphs containing generalized cycles with non-zero Parikh vectors, while sec-
tion 4 handles those where all generalised cycles have Parikh vector zero, essen-
tially allowing a transformation to some subset of N2. In section 5 we present the
algorithm for over-approximating the behaviour of a finite, binary, prefix-closed
language, before concluding the paper in section 6.

2 Basic Concepts

LTS. A labelled transition system (LTS) with initial state is a tuple TS = (S,→,
T, s0) with nodes S (a countable set of states), edge labels T (a finite set of
letters), edges→ ⊆ (S×T×S), and an initial state s0 ∈ S. An edge (s, t, s′) ∈ →
may be written as s

t→ s′ or s′
t← s. We use s

t s′ as an abbreviation for

(s
t→ s′ ∨ s t← s′) and call it a generalised edge or g-edge (in the underlying

undirected graph). A path (g-path) σ ∈ T ∗ from s to s′, written as s
σ→ s′

(s
σ s′), is given inductively by s = s′ for the empty word σ = ε and by

∃s′′ ∈ S: s
w→ s′′

t→ s′ (s
w s′′

t s′) for σ = wt with w ∈ T ∗ and t ∈ T . A

path s
σ→ s′ (g-path s

σ s′) is a cycle (g-cycle) if and only if s = s′. It is called
elementary if |σ| is the number of different states occurring on the path, i.e. every

state appears only once. The Parikh vector ℘(σ) : T → Z of a g-path s
σ s′ is

a mapping defined by ℘(ε) = 0 (with 0(t) = 0 for all t ∈ T) for the empty word
σ = ε, by ℘(wt)(t′) = ℘(w)(t′) for σ = wt and t 6= t′, by ℘(wt)(t) = ℘(w)(t) + 1

in case the g-path is s
w s′′

t→ s′, and ℘(wt)(t) = ℘(w)(t) − 1 if the g-path is

s
w s′′

t← s′ for some s′′ ∈ S.
Two labelled transition systems TS1 = (S1,→1, T, s01) and TS2 = (S2,→2,

T, s02) are isomorphic if there is a bijection ζ : S1 → S2 with ζ(s01) = s02
and (s, t, s′) ∈ →1⇔ (ζ(s), t, ζ(s′)) ∈ →2, for all s, s′ ∈ S1. We call TS1 a
sub-LTS of TS2 if S1 ⊆ S2, →1 ⊆ →2, and s01 = s02. A binary LTS (bLTS)
is an LTS (S,→, T, s0) with |T | = 2, in this paper usually with T = {a, b}.
A word over T is a sequence w ∈ T ∗, and it is binary if |T | = 2. A word
w = t1t2 . . . tn of length n ∈ N uniquely corresponds to a finite transition system
TS(w) = ({℘(ε), ℘(t1), . . . , ℘(t1 . . . tn)}, {(℘(t1 . . . ti−1), ti, ℘(t1 . . . ti)) | 0 < i ≤
n ∧ ti ∈ T}, T, ℘(ε)). A language over T is a set L ⊆ T ∗. For a finite language
L we can uniquely define a transition system TS(L) =

⋃
w∈L TS(w), where for

words w1, w2 ∈ T ∗ and TS(w1) = (S1,→1, T, ℘(ε)), TS(w2) = (S2,→2, T, ℘(ε))
we write TS(w1) ∪ TS(w2) = (S1 ∪ S2,→1 ∪ →2, T, ℘(ε)).

40

Since we are interested in behaviour expressed as an LTS, we will assume
LTS to be totally reachable, i.e. for every state there is a path from the initial
state to it. This also means that each two states are connected by a g-path. In
case of a not totally reachable LTS we may drop all unreachable states without
loss of behaviour.
Petri net. An initially marked Petri net is denoted as N = (P, T, F,M0) where
P is a finite set of places, T is a finite set of transitions, F is the flow function
F : ((P × T) ∪ (T × P)) → N specifying the arc weights, and M0 is the initial
marking (where a marking is a mapping M : P → N, indicating the number of
tokens in each place). A side-place is a place p with p•∩•p 6= ∅, where p• = {t ∈
T | F (p, t)>0} and •p = {t ∈ T | F (t, p)>0}. N is pure or side-place free if it
has no side-places. A transition t ∈ T is enabled at a marking M , denoted by
M [t〉, if ∀p ∈ P : M(p) ≥ F (p, t). The firing of t leads from M to M ′, denoted
by M [t〉M ′, if M [t〉 and M ′(p) = M(p)−F (p, t)+F (t, p). This can be extended,
as usual, to M [σ〉M ′ for sequences σ ∈ T ∗, and [M〉 denotes the set of markings
reachable from M . The reachability graph RG(N) of a Petri net N is the labelled
transition system with the set of vertices [M0〉, initial state M0, label set T , and
set of edges {(M, t,M ′) | M,M ′ ∈ [M0〉 ∧ M [t〉M ′}. If a labelled transition
system TS is isomorphic to the reachability graph of a Petri net N , we say that
N PN-solves (or simply solves) TS, and that TS is synthesisable to N . We say
that N solves a word w if it solves TS(w). We frequently identify the states of
TS with the markings of N then, writing e.g. s(p) ≥ F (p, t).

