
Heuristics for High-Utility Local Process Model
Mining

Benjamin Dalmas1, Niek Tax2, and Sylvie Norre1

1 Clermont-Auvergne University, LIMOS CNRS UMR 6158, Aubière, France
{benjamin.dalmas,sylvie.norre}@isima.fr

2 Eindhoven University of Technology, Department of Mathematics and Computer
Science, P.O. Box 513, 5600MB Eindhoven, The Netherlands

n.tax@tue.nl

Abstract. Local Process Models (LPMs) describe structured fragments
of process behavior occurring in the context of less structured business
processes. In contrast to traditional support-based LPM discovery, which
aims to generate a collection of process models that describe highly
frequent behavior, High-Utility Local Process Model (HU-LPM) discovery
aims to generate a collection of process models that provide useful business
insights by specifying a utility function. Mining LPMs is a computationally
expensive task, because of the large search space of LPMs. In support-
based LPM mining, the search space is constrained by making use of the
property that support is anti-monotonic. We show that in general, we
cannot assume a provided utility function to be anti-monotonic, therefore,
the search space of HU-LPMs cannot be reduced without loss. We propose
four heuristic methods to speed up the mining of HU-LPMs while still
being able to discover useful HU-LPMs. We demonstrate their applicability
on three real-life data sets.

Keywords: Process Discovery, Pattern Mining, Heuristics

1 Introduction

Process Mining [1] has emerged as a new discipline aiming at the improvement
of business processes through the analysis of event data recorded by information
systems. An event log contains recorded events related to a process execution.
Events consist of a case identifier (grouping together events that belong to the
same process instance), and information on what was performed, when, by whom,
etc. Process discovery techniques aim to discover an interpretable model that
accurately describes the process from such an event log. The process models
obtained with process discovery give insight in what is happening in the process,
and can be used as a starting point for different types of further analysis, e.g. bot-
tleneck analysis [17], and comparison of the same process between organizations
[6]. Many algorithms have been proposed for process discovery, e.g., [3, 4, 14–16].

Recently, Local Process Model (LPM) discovery [20, 23] has emerged, which
is concerned with the discovery of a ranking of process models (i.e., LPMs),

106

where each individual LPM describes only a subset of the process activities.
LPMs aim to describe frequent local pieces of behavior, therefore, LPMs can be
seen as a special form of frequent patterns [10], where each pattern is a process
model. However, in contrast to other pattern mining approaches that operate
on sequence data, such as episode mining [13] and sequential pattern mining
[19], LPMs are not limited to subsequences or partial orders and can additionally
consist of more complex structures, such as loops and choices.

A recent trend in the frequent pattern mining field is to take the relative
importance of the activities in the log into account in the knowledge discovery
process. This results in the discovery of patterns that address business concerns,
e.g. high financial costs, instead of the discovery of simply the most frequent
patterns. In previous work we introduced high-utility local process models (HU-
LPMs) [22] to bridge the concept of utility based discovery into the process
mining field, and adapted it to the logging concepts typically seen in process
mining event logs, such as event attributes, trace attributes, etc. In the pattern
mining field, the concept of utility is often defined narrower and solely based on
the set of activities that is described by a pattern.

To deal with the computational complexity of searching patterns with such
a rich set of constructs that are supported by LPMs (i.e., sequential orderings,
parallel blocks, loops, choices), a support-based pruning strategy [23] as well as a
set of heuristic approaches [20] have been introduced for the discovery of LPMs.
However, support-based pruning and the existing set of heuristic approaches for
LPM discovery cannot be used for the discovery of high-utility LPM discovery,
as LPMs with high utility can be infrequent. Furthermore, the utility of an LPM
is not necessarily monotonic, i.e., an LPM that does not meet a utility threshold
can still be expanded into an LPM that does meet this threshold.

In this paper we propose four different heuristic approaches to prune the
search space of the HU-LPM discovery task. We perform experiments on three
different logs and show that our approaches speed up the discovery of HU-LPMs,
while still being able to discover useful HU-LPMs. The techniques described in
this paper have been implemented in the ProM process mining framework [9] as
part of the LocalProcessModelDiscovery1 package.

This paper is organized as follows. Section 2 describes related work. Section
3 introduces the basic concepts used in this paper. In Section 4, we introduce
the four heuristic approaches for HU-LPM mining. We discuss the experimental
setup and experimental results in Section 5. Finally, we conclude and discuss
future areas of research in Section 6.

