
GH4RE: Repository Recommendation on GitHub for 

Requirements Elicitation Reuse 

Roxana Lisette Quintanilla Portugal1, Marco Antonio Casanova1, Tong Li2, 

 Julio Cesar Sampaio do Prado Leite1 

1Departamento de Informática, PUC-Rio, Rio de Janeiro, Brasil CEP 22451-900 
2Beijing University of Technology, China 

{rportugal, casanova, julio}@inf.puc-rio.br 

litong@bjut.edu.cn 

 

Abstract. One of the challenges of requirements engineers is to understand do-

main issues and elicit requirements effectively. One of the possible strategies is 

to perform a manual inspection of similar projects to quickly gain leverage of 

domain concepts underlying the projects. However, this task is time-consuming 

and limited to the projects at hand. To ensure comprehensive elicitation using 

more widely available systems, we propose to use GitHub projects as information 

sources. To handle the large amount of data and facilitate access to suitable 

sources, we propose the creation of project profiles with useful attributes for re-

quirements engineering, and thereby achieve a meaningful recommendation of 

projects. In this paper, we describe the GitHub assets to be mined, its implemen-

tation and the assessment of our approach by using a corpus of readmes related 

to Real Estate projects.  

 

Keywords: Requirements Elicitation; Recommendation Systems; Open Source 

Repositories; GitHub. 

1 Introduction 

When dealing with elicitation tasks, one important source of information for require-

ments engineers is a set of similar projects, because they allow engineers to learn about 

the domain, their features and contexts in order to be better prepared for more focused 

requirements elicitation tasks, e.g. interviews/meetings with stakeholders.  

GitHub, a repository of open software projects, may help in this scenario. GitHub 

stores a vast number of projects that describe an application domain through its differ-

ent perspectives (e.g., readmes, issues, comments, source code, and release notes). 

These perspectives, if mined properly, can provide relevant knowledge. However, we 

cannot rely on manual inspection of projects, since it is time-consuming and unfeasible, 

given the plethora of projects in GitHub. On the other hand, automated techniques to 

find similar projects must deal with heterogeneous data in each perspective, and this 

falls into the same problem cited by Castro-Herrera and Cleland-Huang [1], “techniques 

that work well for recommending carefully categorized books, or movies with ample 

Jolita
Typewritten Text
X. Franch, J. Ralyté, R. Matulevičius, C. Salinesi, and R. Wieringa  (Eds.):
CAiSE 2017 Forum and Doctoral Consortium Papers, pp. 113-120, 2017.
Copyright 2017 for this paper by its authors. Copying permitted for private and academic purposes.

Jolita
Typewritten Text



ratings, will not necessarily work well for recommending discussion topics existing in 

forums or wikis”. Therefore, given that we are using the readme perspective, techniques 

to facilitate the finding of meaningful assets in texts must be carefully designed, bearing 

in mind the requirements engineer needs. This may allow the creation of a meaningful 

recommendation set of GitHub projects for requirements elicitation purposes.  

A common approach in Recommendation Systems is the content-based filtering, 

which is used to extract features in items (movies, songs, or web pages), and the use of 

user profiles based on his/her preferences [2]. In this regard, two issues arise. The first 

issue is that the readme is not categorized, as a book or a movie, since it contains free 

texts with an undefined purpose, i.e. a readme may contain information about features 

as well as installation instructions. The second issue is that users are rating GitHub 

projects by their end function and not by their perspectives separately.  

We propose a recommendation approach for GitHub projects by discovering mean-

ingful assets on GitHub projects perspectives, for which the readme perspective will be 

used as a sample. To supply the lack of user preferences, we propose to: (1) reveal 

frequent terms that may cause an interaction with the user; and (2) based on his/her 

choices, cluster and rank projects for recommendation. Our approach relies on a NLP-

based approach for Recommendation Systems [3] that specifically filters nouns and 

proper nouns to reveal important entities that allow for user browsing. As a seed piece, 

we begin by using a user query “real estate” to retrieve readmes from GitHub projects 

and ordered according GitHub relevance [4]. With this base, the extraction of meaning-

ful information is performed. 

We believe this approach can support requirements elicitation tasks, as GitHub can 

be used as a source of information providing projects that acts as domain viewpoints of 

a domain that can be considered before and during software construction [5][6]. Differ-

ently from proposals that exploited GitHub during software construction, our approach 

aims at supporting requirements elicitation, contributing to better projects recommen-

dation in GitHub perspectives. We adopt the real estate domain as a running example 

to exemplify our approach. 

This paper is organized as follows. Section 2 reviews related work. Section 3 de-

scribes the implementation to extract meaningful assets from readme data. Section 4 

presents the assessment based on the quality of projects recommended to support re-

quirements elicitation tasks. Finally, Section 5 describes the limitations and opportuni-

ties of this work. 

2 Related Work 

Recommendation Systems in Requirements Engineering (RSREs) has been a growing 

interest in the field of Requirements Engineering (RE) as surveyed by [7]. The authors 

referenced 23 papers, two of which were highlighted for pointing out an overview of 

potentials of RSREs. In particular, one stress that Requirements Engineering (RE) usu-

ally deals with domain knowledge, which is often vast and evolving [8]. Furthermore, 

it is mentioned the necessity to process huge amounts of information by stakeholders, 

which includes what are users’ needs, why they are needed, what are competitors of-

fering, what are technological advances and the feasible features [8]. Although not 

114



made explicit by authors in [8], it is important to note that much interesting information 

about users’ needs can be found in documents from similar projects [9], and GitHub 

provides an opportunity to discover latent related information about user needs, com-

petitors’ offerings, as well as technological assets being used. 