Reachability graphs (and their underlying LTS) have some nice properties we

can make use of: They are fully deterministic (s1
σ1← s

σ2→ s2 ∧℘(σ1) = ℘(σ2) =⇒
s1 = s2 and s1

σ1→ s
σ2← s2 ∧ ℘(σ1) = ℘(σ2) =⇒ s1 = s2), totally reachable

(∀s ∈ S ∃σ ∈ T ∗: s0 σ→ s), and zero-path-cyclic (s
σ s′ ∧ ℘(σ) = 0 =⇒ s = s′).

Separation problem. Let a labelled transition system TS = (S,→, T, s0) be
given. If we want to synthesise a Petri net with isomorphic reachability graph,
T must be used directly as the set of transitions, since we do not consider any
transition labels. In case the LTS is finite, we have to solve 1

2 ·|S|·(|S|−1) state
separation problems for the places and up to |S|·|T | event/state separation prob-
lems, as follows:

– A state separation problem consists of a set of states {s, s′} with s 6= s′,
and it can be solved by a place that distinguishes them, i.e. has a different
number of tokens in the markings corresponding to the two states.

– An event/state separation problem consists of a pair (s, t) ∈ S×T with

¬(s
t→). For every such problem, one needs a place p such that M(p) <

F (p, t) for the marking M corresponding to state s, where F refers to the

arcs of the hoped-for net. On the other hand, for every edge s′
t→ s′′ we must

guarantee M ′(p) ≥ F (p, t), M ′ being the marking corresponding to state s′.

If the LTS is infinite, also the number of separation problems (of each kind)
becomes infinite.
Region. An abstract region r of an LTS (S,→, {t1, . . . , tn}, s0) is a tuple r =
(r0, r1, . . . , rn) where r0 ∈ NS and ri ∈ Z for 1 ≤ i ≤ n with the following

41

consistency property: ∀s, s′ ∈ S ∀i ∈ {1, . . . , n}: (s
ti→ s′ =⇒ r0(s′) = r0(s) + ri).

The property implies that for every g-cycle s
σ s in the LTS holds

∑n
i=1 ℘(σ)(ti)·

ri = 0. It follows that the value r0(s) is fully defined by r0(s0) and the ri with
1 ≤ i ≤ n.

An abstract region in a reachability graph gives rise to an equivalence class
of places p where M0(p) = r0(s0) and ri = F (ti, p) − F (p, ti). If the region
distinguishes the states s and s′ of two reachable markings M and M ′ (by
r0(s) 6= r0(s′)), the firing rule of the Petri net ensures that M(p) 6= M ′(p).

Lemma 1 (Indistinguishable Regions). Let r = (r0, r1, . . . , rn) be an ab-
stract region of some (fully reachable) LTS (S,→, {t1, . . . , tn}, s0) with s, s′ ∈ S.
If r does not solve the state separation problem {s, s′} (by distinguishing s and
s′), neither does r′ = (k · r0 + i, k · r1, . . . k · rn) with i, k ∈ Z.

Proof. Note: If k · r0(s) + i < 0, r′ is not a region and there is nothing to prove.
Assume r0(s) = r0(s′). Then, (k·r0(s′)+i)−(k·r0(s)+i) = k·(r0(s′)−r0(s)) = 0.

ut
Places constructed from abstract regions are sufficient to deal with all state

separation problems but not event/state separation problems. For fully deter-
mined places (with exactly known values for F (p, ti) and F (ti, p)) one would have
to consider more refined regions. Instead, we argument directly about the loops
at some place p in a Petri net, i.e. about the value kt := min{F (p, t), F (t, p)}
for each transition t. Together with a region for p, they fully determine the arc
weights between p and its neighboring transitions. Places derived from the same
region, distinguished by the loop values kt only, can easily be unified.

Lemma 2 (Loop maximisation). Let N = (P, T, F,M0) be a Petri net with
p1, p2 ∈ P and kt ∈ Z for each t ∈ T such that M0(p2) = M0(p1), ∀t ∈ T :
F (p2, t) = F (p1, t) + kt and F (t, p2) = F (t, p1) + kt. Define a new Petri net N ′

by adding kt to each of F (p1, t) and F (t, p1) if kt > 0, for every t ∈ T , and then
deleting p2 including all adjacent arcs. N ′ has the same reachability graph as N .