2 Related Work

In the pattern mining discipline, the limitations of support-based mining have
become apparent in recent years, and as a result the interest has grown in high-
utility patterns; i.e., patterns providing useful business insight. This has led to an
increasing number of methods and techniques that address the high-utility mining

1 https://svn.win.tue.nl/repos/prom/Packages/LocalProcessModelDiscovery/

107

(HUM) problem [8, 24–26]. USpan uses a lexicographic quantitative sequence tree
(LSQ-tree) to extract the complete set of high utility sequences [24]. A LQS-tree
is a tree structure where each node stores a sequence of activities and its utility.
The sequence stored by a node being a super-sequence of the sequence stored by
the node’s parent, this type of structure allows for fast access and updates when
mining high-utility patterns. A similar tree structure, the HUSP-Tree is used
by the HUSP-Stream algorithm to enable fast updates when mining high-utility
patterns from sequential data streams [26]. The problem of mining incremental
sequential datasets is also addressed in [8], using an efficient indexing strategy.
In [25], the HUSRM algorithm efficiently mines sequential rules using a utility
table, a novel data structure to support recursive rule expansions.

The utility in sequential patterns is regarded to be the sum of the utility of the
activities that fit the sequential pattern. The majority of pruning strategies that
are used in HUM algorithms are based on Transaction-Weighted Utility (TWU).
The TWU of a pattern X is the sum of utilities of the sequences containing X,
resulting in an upper bound for the utility of pattern X that can be computed
efficiently. In case the TWU of a pattern X does not meet a predefined minimum
threshold, X can be safely pruned since its actual utility can only be lower than
or equal to TWU. In traditional HUM algorithms, the utility function is defined
on the activity level; i.e., each activity in the dataset is given a utility and the
utility of a pattern is the sum of all activity utilities. Therefore, TWU and other
activity-based pruning strategies can be used for efficient pruning for HU-LPM
mining when utility is defined on the activity level. However, utility functions
of HU-LPMs are defined in a more general way, allowing utility for example
to depend also on event attributes or trace attributes instead of the activity.
Therefore, TWU cannot be used to prune the search space of HU-LPMs. With
sequence-based pruning strategies being inapplicable in HU-LPM mining, we
investigate in this paper utility-based heuristics.

3 Preliminaries

In this section we introduce notations related to event logs, Local Process Models
(LPMs) and High-Utility Local Process Models (HU-LPMs) which are used in
later sections of this paper.

3.1 Events, Traces, and Event Logs

X∗ denotes the set of all sequences over a set X and σ = 〈a1, a2, . . . , an〉 a
sequence of length n, with σ(i) = ai and |σ| = n. 〈〉 is the empty sequence
and σ1σ2 is the concatenation of sequences σ1 and σ2. We denote with σ�X
the projection of sequence σ on set X, e.g., for σ = 〈a, b, c〉, and X = {a, c},
σ�X = 〈a, c〉.

In the context of process logs, we assume the set of all process activities Σ
to be given. An event e in an event log is the occurrence of an activity e∈Σ.
We call a sequence of events σ∈Σ∗ a trace. An event log L∈NΣ∗ is a finite

108

multiset of traces. For example, the event log L = [〈a, b, c〉2, 〈b, a, c〉3] consists
of 2 occurrences of trace 〈a, b, c〉 and three occurrences of trace 〈b, a, c〉. We lift
projection of sequences to multisets of sequences, e.g., L�{a,c} = [〈a, c〉5].

3.2 Local Process Models

LPMs [23] are process models that describe frequent but partial behavior; i.e.,
they model a subset of the activities of the process, seen in the event log. An
iterative expansion procedure is used in [23] to generate a ranked collection
of LPMs. LPMs are limited to 5 activities as the expansion procedure is a
combinatorial problem of which the size depends on the number of activities in
the event log as well as the maximum number of activities in the LPMs that are
mined. Though LPMs can be represented in any process modeling notation, such
as BPMN [18], UML [11], or EPC [12], here we use Process Trees [5] to represent
LPMs.

A process tree is a tree structure where leaf nodes represent activities. The
non-leaf nodes represent operators, which specify the allowed behavior over the ac-
tivity nodes. Allowed operator nodes are the sequence operator (→) that indicates
that the first child is executed before the second, the exclusive choice operator (×)
that indicates that exactly one of the children can be executed, the concurrency
operator (∧) that indicates that every child will be executed but allows for any
ordering, and the loop operator (�), which has one child node and allows for
repeated execution of this node. L(LPM) represents the language of process tree
LPM , i.e., the set of sequences allowed by the model. Figure 1d shows an ex-
ample process tree M4, with L(M4)={〈A,B,C〉, 〈A,C,B〉, 〈D,B,C〉, 〈D,C,B〉}.
Informally, it indicates that either activity A or D is executed first, followed by
the execution of activities B and C in any order.

A technique to generate a ranked collection of LPMs through iterative ex-
pansion of candidate process trees is proposed in [23]. The expansion procedure
consists in the replacement of one of the leaf activity node a of the process tree
by an operator node (i.e., →,×,∧, or �), where one of the child nodes is the
replaced activity node a and the other is a new activity node b. M is the LPM
universe; i.e., the set of all possible LPMs. An LPM M∈M can be expanded
in many ways, as it can be extended by replacing any one of its activity nodes,
expanding it with any of the operator nodes, and with a new activity node that
represents any of the activities present in the event log. We define Exp(M) as
the set of expansions of M , and exp max the maximum number of expansions
allowed from an initial LPM ; i.e., an LPM containing only one activity.