Proof. Note that M(p1) = M(p2) holds for all reachable markings M in N . A
transition t is not firable in N at M , if M(p1) < F (p1, t) or M(p2) < F (p2, t),
or put differently, if M(p1) < max{F (p1, t), F (p2, t)}. This maximum is exactly
the arc weight F (p1, t) as defined for N ′. Since the token change on p1 by firing
a transition is the same in N and N ′ and enabledness of transitions also remains
unchanged from N to N ′, both nets have the same reachability graph. ut

So, of all places constructed from the same region, we need only one, i.e.
the place with the maximal number kt of loops, separately computed for each
adjacent transition t in the Petri net.

3 Generalised Cycles with Non-Zero Parikh Vectors

We would like to characterise the reachability graphs of Petri nets with at most
two transitions. As a first case we consider only reachability graphs that contain
at least one generalised cycle with a non-zero Parikh vector.

42

Theorem 1 (Shapes with Non-Zero Parikh Cycles). If the reachability
graph of a Petri net (P, {a, b}, F,M0) contains a g-cycle with a non-zero Parikh
vector, it has one of the seven general shapes shown in Figures 1, 3, and 5 or it
consists of just the initial state without any edges.

Proof. Let (S,→, {a, b}, s0) be a synthesisable bLTS, i.e. the reachability

graph of some Petri net (P, {a, b}, F,M0), with some g-cycle s
σ s such that

℘(σ) 6= 0.

From the definition of abstract regions we know that every g-cycle must have
a weighted sum of zero in any region of the LTS. Let r = (r0, ra, rb) be any
such region, then ℘(σ)(a) · ra +℘(σ)(b) · rb = 0. Our knowledge about ra and rb
depends directly on the Parikh vector of σ.

Case 1: ℘(σ)(a) = 0. Obviously then, ℘(σ)(b) 6= 0 and thus rb = 0, but

we know nothing about ra. As a consequence, following a b-edge s
b→ s′ in the

LTS cannot modify the region value, i.e. r0(s′) = r0(s) + rb = r0(s). Therefore,
because no region can distinguish s and s′, and neither can any place distinguish
the corresponding markings in the Petri net, the markings must be identical. We

conclude that s = s′ for every b-edge s
b→ s′, all b-edges must be loops in the

reachability graph. Figure 1 depicts all possible reachability graphs, with a (class
of) example Petri nets on the left. The shape of the reachability graph depends
on whether the occurring regions have positive, zero, or negative ra values:

ba 0

b

a

ba 0

b

ba
q

q

0 1 qa a a

b b

ba
f

q

q

f−r
f−r

0 1 q r fa a a a a a

b b b b

Fig. 1. Reachability graphs with loops (cycles of length 1). For an easy identification of
states with markings in the Petri nets on the left side, consider states as consecutively
named 0, 1, 2,

43

– If in all regions r = (r0, ra, 0) holds ra = 0, transition a cannot change the
marking in the Petri net either. If a can fire at all, we obtain the reachability
graph in the first row of Figure 1. If a cannot fire, we get the second row.

– If there is a region with ra > 0 but none with ra < 0, and assuming that
a can fire at all, its firing will increase the number of tokens on any place
connected to it. With increasing markings we obtain an infinite series of
pairwise distinguishable states as in the third row of Figure 1. Since b occurs
in the reachability graph, there is some earliest state q at which it forms a
loop. As the markings rise from this point on, b is also activated at all later
states.

– If there is a region with ra < 0, there must be a place from which a removes
tokens and eventually becomes deactivated. In the fourth line of Figure 1 a
can fire exactly f times. The transition b can be deactivated at an earlier
state r, if the place is a side-place of b (in the picture with arc weight f − r).
If there is also a region with ra > 0, b may not be activated until some state
q just as in the previous subcase.

Case 2: ℘(σ)(b) = 0. This case is analogous to the previous one.

Case 3: ℘(σ)(a) · ℘(σ)(b) > 0. Quite obviously then, ra · rb < 0 and rb =

−℘(σ)(a)℘(σ)(b) ·ra, so ra and rb have a fixed ratio in every region. For every pair of such

regions, we can use Lemma 1 to find a new region that is a common multiple
with modified initial value r0, i.e. any two such regions solve exactly the same
state separation problems. Therefore, only two regions are of interest, one with
ra < 0 and rb > 0 that can prevent an a, and one with ra > 0 and rb < 0
which can prevent b. By Lemma 2, the number of places constructed from each
region can be reduced to one, the one with the maximal number of loops at each
transition. Therefore, it is sufficient to have at most two regions, (r0, ra, rb) and
(r′0,−ra,−rb), and to construct one place from each region. A representative
class of Petri nets with such two regions is shown in Figure 2.

i j

b

a
m+ k1 k1

m+ k2k2

n+ k3
k3n+ k4

k4

TS = (S,→, {a, b}, 0) with

S = {−j, . . . ,+i} ∩ gcd(m,n) · Z

∀x ∈ S :

x x+m ⇐⇒ k2 − j ≤ x
∧ x+m ≤ i− k1

a

x x− n ⇐⇒ k3 − j ≤ x− n
∧ x ≤ i− k4

b

Fig. 2. A representative class of Petri nets for the case ℘(σ)(a) · ℘(σ)(b) > 0. An LTS
representing the reachability graph is shown on the right hand side. Some unreachable
states are easy to exclude (by intersecting with gcd(m,n) · Z), others may occur if the
initial state does not lie on a cycle

44

On the right hand side of Figure 2 we can see an LTS representing the
reachability graph. For simplicity, we have named the initial state 0, which leads
to states with negative numbers. By adding j, we can obtain the values of a
possible region.

If we omit one of the two regions (places), the state space will become infinite,
as either the boundary −j or the boundary i will fall. We may think of this as
replacing −j by −∞ or i by ∞. If we omit both places, the reachability graph
collapses to the first row of Figure 1.

Figure 3 visualises an example of a reachability graph with a cycle. A Petri
net according to Figure 2 has the parameters m = 5, n = 3, i = 32, j = 0,
k1 = 0, k2 = 0, k3 = 9, and k4 = 0. The value k3 = 9 ensures that the two initial
a’s cannot be undone. This also makes the states 1 to 4 and 6 to 8 unreachable.
Incrementing i (by one) will add one a-edge at the highest state without such
an edge to some new state and one b-edge at the new state. E.g., setting i to
33 will add an a-edge from 28 to 33 (new) and one b-edge from 33 to 30. Each

increment will complete a new diamond in the graph (here with 28
b→ 25

a→ 30).
Incrementing j will analogously add a diamond at the other end. Adding loops
via parameters k1 to k4 essentially cuts off such diamonds again, unless the
cutting point is near the initial state. In this case, only one kind of edge is
removed. The initial state will then not lie on a cycle anymore but form a path
(using the other kind of edges) that leads to the cyclic part of the LTS. The
parameters m and n determine the length of cycles in the LTS and the ratio of
a and b on these cycles.

21

24

19

22

17

20

23

18

a

b a

b

b

ab

b

16

b

a

15
ba

14

b

a

13

b

a

12

b

a

11
b a

10

b

a

9

b

a

25

a

b

26
a

b

27
a b

28

a

b
29

a

b

30
a

b

31 ab

32

a

b

5 0

s0aa

Fig. 3. Visualisation of a reachability graph with (standard) cycles

45

Case 4: ℘(σ)(a) · ℘(σ)(b) < 0. With the same reasoning as in the previous
case but ra · rb > 0, we find that again two regions (r0, ra, rb) and (r′0,−ra,−rb)
and one place constructed from each region must be enough. This leads to the
class of Petri nets shown in Figure 4.

i j

b

a
m+ k1 k1

m+ k2k2

n+ k3
k3n+ k4

k4

TS = (S,→, {a, b}, 0) with

S = {0, . . . , i}

∀x ∈ S :

x x+m ⇐⇒ k2 − j ≤ x
∧ x+m ≤ i− k1

a

x x+ n ⇐⇒ k3 − j ≤ x
∧ x+ n ≤ i− k4

b

Fig. 4. A representative class of Petri nets for the case ℘(σ)(a) · ℘(σ)(b) < 0. An LTS
representing the reachability graph is shown on the right hand side. Some states may
be unreachable

Unlike Case 3, there is a steady token flow from the left to the right place,
no matter which transition is fired. Therefore, the right place determines when a
transition may start firing and the left place when the firing must cease. Since the
left place will at some point stop both transitions from firing, the reachability
graph will normally be finite. Only if we remove the left place from the net,
we can obtain an infinite behaviour (with states then named according to the
number of tokens on the right place). These possibilities are shown in Figure 5.

8 7 6 5 4 3 2 1 0

a a a a a a

b b b b b

0 1 2 3 4 5 6 7 8
. . .

a a a a a a a a

b b b b b b b b

Fig. 5. Visualisation of reachability graphs containing g-cycles with non-zero Parikh
vector, but no directed cycles

The upper reachability graph (with the dotted edge) corresponds e.g. to the
Petri net with parameters i = 8, j = 0,m = 2, n = 3, and k1 = k2 = k3 = k4 = 0.
Introducing loops at the left place will prevent the rightmost edges, i.e. setting

46

k4 = 1 will eliminate the dotted b-edge, setting it to 2 will also prevent the b-edge
ending at state 1, and so on.