Figure 1 illustrates the expansion procedure, starting from the initial LPM
M1 of Figure 1a. The LPM of Figure 1a is first expanded into a larger LPM by
replacing A by operator node →, with activity A as its left child node and B
its right child node, resulting in the LPM of Figure 1b. Note that M1 can also
be expanded in other ways, and LPM discovery recursively explores all possible
process trees that meet a support threshold by iterative expansion. In a second
expansion step, activity node B of the LPM of Figure 1b is replaced by operator
node ∧, with activity B as its left child and C its right child, resulting in Figure

109

A

(a)

→

A B

(b)

→

A ∧

B C

(c)

→

×

A D

∧

B C

(d)

Fig. 1. (a) An initial LPM M1 and (b) M2, (c) M3, (d) M4, three LPM built from
successive expansions.

event id activity time cost

1 A 26-3-2017 13:00 e 100
2 D 26-3-2017 13:27 e 200
3 B 26-3-2017 13:25 e 300
4 C 26-3-2017 13:35 e 100
5 D 26-3-2017 13:42 e 400
6 C 26-3-2017 15:47 e 200
7 A 26-3-2017 16:10 e 100
8 C 26-3-2017 16:34 e 400
9 B 26-3-2017 16:52 e 300
10 D 26-3-2017 16:59 e 200
11 A 26-3-2017 17:13 e 1000
12 B 26-3-2017 17:15 e 1000
13 A 26-3-2017 17:16 e 150

(a)

σ {A,B,C} = 〈A,B,C,C,A,C,B,A,B,A〉
γ1 λ2 γ2 λ3

Гσ,LPM = 〈A,B,C,A,C,B〉
λ1

σ = 〈A,D,B,C,D,C,A,C,B,D,A,B,A〉

(b)

Fig. 2. (a) A trace σ of an event log L. (b) The segmentation of σ on M3.

1c. Finally, activity node A of the LPM of Figure 1c is replaced by operator node
× with as left child activity A and as right child activity D, forming the LPM
of Figure 1d. In traditional LPM discovery the expansion procedure of an LPM
stops when the behavior described by the LPM is not observed frequently enough
in an event log L (i.e., with regard to some support threshold).

To evaluate a given LPM on a given event log L, its traces σ∈L are first
projected on the set of activities X in the LPM, i.e., σ′ = σ�X . The projected
trace σ′ is then segmented into γ-segments that fit the behavior of the LPM and λ-
segments that do not fit the behavior of the LPM, i.e., σ′=λ1γ1λ2γ2 · · ·λnγnλn+1

such that γi∈L(LPM) and λi 6∈L(LPM). We define Γσ,LPM to be a function that
projects trace σ on the LPM activities and obtains its subsequences that fit the
LPM, i.e., Γσ,LPM = γ1γ2 . . . γn.

Let our LPM M3 under evaluation be the process tree of Figure 1c and
let σ be the example trace shown in Figure 2a. Function Act(LPM) obtains
the set of process activities in the LPM, e.g. Act(M3) = {A,B,C}. Projection
on the activities of the LPM gives σ�Act(M3) = 〈A,B,C,C,A,C,B,A,B,A〉.
Figure 2b shows the segmentation of the projected trace on the LPM, leading to
Γσ,LPM = 〈A,B,C,A,C,B〉. The segmentation starts with an empty non-fitting
segment λ1, followed by a fitting segment γ1=〈A,B,C〉, which completes one
run through the process tree. The second event C in σ cannot be replayed on
LPM , since it only allows for one C and γ1 already contains a C. This results
in a non-fitting segment λ2=〈C〉. γ2=〈A,C,B〉 again represents a run through

110

process tree, the segmentation ends with non-fitting segment λ3=〈A,B,A〉. We lift
segmentation function Γ to event logs, ΓL,LPM={Γσ,LPM |σ∈L}. An alignment-
based [2] implementation of Γ , as well as a method to rank and select LPMs
based on their support, i.e., the number of events in ΓL,LPM , is described in [23].

Several metrics are taken into account to assess the quality of an LPM, but all
of them are support-based and depend on the number of events in ΓL,LPM . We
refer the reader to [23] for detailed and formal definitions of LPMs, extensions of
LPMs, and evaluating LPMs on logs.

Definition 1. Local Process Model Mining Problem: Given an event log
L, the LPM mining problem is defined as the task of discovering a set of frequent
LPMs, where the total number of fragments replayable is above a defined threshold.

3.3 High-Utility Local Process Models

A High-Utility Local Process Model (HU-LPM) is an LPM where (i) its im-
portance is related to the utility of the fragments it can replay instead of the
number of fragments it can replay and (ii) where this utility is above a predefined
threshold. Note that HU-LPMs are a generalization of LPMs, as we have shown
in [22] that the quality measures that are used in support-based LPM mining can
be expressed as utility functions for HU-LPM mining. Several scopes on which
utility functions can be defined are described in [22]:

Trace the most general class of utility functions, the trace-level utility functions
allow the utility of fitting trace fragments to depend on the events in these
specific fragments, their attributes and properties of the case itself. An
example of trace-level utility function is the search for LPMs that explain a
high share of the total running time of a case.