The lower reachability graph corresponds to a Petri net without the left
place and its adjacent edges. It has the parameters j = 0, m = 2, n = 3, and
k2 = k3 = 0. Adding a loop at the right place prevents edges beginning at
the initial state. Setting k3 = 1 will remove the b-edge at 0 and make state 3
unreachable. Therefore, the edges from state 3 also become unusable (shown as
dotted lines).

With cases 1 to 4, we have covered all possible g-cycles with non-zero Parikh
vector that might occur in a reachability graph of a Petri net with transitions a
and b. This concludes the proof of Theorem 1. ut

4 Generalised Cycles with Zero Parikh Vectors only

Let us now assume, that our LTS does not have any g-cycle σ with ℘(σ) 6= 0.
In this case, the transitions a and b are independent, and we may use a base
transformation to project the LTS onto the plane N2, with the initial state
mapped to (0, 0). The transitions a and b become the base vectors, i.e. firing

a increments the first component of a state, (x, y)
a→ (x + 1, y), and firing b

increments the second component, (x, y)
b→ (x, y + 1), whenever the transitions

are allowed.
Since all g-cycles σ have zero Parikh vectors, ℘(σ) = 0, the equation ℘(σ)(a)·

ra + ℘(σ)(b) · rb = 0 does not restrict the values for ra and rb of a region in any
way. If we distinguish regions (r0, ra, rb) by the signs of ra and rb, there are
essentially nine types of regions. Regions with non-negative values for ra as well
as rb do not restrict the enabledness of transitions. With positive values for ra
and rb, the five remaining types can be written as (r0,−ra,+rb), (r0,−ra, 0),
(r0,−ra,−rb), (r0, 0,−rb), and (r0,+ra,−rb). An example LTS with one region
of each of the five types is shown in Figure 6.

Let now N = (P, {a, b}, F,M0) be a Petri net and G the projection of the
reachability graph onto N2. Furthermore, let R be the set of regions of G.

Lemma 3 (Inner States). Let N be pure (i.e. ∀p, t : F (p, t) ·F (t, p) = 0) and
(x, y) ∈ G be some state. If ∀(r0, ra, rb) ∈ R: r0((x+1, y)) ≥ 0, then (x+1, y) ∈ G
with (x, y)

a→ (x+1, y). If ∀(r0, ra, rb) ∈ R: r0((x, y+1)) ≥ 0, then (x, y+1) ∈ G
with (x, y)

b→ (x, y + 1).

Proof. Note first, that for any state (x, y) ∈ N2 and any region (r0, ra, rb) ∈ R
holds r0((x + 1, y)) = r0((x, y)) + ra and r0((x, y + 1)) = r0((x, y)) + rb by the
definition of a region, since we use a and b as base vectors in N2.

To prevent (x, y)
a→ in G, there must be a region (r0, ra, rb) ∈ R with ra < 0.

For a place p constructed from such a region, ra = F (a, p)− F (p, a) must hold.
Since N is pure, F (p, a) > 0 and F (a, p) = 0. Now, r0((x+ 1, y))− r0((x, y)) =
ra = −F (p, a) and with r0((x+1, y)) ≥ 0 we conclude r0((x, y)) ≥ F (p, a). Since
by construction of p, r0((x, y)) is the number of tokens on p at the state (x, y),

47

a a a

a a a a a

a a a a a a a a a

a a a a a a a a a

a a a a a a

a a a

b b b b

b b b b b b

b b b b b b b b b b

b b b b b b

b b b b

(1
, 2
,−

1)

(5, 0,−1)

(35,−2,−5)

(1
0
,−

1
,0

)

(6,−2, 7)

Fig. 6. An LTS without Parikh-non-zero g-cycles, limited by 5 regions (shown as dotted
lines at which the value of a region (r0, ra, rb) is zero). The initial state is at the lower
left and can be viewed as the origin (0, 0) of the plane N2, where a and b are the unit
vectors of the two dimensions

p cannot prevent firing a at the corresponding marking. Since the region and p
were arbitrary, (x, y)

a→ (x+ 1, y) holds in G, i.e. (x+ 1, y) ∈ G.
An analogous reasoning holds for (x, y + 1) and the transition b. ut

Theorem 2 (Reachability graphs of pure nets without Parikh-non-
zero g-cycles). An LTS G in which all g-cycles have Parikh vector zero is
the reachability graph of a pure Petri net N = (P, {a, b}, F,M0) if and only if it
can be viewed as a weakly connected convex subset of N2 containing the initial
state (0, 0) such that for each two states (x, y), (x+ 1, y) ∈ G: (x, y)

a→ (x+ 1, y)

and for each two states (x, y), (x, y + 1) ∈ G: (x, y)
b→ (x, y + 1).

Proof. Note that convex subsets of N2 can be defined by cutting off parts of N2

using straight lines, and that these lines may not cut off the initial state, so our
five types of regions give rise to exactly this kind of convex subset.

Using Lemma 3 proves that all necessary states and edges exist. In some
extreme cases, e.g. with regions (0, 1,−1), (0,−1, 1), (0, 1, 0), and (0, 0, 1) we
may obtain states that cannot be connected via g-paths, in this case the states
(x, x) with x ∈ N. Then, only the weakly connected component of the graph
that contains the initial state forms the reachability graph.

It remains to show that a pure Petri net can be found such that its reach-
ability graph does not identify any two of the states in N2. This can easily be
done using the regions (0, 1, 0) and (0, 0, 1), i.e. by adding to each postset of a
and b one new place with an empty initial marking, counting the number of a’s
or b’s that have occurred. ut

Figure 6 is a typical representative of such a reachability graph of a pure
net (over transitions a and b). The regions cutting off parts of N2 may vary in
number and direction, and they may not even make the graph finite, but the

48

“inside area” (the convex subset of N2) will always be completely filled with
states and edges. A pure Petri net synthesising the LTS from Figure 6 can be
seen in Figure 7.

6

5

35

10

ba

2

2 3

72

Fig. 7. A pure Petri net with the LTS from Figure 6 as its reachability graph. Each
region forms one place. Though unnecessary in this case, we add regions (0, 1, 0) and
(0, 0, 1) to ensure that no two states can have the same marking

To characterise the reachability graphs of non-pure nets in the same way, we
need to consider the effect of adding a self-loop between a place (representing
some region (r0, ra, rb)) and the transition a or b. The dotted lines in Figure 6
show where the corresponding region has the value zero, or put differently, they
are the border that edges cannot cross. We can also interpret them as two differ-
ent lines at the same location, one preventing the a-edges, the other preventing
the b-edges from crossing into the half-plane of negative region values. Let us
call these lines the a-line and b-line of the region.

Lemma 4 (Shifting enabledness lines). Let N = (P, {a, b}, F,M0) be a pure
Petri net with a place p ∈ P (with corresponding region (r0, ra, rb)), and let N ′

be derived from N by adding k ∈ N to both F (p, a) and F (a, p). Let G and G′

be the reachability graphs of N and N ′ projected to N2. Then, from G to G′, the
a-line is shifted by the fraction of k

ra
of the unit-a-vector, unless ra = 0, then it

is shifted by the fraction of k
rb

of the unit b-vector. If ra = rb = 0, either nothing

happens (in case r0 ≥ k) or G′ collapses and does not contain any a-edges (if
r0 < k).

Proof. Note first, that G′ is a subgraph of G since N ′ has a more restricted
behaviour than N . If ra 6= 0, any a-edge changes the number of tokens on p by
ra, therefore the k

ra
th fraction of an a-edge increases the number of tokens on p

by k. This is exactly the additional amount of tokens needed in G′ to allow an
a-edge, thus the a-line moves from G to G′ by the k

ra
th fraction of a unit-a-vector

(possibly in the opposite direction if ra < 0).

If ra = 0, still a-edges are allowed only if the region value is at least k, since
in N ′ we have F (p, a) = k = F (a, p). A line representing the region value of k is

49

exactly at a distance of k
rb

times the unit-b-vector from the b-line, and becomes
the new a-line.

If the region is (r0, 0, 0) neither transition can change the start value r0. We
either have r0 ≥ k, i.e. r0 ≥ F (p, a) = F (a, p), so the number of tokens on p is
sufficient to allow an a at all states. Or we have r0 < k, in which case there are
no a-edges in G′ at all and G′ represents some word from b∗. ut

This lemma can obviously be formulated for the transition b as well. In Fig-
ure 8 we can see the effect of adding one self-loop with a for each of the five places
representing one of the regions (1, 2,−1), (5, 0,−1), (35,−2,−5), (10,−1, 0), and
(6,−2, 7). The lemma also includes regions like (0, 1, 0), that usually will not be
shown in the LTS because they are positioned left of or below the origin. A
shifted line from such a region can easily cut off the origin and thus collapse the
reachability graph, as in the case of (r0, 0, 0) in the lemma.

a a a a a

a a a a a a a

a a a a a a a a

a a a a a

a a

b b b b

b b b b b b

b b b b b b b b b

b b b b b b

b b b

(1
, 2
,−

1)

b a

b (5, 0,−1)

a

b

(35,−2,−5)

a

b

(1
0
,−

1
,0

)

a
b

(6,−2, 7)
a

Fig. 8. The reachability graph of the net of Figure 7 if we add, for each of the five
original regions, a self-loop between the corresponding place and a. The line where a
region has value zero is split into two: one line that a-edges cannot permeate and one
line that b-edges cannot cross (marked with letters a and b)

We can then characterise the reachability graphs of nets (P, {a, b}, F,M0) as
follows.