Event this class of utility functions can be used when the interest is focused on
some event properties, but does not concern the trace-context of those events.
Example of event-level utility function is the search for LPMs describing
process fragments with high financial cost.

Activity defines the utility of an LPM based on the frequency of occurrences
of each activity. It can be used when the analyst is more interested in some
activities with high impact (e.g. lawsuits, security breaches, etc.). This scope
if generally the one used in traditional pattern mining algorithms, allowing for
the definition of upper bounds to efficiently prune the search space without
loss.

Model this class of utility functions is not log-dependent, but allows the analyst
to specify preferences for specific structural properties of the LPM.

Functions on the different scopes can be combined to form composite func-
tions, consisting of component functions on one of the scopes above. The utility
of an LPM M over an event log L is denoted u(L,M), and we define as HU-list a
collection of HU-LPMs sorted in descending order according to their utility, with
|S| the number of HU-LPMs in HU-list S. For a more thorough introduction of
HU-LPMs and related concepts, we refer the reader to [22].

111

4 Pruning Strategies

In contrast to regular Local Process Model (LPM) mining, High Utility LPM
(HU-LPM) mining cannot be performed with techniques that prune the search
space based on frequency, leading to a large search space. Therefore, there is
a need for an alternative pruning strategy for HU-LPM mining that makes
mining possible on larger logs, however the utility metric as defined in [22] is not
necessarily anti-monotonic, preventing any lossless reduction of the search space.
When setting a stopping criterion c on LPMs such that we expand an LPM M
only when c holds for M , we say that c is anti-monotonic when M violating c
implies that all M ′ ∈ Exp(M) violate c. However, this property does not hold for
the utility functions defined in [22], as the expansion of an LPM can either have
a utility lower or higher than the utility of the LPM where it is an expansion of
(Property 1).

Property 1. ∃M∈M(∃M ′∈Exp(M)u(L,M ′)<u(L,M) ∧ ∃M ′∈Exp(M)u(L,M ′)≥u(L,M)).

We show that anti-monotonicity does through the following counter-example.
Let M1, M2, M3 and M4 be the four LPMs shown in Figure 1, with M2∈Exp(M1),
M3∈Exp(M2), and M4∈Exp(M3). Let event log L consist of the single trace shown
in Figure 2a, and let the utility be the sum of the cost attributes of the events
that belong to replayable fragments. This results in utilities u(L,M1)=1350,
u(L,M2)=2800, u(L,M3)=1300 and u(L,M4)=1400. It is easy to see that utility
is not anti-monotonic, as u(L,M3)<u(L,M2), but u(L,M4)>u(L,M3). This leads
to non-optimal HU-LPMs when we prune using a minimum utility threshold, e.g.,
stopping criterion c : u(L,M)≥1350 leads to M3 not being expanded because its
utility is below the threshold, while the utility of M4 would have again been above
the threshold. This is mainly explained by the fact that the utility added by the
new activity does not compensate for the utility lost because of the fragments
that do not fit the new LPM but that did fit the previous LPM.

Definition 2. High-Utility Local Process Model Mining Problem: Given
an event log L, the HU-LPM mining problem is defined as the task of discovering a
set of LPMs with utility above a predefined threshold umin , i.e., u(L,LPM)≥umin .

In High-Utility Local Process Model (HU-LPM) discovery, the size of the
search space grows combinatorially with the number of activities. Reducing
the search space is an inevitable step to ensure efficiency or even to enable to
algorithm to run in acceptable time. We have shown that the utility metric is not
anti-monotonic and that we therefore cannot reduce the search space without
loss. However, heuristics can be used to reduce execution time, without formal
guarantee of finding an optimal solution; i.e., the discovered set of LPMs fulfilling
the utility threshold might be incomplete.

The remainder of this section is as follows. We define new concepts related
to HU-LPMs in Section 4.1, we introduce two memoryless heuristics in Section
4.2, and introduce two memory-based heuristics in Section 4.3.

112

4.1 Basic Concepts

LetM∈M be a HU-LPM, then Par(M) denotes the parent of m; Par(M)=M ′∈M
such that M∈Exp(M ′). For example, for the process trees of Figure 1, Par(M3) =
M2. We generalize the concept of parent in Equation 1, and define Par i(M) as
the ith parent of M , with Par0(M) = M , Par1(M) = Par(M), Par2(M) =
Par(Par(M)) and so forth; In general, we define Par i(M) as:

Par i(M) =

{
Par i−1(Par(M)) if i > 1,

M if i = 0.
(1)

For example, for the process trees of Figure 1, Par3(M4)=M1. Note that M /∈
dom(Par) for LPMs M ∈M that are initial LPMs, as initial LPMs have no parent
LPM defined. Furthermore, we define it nb(M) as the number of expansions to
reach HU-LPM M from an initial HU-LPM; e.g. it nb(M3)=2. Formally:

it nb(M) =

{
0, if M/∈dom(Par),

it nb(Par(M)) + 1, if M∈dom(Par).
(2)

Using Par and it nb we define Anc(M) as the set of ancestors of the LPM

M ; Anc(M) =
it nb(M)⋃
i=1

Par i(M). For example for the process trees of Figure 1,

Anc(M4)={M1,M2,M3}.
Based on these definitions, we now introduce four heuristics to reduce the

execution time of HU-LPM mining.

4.2 Memoryless heuristics

This first type of heuristics focuses on local comparisons, i.e., an LPM is only
compared with its parent, the previous expansions are not considered. The
heuristics work as follows: for a defined number of successive extensions (noted k,
such that 0<k<exp max), the new LPM is allowed to have a utility lower than
or equal to the utility of its parent.

For each heuristic, we define a continuation criterium function, ctn(L, k,M),
which results to 1 if the k most recent expansion steps leading to LPM M meet
the requirements of the heuristic, indicating that M should be expanded further.
Otherwise, function ctn results to 0, indicating that M should not be expanded
further, therefore reducing the search space and speeding up the discovery of
HU-LPMs. We introduce heuristic h1, that formalizes the function ctn(L, k,M)
as defined above:

– Heuristic 1 (h1): The expansion of LPM M ∈ M is stopped if all LPMs
from the k−1th parent of M to M itself have a utility lower or equal to the
utility of its parent.

113

ctn(L, k,M)=

1−
min(it nb(M),k)−1∏

i=0

(u(L,Par i(M))≤u(L,Par i+1(M))), if it nb(M)≥1

1, otherwise.

(3)

Note that (u(L,Par i(M))≤u(L,Par i+1(M)) is a boolean expression that
evaluates to 1 when true and evaluates to 0 when false. As we want initials
LPMs to always be expanded independently of any heuristic, ctn(L, k,M) = 1
when it nb(M) = 0, and the function defined by each heuristic otherwise. We
additionally propose heuristic h2, a relaxed version of h1, where the expanded
LPM is always allowed to have the same utility as its parent:

– Heuristic 2 (h2): The expansion of LPM m ∈ M is stopped if all LPMs
from the k−1th parent of M to M itself have a utility strictly lower than the
utility of their parents.

ctn(L, k,M)=

1−
min(it nb(M),k)−1∏

i=0

(u(L,Par i(M))<u(L,Par i+1(M))), if it nb(M)≥1

1, otherwise.

(4)

4.3 Memory-based heuristics

The second type of heuristics keeps in memory the set of LPMs produced by
the successive expansions. Instead of comparing two successive expansions, it
compares an extension with its best ancestor. For an LPM M , we define B(L,M)
as the highest utility among the ancestors of M in event log L; B(L,M)=u(L,M ′)
of LPM M ′∈Anc(M) such that @M ′′∈Anc(M) : u(L,M ′′)>u(L,M ′). The heuris-
tics work as follows: for a defined number of successive expansions (noted k, such
that 0<k<exp max), the expanded LPM is allowed to have a utility lower than
or equal to the utility of its best ancestor.

We introduce heuristic h3, that formalizes the function ctn(L, k,M) as defined
above:

– Heuristic 3 (h3): The expansion of LPM M ∈ M is stopped if all LPMs
from the k−1th parent of M to M itself have a utility lower or equal to the
highest utility among their ancestors.

ctn(L, k,M)=

1−
min(it nb(M),k)−1∏

i=0

(u(L,Par i(M))≤B(L,Par i(M))), if it nb(M)≥1

1, otherwise.

114

1 2 3 4
0

1

2

3

4

5

6

7

j (iteration number)

u
(M

i,
j
)

sq1
sq2
sq3
sq4
sq5

(a)

exp. seq.
heuristic

h1 h2 h3 h4

sq1: 7 7 7 7

sq2: 7 X 7 7

sq3: X X 7 7

sq4: X X 7 X
sq5: X X X X

(b)

Fig. 3. (a) Four successive expansions on five initial LPMs, (b) the pruning scope of
the different heuristics.

(5)

We also propose heuristic h4, a relaxed version of h3, where the expanded
LPM is always allowed to have the same utility as its best ancestor:

– Heuristic 4 (h4): The expansion of LPM M ∈ M is stopped if all LPMs
from the k−1th parent of M to M itself have a utility strictly lower than the
highest utility among their ancestors.

ctn(L, k,M)=

1−
min(it nb(M),k)−1∏

i=0

(u(L,Par i(M))<B(L,Par i(M))), if it nb(M)≥1

1, otherwise.