Theorem 3 (Reachability graphs of nets without Parikh-non-zero g-
cycles). Let C ⊆ N2 be a convex area and let Ca, Cb be derived from C by

shifting borders of C only. Let G be the graph including (0, 0) such that (x, y)
a→

(x + 1, y) ∈ G ⇐⇒ (x, y) ∈ G ∩ Ca, (x + 1, y) ∈ Ca and (x, y)
b→ (x, y + 1) ∈

G⇐⇒ (x, y) ∈ G∩Cb, (x, y+1) ∈ Cb. Then, G is the projection of a reachability
graph of a Petri net N = (P, {a, b}, F,M0) to N2. If the reachability graph of a
Petri net (P, {a, b}, F,M0) does not contain g-cycles σ with ℘(σ) 6= 0, Ca and
Cb meeting the above conditions can always be found.

50

5 Over-approximation of finite languages

Assume now that we have a finite language L over a binary alphabet {a, b}
given, and we aim to synthesise a Petri net which allows firing of all the words of
this language. Due to the fact that for each Petri net, every prefix of a feasible
transitions sequence is also feasible, we will assume L to be prefix-closed, i.e. for
every uv ∈ L with u, v ∈ {a, b}∗, it holds u ∈ L. For a Petri net N , let L(N) be
the set of all transition sequences fireable in N . Since we consider only unlabelled
Petri nets, it may be the case that there is no net N such that L(N) = L.
Nevertheless, there exists a net N such that L ⊆ L(N) (for instance, the net
N = ({Pa, Pb}, {a, b}, {(Pa, a) 7→ 1, (Pb, b) 7→ 1}, (l, l)) with l = maxw∈L |w|).
Hence the challenging problem is to find a net N such that L ⊆ L(N) and the
difference between L(N) and L is minimal. The characterisations established in
Theorem 2 and 3 suggest a possible algorithm for such an over-approximation
of finite languages.

b
b

a

a
b

b
b

a

a

b

b
a

a

a
a

b

a
1 2 3 4

1

2

3

4

0

(2
, 1
,−

1)

b

(2
,−

1
,0

)

b

(2
,−

2,
1)

b

(5
, 0
−

2,
4
−

3)

a

(4
,0
−

1
,2
−

2
)

a

Fig. 9. The lts TS(L) (l.h.s.) derived from language L. R.h.s.: solid dots denote the
b-adjacent states, dotted lines represent the regions obtained from the convex hull of
this set of states; circles denote a-adjacent states; dashed regions (5, 0 − 2, 4 − 3) and
(4, 0 − 1, 2 − 2) were derived by transforming places corresponding to (2,−2, 1) and
(2,−1, 0), respectively, into side-conditions.

Let L = {abbabaa, bbababaa}, where over-line stands for prefix-closure, be
an example language for which we seek to produce a Petri net whose language
includes L. We can easily translate L into a labelled transition system TS(L)
without Parikh-non-zero g-cycles (l.h.s. in Figure 9). As we have established in
Section 4, regions are represented as lines on N2, and these lines are essentially
the borders that the projected arcs cannot cross. According to Lemma 4, be-
ing considered as a line, the same region can simultaneously impose for each
transition its own border. In order to find the over-approximating Petri net, we
first build regions for each letter, a and b, separately. E.g., for b in our example

51

in Figure 9 we construct the regions (2, 1,−1), (2,−1, 0), and (2,−2, 1), repre-
sented as dotted lines, which only take states into account that have an adjacent
b-edge. These regions, together with the left and lower border of N2, form the
convex hull for b, but some states only adjacent to a-edges may be outside, e.g.
(4, 3). Using the mechanism of Lemma 4 we can adjust the regions (2,−1, 0) and
(2,−2, 1), obtaining new borders (drawn as dashed) for a-edges. Each region
(border of the hull) is then translated into a place of a net. The same must be
done for the states adjacent to a-edges, taking care of b-edges outside the convex
hull. The sought net is obtained as a union of the places derived from the borders
of a-adjacent and of b-adjacent states.

Algorithm 1 Over-approximation of a finite language

Input: finite (prefix-closed) language L ∈ {a, b}∗
Output: Petri net over-approximating L

compute sets Wa = {(x, y) | ℘(wa) = (x, y) ∨ ℘(w) = (x, y), wa ∈ L}
Wb = {(x, y) | ℘(wb) = (x, y) ∨ ℘(w) = (x, y), wb ∈ L}

find the convex hulls Ha = ((xi, yi))0≤i≤ka ⊆Wa of Wa (enumerated clockwise)
Hb = ((xj , yj))0≤j≤kb