(6)

To illustrate these four heuristics, let the plot in Figure 3a be our running
example. Let sqi represent a sequence of expansions from an initial LPM, and
sqi,j be the jth LPM of that sequence of expansions sqi. For each heuristic and
k = 2, Figure 3b presents the sequences that would be expanded until the fourth
step (marked with X) and those that would be stopped before (marked with 7).

Here, sq1 and sq5 are two extremes. While sq1 contains two successive utility
decreases (sq1,2 and sq1,3), sq5 contains only LPMs having a higher utility at each
expansion. In consequence, every heuristic would have stopped sq1 after sq1,3;
removing further expansions from the search space, and would have expanded sq5
until sq5,4. Sq2 is only expanded until the fourth step by h2 because this relaxed
version allows for the utility to stagnate during 2 steps after a first decrease.
On the contrary, the expansion of sq4 is only stopped by h3 because the utility

115

obtained in the first step remains higher than the ones obtained at each further
step. Finally, sq3 is expanded until the fourth step by the memoryless heuristics
but stopped by the memory-based heuristics because the increase at sq3,3 is
enough for the utility of the expansion to be higher than the utility of its parent,
but not enough to be at least equal to the utility of its best ancestor.

Heuristic h2 is the most permissive as an LPM is only compared with its
parent and can have the same utility. On the contrary, Heuristic h3 is the most
restrictive as a LPM is compared with its best ancestor and must have a higher
utility. As heuristics are approximate methods, some LPMs will be wrongly
pruned. In the example in Figure 3, the expansion line sq4 would have been
pruned by heuristic h1 after sq4,3. However, we notice that the LPM produced in
the next expansion has a utility higher than the best ancestor. This is an example
of expansion line that shouldn’t have been stopped. Therefore, a good strategy
will be a compromise between the number of good HU-LPMs we allow to loose
and how small the search space has become thanks to the pruning methods.

5 Experiments

In this section we evaluate the four heuristic HU-LPM mining approaches. We
detail the experimental setup in Section 5.1 and discuss the results in Section 5.2.

5.1 Methodology

We evaluate the four HU-LPM discovery heuristics using three event logs: the
BPI’13 closed problems log, consisting of 1487 traces and 6660 events, the BPI’13
open problems log, consisting of 819 traces and 2351 events, and an artificial log
used in the Process Mining book [1] (Chapter 1), consisting of 6 traces and 42
events.

For each event log we first apply the HU-LPM discovery algorithm without
any pruning, generating the desired list of HU-LPMs in terms of quality and
leading to the worst case number of LPMs that are explored. As a next step, we
discover HU-LPMs with each of the four different heuristic strategies, and {1, 2, 3}
the values of parameter k, i.e. the number of expansions allowed not to meet the
heuristic utility requirements. We limit the LPM expansion procedure to four
successive expansions, i.e., exp max = 4, to be able to perform the experiments
within reasonable time. We compare the number of explored LPMs using the
heuristics with the number of LPMs explored when no pruning was applied. We
do the same with execution times. A lower fractions of explored LPMs with
pruning compared to the number of LPMs explored without pruning represents
higher speedup in HU-LPM mining.

As shown in Section 4, the heuristics might prevent the discovery of HU-LPMs
with high utility, leading to HU-lists of lower quality. Let Sa = 〈M1,M2, . . . ,Mn〉
be the HU-list obtained using heuristic a. We define Sid as the ideal HU-list; i.e.,
the HU-list extracted without any pruning. To assess the efficiency of the four
heuristics, we compare the HU-list extracted with the heuristics with the ideal

116

HU-list obtained with the existing HU-LPM mining technique [22] which does
not use any pruning. The quality of the extracted HU-list depends on the utility
of the HU-LPMs in the HU-list compared to the utility of the HU-LPMs in the
ideal HU-list. We compare the HU-list and the ideal HU-list using the normalized
Discounted Cumulative Gain (nDCG) [7], which is an evaluation metric for
rankings that is one of the most commonly used metrics in the Information
Retrieval field [21]. Discounted Cumulative Gain (DCG) measures the quality of
a ranking based on the relevance of the elements in the ranking in such a way
that it gives higher importance to the top positions in the ranking. We denote the
relevance of the element of the ranking at position i with rel i. For the evaluation
of a HU-list we regard rel i to be the utility of the LPM at position i. Equation 7
formally defines DCG over the first p elements of a ranking.

DCGp =

p∑

i=1

2reli − 1

log2(i+ 1)
(7)

IDCG is defined as the DCG obtain the optimal ranking, which is the ideal
HU-list in our example. Equation 8 defines nDCG based on the DCG of a ranking
and the IDCG of the respective ideal ranking.

nDCGp =
DCGp
IDCGp

(8)

We limit the nDCG calculation to the p first HU-LPMs in the ranking. The
upper bound of p is the cardinality of the HU-list Sa obtained with pruning, i.e.,
0<p≤|Sa |.

5.2 Results

The results of the experiments are shown in Figure 4. Figure 4c shows the nDCG
values obtained for the three event logs, the four heuristics and the three values
of k. The x-axis of each plot represents the p value used to compute nDCG@p,
represented on the y-axis. Table 4a presents the number of LPMs generated
by the different heuristics and the mining algorithm without any pruning. We
also present in Table 4b the execution times in seconds of each mining. Setting
parameter k to 1 leads to the largest reduction of search space for each heuristic,
therefore resulting in the highest speedup. Furthermore, the nDCG values show
that k=1 still results in the extracton high-quality HU-LPM rankings on two of
the three datasets: the BPI’13 closed problems and the example log. The BPI’13
Open Problems dataset however shows that in some cases k = 1 leads to overly
aggressive pruning, preventing LPMs with high utility from being found, and
leading to low quality HU-LPM rankings. For the BPI’13 closed problems log
heuristic h1 with k = 1 decreases the search space from 1771 LPMs to 512 LPMs
(more than three times less), resulting in a computation speedup of 17x at best
(from 11.9s to 0.7s). At the same time heuristic h1 with k = 1 on this log results

117

Log no pruning heur. k=1 k=2 k=3

Closed 1771 h1 512 1530 1771
Closed 1771 h2 527 1580 1771
Closed 1771 h3 512 1028 1771
Closed 1771 h4 527 1028 1771

Open 402 h1 82 356 402
Open 402 h2 82 372 402
Open 402 h3 82 224 402
Open 402 h4 82 224 402

Example 342 h1 159 324 342
Example 342 h2 186 331 342
Example 342 h3 159 299 342
Example 342 h4 186 316 342

(a)

Log no pruning heur. k=1 k=2 k=3

Closed 28.3 h1 3.3 17.5 26.9
Closed 28.3 h2 5.2 20.5 30.3
Closed 28.3 h3 3.1 11.8 29.1
Closed 28.3 h4 5.6 19.7 27.4

Open 11.9 h1 0.7 6.1 10.5
Open 11.9 h2 0.9 7.3 11.0
Open 11.9 h3 1.2 3.0 13.5
Open 11.9 h4 1.2 3.4 12.2

Example 2.9 h1 0.7 2.7 3.2
Example 2.9 h2 1.5 2.8 2.9
Example 2.9 h3 0.7 2.4 3.2
Example 2.9 h4 1.8 2.8 3.5

(b)
BPI'13 Closed Problems BPI'13 Open Problems Example

h1
h2

h3
h4

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

p

nD
C

G
@

p

k
1

2

3

 (position in LPM ranking)

(c)
Fig. 4. (a) The number of HU-LPMs generated and (b) the execution times (in
seconds) per combination of heuristic, event log, and value for parameter k. (c) The
nDCG results of the four heuristics applied on the three logs.

in an nDCG score of above 0.8 for all values of p, showing that high-quality
HU-LPMs are still being found. We observe only minor differences between the
four heuristics on the BPI’13 closed problems log and the example log in terms
of quality of the HU-list, even if the memory-based heuristics perform better in
terms of number of LPMs generated and execution time. However, on the BPI’13
open problems log there is a sizable difference in the quality of the obtained
HU-list between heuristics h1 and h2 on the one hand and heuristics h3 and h4
on the other hand. On this log, heuristics h1 and h2 prune only around 10% of
the LPM search space with a speed up of 2x in the execution time, and find
a HU-list that is very close to the ideal HU-list for k=2. Heuristics h3 and h4,
however, prune almost half of the search space for k=2 with a speed up of 4x in
the execution time, and the resulting HU-list contains a couple of high-utility
HU-LPMs, but the nDCG score drops below 0.7 for p=10, indicating that these
heuristics where not able to discover more than 10 useful HU-LPMs.

118

We observe that the speed-up in terms of time is consistently higher than
what would be expected based on the share of LPMs that are removed from the
search space. We expect that this effect is caused by larger LPMs, generated
in later expansion iterations, that are pruned more often than the small LPMs,
causing a drop in the average evaluation time per LPM next to the reduction in
search space in terms of number of LPMs. Moreover, the computation time of the
memory-based heuristics becomes most of the time higher than the computation
time of HU-LPM mining without any pruning with k=3, which is caused by the
additional comparison procedure that the traditional mining technique does not
perform.

6 Conclusion and Future Work

In this paper we have shown that the High-Utility Local Process Model (HU-
LPM) mining problem is not anti-monotonic when event-level or trace-level utility
functions are used. We introduced four heuristics to reduce the search space
and speed up the mining of HU-LPMs. We have shown that the heuristics that
we propose still result in the extraction of high-quality rankings of HU-LPMs,
while speeding up the mining process up to a factor 17. On larger logs, where
mining becomes computationally infeasible without pruning the search space,
the proposed heuristics enable the discovery of HU-LPMs.

We have shown in the experiments that the efficiency of the heuristics is
log-dependent. In future work, we intend to investigate the properties of the
event logs that are responsible for these differences. Based on this we aim at
building an automated technique for choosing the appropriate heuristic and the
value of k based on the log that results in a good trade-off between computation
time of the mining and the quality of discovered HU-LPMs.