⊆Wb of Wb (enumerated clockwise)
(Pa, T, Fa,M0,a)← partialSolution(a, b,Wa,Wb, Ha)
(Pb, T, Fb,M0,b)← partialSolution(b, a,Wb,Wa, Hb)
N ← (Pa ∪ Pb, {a, b}, Fa ∪ Fb,M0,a ∪M0,b)
return N

procedure partialSolution(a, b,Wa,Wb, H)
{construct the net restricting the firings of one transition}

begin procedure
m← |H|, P ← ∅ {find the size m of the hull, define the set of places P}
for i = 0 to m− 1 do {construct places from H taking into account Wb}
ria ← yi − yi+1 {define a region as a line through two points}
rib ← xi+1 − xi {orthogonal’s direction accords with the ordering of H}
ri0 ← −ria · xi − rib · yi
define place pi
M0(pi)← ri0
if ria ≥ 0 then F (a, pi)← ria, F (pi, a)← 0 else F (pi, a)← ria, F (a, pi)← 0
if rib ≥ 0 then F (b, pi)← rib, F (pi, b)← 0 else F (pi, b)← rib, F (b, pi)← 0
if Wb \Wa 6= ∅

then
(x′, y′) ← arg max{(x,y)∈Wb\Wa|ri0+x′·ria+y′·ri

b
<0}{|ri0 + x · ria + y · rib|}

{arg max returns the argument yielding the maximum of the set}
k ← |x′ · ria + y′ · rib| − ri0 {define the “moving factor”}
M0(pi)←M0(pi) + k, F (pi, a)← F (pi, a) + k, F (a, pi)← F (a, pi) + k

{adjust the restrictions to include outer states}
add place pi to P

endfor
return (P, {a, b}, F,M0)

end procedure

52

Algorithm 1 describes this process formally. In order to construct a convex
hull, one can use the Quickhull [7] algorithm which produces the hull in O(n2)
in the worst case, where n is the size of the initial set (which is the set of states
of the LTS in our case). For a language L we have n ≤ |L| · l (l being the length
of the longest word). The complexity of the partialSolution procedure is O(n2)
in the worst case. Hence, the total complexity of the algorithm does not exceed
O(n2). Applying the algorithm to the language L, we obtain the Petri net on
the left hand side of Figure 10, its reachability graph being depicted on the right
hand side.

ba
2

2

2

3 4
b

b

b

b

b b

b

a

a a

a a a

a a a

a a

Fig. 10. The net (l.h.s.) obtained by the algorithm and its reachability graph (r.h.s.).

6 Conclusion

In this paper a graph-theoretical characterisation of the reachability graphs of
Petri nets over the binary transition set is presented. The characterisation relies
on the notion of generalised cycles. Based on this characterisation and the ab-
sence of Parikh-non-zero g-cycles, an algorithm for over-approximating a finite
language by a Petri net language is suggested.

A natural continuation of this line of work is to use more than two transitions.
Unluckily, just considering all pairs of transitions (others being “invisible”) is
insufficient, so even an extension to only three transitions is far from trivial.

References

1. É. Badouel, L. Bernardinello, P. Darondeau: Petri Net Synthesis. Springer-Verlag,
ISBN 978-3-662-47966-7, 339 pages (2015).

2. Kamila Barylska, Eike Best, Evgeny Erofeev, Lukasz Mikulski, and Marcin Pi-
atkowski: On binary words being Petri net solvable. In: ATAED’2015, Josep
Carmona, Robin Bergenthum, Wil van der Aalst (eds), pp. 1-15, http://ceur-
ws.org/Vol-1371.

53

3. Kamila Barylska, Eike Best, Evgeny Erofeev, Lukasz Mikulski, and Marcin Pi-
atkowski: Conditions for Petri Net Solvable Binary Words. In ToPNoC XI (Trans-
actions on Petri Nets and other Models of Concurrency), Jetty Kleijn, Jrg Desel
(eds), Lecture Notes in Computer Science 9930, Springer, 2016, pp.137-159, DOI:
10.1007/978-3-662-53401-4 7.

4. E. Best, E. Erofeev, U. Schlachter, H. Wimmel: Characterising Petri Net Solv-
able Binary Words. In: Application and Theory of Petri Nets and Concurrency -
37th International Conference, (Petri Nets 2016), Fabrice Kordon, Daniel Moldt
(eds.). Lecture Notes in Computer Science 9698, Springer, 2016, pp.39-58, DOI:
10.1007/978-3-319-39086-4 4.

5. T. Murata: Petri Nets: Properties, Analysis and Applications. Proc. of the IEEE,
Vol. 77(4), 541-580 (1989).

6. W. Reisig: Understanding Petri Nets: Modeling Techniques, Analysis Methods,
Case Studies. Springer-Verlag, ISBN ISBN 978-3-642-33278-4, 211 pages (2013).

7. W. Eddy: A new convex hull algorithm for planar sets. ACM Transactions on
Mathematical Software, 1977.

54