References

1. van der Aalst, W.M.P.: Process mining: data science in action. Springer-Verlag
Berlin Heidelberg (2016)

2. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history
on process models for conformance checking and performance analysis. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery 2(2), 182–192
(2012)

3. van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow mining: Dis-
covering process models from event logs. IEEE Transactions on Knowledge and
Data Engineering 16(9), 1128–1142 (2004)

4. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process mining based on regions
of languages. In: International Conference on Business Process Management. pp.
375–383. Springer (2007)

5. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: A genetic algorithm
for discovering process trees. In: IEEE Congress on Evolutionary Computation. pp.
1–8. IEEE (2012)

119

6. Buijs, J.C.A.M., Reijers, H.A.: Comparing business process variants using models
and event logs. In: Enterprise, Business-Process and Information Systems Modeling,
pp. 154–168. Springer (2014)

7. Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., Hul-
lender, G.: Learning to rank using gradient descent. In: Proceedings of the 22nd
International Conference on Machine Learning. pp. 89–96. ACM (2005)

8. Dave, U., Patel, S.V., Shah, J., Patel, S.V.: Efficient mining of high utility sequential
pattern from incremental sequential dataset. International Journal of Computer
Applications (2015)

9. van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M.,
van der Aalst, W.M.P.: The ProM framework: A new era in process mining tool
support. In: International Conference on Application and Theory of Petri Nets. pp.
444–454. Springer Berlin Heidelberg (2005)

10. Han, J., Cheng, H., Xin, D., Yan, X.: Frequent pattern mining: current status and
future directions. Data Mining and Knowledge Discovery 15(1), 55–86 (2007)

11. International Organization for Standardization: ISO/IEC 19505-1:2012 - Information
technology - Object Management Group Unified Modeling Language (OMG UML)
- Part 1: Infrastructure (2012)

12. Keller, G., Scheer, A.W., Nüttgens, M.: Semantische Prozeßmodellierung auf der
Grundlage” Ereignisgesteuerter Prozeßketten”. Inst. für Wirtschaftsinformatik
(1992)

13. Leemans, M., van der Aalst, W.M.P.: Discovery of frequent episodes in event logs.
In: International Symposium on Data-Driven Process Discovery and Analysis. pp.
1–31. Springer (2014)

14. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs containing infrequent behaviour. In: International
Conference on Business Process Management. pp. 66–78. Springer (2013)

15. Liesaputra, V., Yongchareon, S., Chaisiri, S.: Efficient process model discovery
using maximal pattern mining. In: International Conference on Business Process
Management. pp. 441–456. Springer (2015)

16. Maggi, F.M., Mooij, A.J., van der Aalst, W.M.P.: User-guided discovery of declara-
tive process models. In: Proceedings of the IEEE Symposium on Computational
Intelligence and Data Mining. pp. 192–199. IEEE (2011)

17. Măruşter, L., van Beest, N.R.T.P.: Redesigning business processes: a methodology
based on simulation and process mining techniques. Knowledge and Information
Systems 21(3), 267 (2009)

18. Object Management Group: Notation (BPMN) version 2.0. OMG Specification
(2011)

19. Srikant, R., Agrawal, R.: Mining sequential patterns: Generalizations and perfor-
mance improvements. Advances in Database Technology pp. 1–17 (1996)

20. Tax, N., Sidorova, N., van der Aalst, W.M.P., Haakma, R.: Heuristic approaches for
generating local process models through log projections. In: 2016 IEEE Symposium
on Computational Intelligence and Data Mining. pp. 1–8. IEEE (2016)

21. Tax, N., Bockting, S., Hiemstra, D.: A cross-benchmark comparison of 87 learning
to rank methods. Information processing & management 51(6), 757–772 (2015)

22. Tax, N., Dalmas, B., Sidorova, N., van der Aalst, W.M.P., Norre, S.: Interest-driven
discovery of local process models. arXiv preprint arXiv:1703.07116 (2017)

23. Tax, N., Sidorova, N., Haakma, R., van der Aalst, W.M.P.: Mining local process
models. Journal of Innovation in Digital Ecosystems 3(2), 183–196 (2016)

24. Yin, J., Zheng, Z., Cao, L.: USpan: an efficient algorithm for mining high utility
sequential patterns. In: Proceedings of the 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. pp. 660–668. ACM (2012)

120

25. Zida, S., Fournier-Viger, P., Wu, C.W., Lin, J.C.W., Tseng, V.S.: Efficient mining
of high-utility sequential rules. In: International Workshop on Machine Learning
and Data Mining in Pattern Recognition. pp. 157–171. Springer (2015)

26. Zihayat, M., Wu, C.W., An, A., Tseng, V.S.: Mining high utility sequential patterns
from evolving data streams. In: Proceedings of the ASE BigData & SocialInformatics
2015. p. 52. ACM (2015)

121