From the works surveyed in [7], five of them address requirements elicitation [10-

14], having that [10-13] as well as [15] are extensions of [10]. To our knowledge, there 

are a few studies that focus on requirements elicitation using recommendation systems 

[10-15]. Such works [10-13][15] recommend forums to stakeholders by first eliciting 

stakeholders’ needs, performing mining of themes on these texts, clustering, and finally 

making the recommendations. These works [10-13][15] are similar to ours in the sense 

that they use an open-source repository (SugarCRM) as a source of information and the 

feature requests perspective to evaluate their approach. The difference with our ap-

proach is that they know in advance the existence of features or themes in the docu-

ments they mined, as well as the domain. In this regard, this is in their advantage, as 

preliminary work by Portugal et al. evidenced the ambiguity issue in natural language 

free texts, e.g. real estate was identified as an analogy in HCI Usability lingo ("the 

amount of space available on a display for an application to provide output") [9]. An-

other work mentioned in the survey [7], Lim and Finkelstein [14] use a collaborative-

filtering system to identify stakeholders and ask them to indicate other stakeholders to 

recommend relevant requirements. This collaborative-filtering system was also used in 

[10-13][15].  

Our approach differs from previous work in the sense that we propose a recommen-

dation system using content-based system, which is based on the semantic content of 

data. On the other hand, as we cannot rely on the user preferences that exist in GitHub, 

given that projects are mostly ranked for their development purposes, we propose the 

use of NLP techniques [3] to reveal latent words in readme texts that can be candidate 

keywords for better projects recommendation. Finally, work related to recommendation 

of GitHub projects can be found in the approach proposed by Guendouz et al [16]. This 

work is similar to ours in the sense that it predicts useful repositories according to de-

veloper needs. Such predictions are done by exploring the fork perspective based on 

users’ activity history. 

3 Processing GitHub Readmes for Projects Recommendation  

In this section, we present the activities that support the recommendation of GitHub 

projects. These activities, detailed below are implemented in R [17] for our recommen-

dation system, and use a tool (http://corpus-retrieval.herokuapp.com/) for retrieving re-

admes raw data from GitHub given a query [4].  

Our approach took as a sample the readme perspective of GitHub projects because 

this perspective is the front end to communicate to humans the features a project im-

plemented. However, not all readme texts follow this pattern, some of them misses 

descriptions, and some misses feature explanations and has instructions for installation 

instead. It is worth noting that some projects even do not have a readme text because 

its creation is not mandatory on GitHub. Despite these shortcomings, as we are dealing 

115



with hundreds of projects, it is possible to filter a large set of readme texts that can be 

used to find meaningful assets as shown in previous works [4][9][18][19]. 

The retrieval activity is used to automatically extract readme texts by submitting a 

query through the GitHub API [4]. The result is a corpus of 2,155 readme texts ordered 

by its default relevance that is given by the GitHub bestmatch function. Due to the 

GitHub’s constraints about phrase queries, we applied a match string function in R 

[17][20] and obtained 1,772 readme texts. We called it corpus R. 

The filter activity uses the corpus R to perform a filtering step that make use of 

POS-tagging techniques [21][22] to transform unstructured data (corpus R) into struc-

tured data by distilling important assets, such as verbs, nouns, and proper-nouns. We 

called it corpus T. This activity addresses the usual preprocessing tasks in texts such as 

removing numbers, whitespaces, and non-alphanumeric terms. Finally, each readme 

text in corpus T was exported as a comma-separated values (CSV) file. These files are 

available at (https://git.io/v9YJ3) for further data exploration.  

The discovering activity uses the NLP processing approach [3] to discover and re-

veal frequent words that may attract user attention due to the lack of user preferences 

for readme texts. In this regard, a corpus NP was created using the proper nouns from 

corpus T. The frequency of words was computed by 

using tf-idf weighting [23], and a Wordcloud visual-

ization technique was applied to display the data 

[24] (Fig. 1). In corpus NP, the word Zillow (Zillow, 

is an online real estate database company) appears 

to be the most relevant word in the real estate do-

main. 

The preference activity aims to simulate the lack 

of user preferences. In this regard, we used the 

Wordcloud representation (Fig.1) so that the user (a 

requirement engineer) can choose what is of their 

particular interest. We have assumed that the user 

chooses the most relevant word of this domain Zil-

low, and with this, we can filter a subset of readme texts. For the Zillow word, 61 re-

adme texts have at least one occurrence of this word. We called this group corpus S. 

The clustering activity is used to organize a corpus S for recommendation. On this 

subject, we needed to know the optimal number of clusters that was obtained by using 

the k-medoids algorithm [25], then we used the k-means algorithm [26] that based on 

the number of cluster determines the similarity of each group. For corpus S, we got two 

clusters, cluster A with one readme text and cluster B with the rest. Since cluster B has 

most of the readme texts, Cluster B is our GH4RE recommendation for the Zillow word. 

It is important to note that optimal number of clusters depends on the method used 

to find similarities. The k-medoids used in our approach uses the silhouette approach 

[25] which computes clustering for different values of k (number of clusters), we set a 

k-min=2 and k-max=15. For each k, calculate the average silhouette of observations 

(avg.sil). Plot the curve of avg.sil according to the number of clusters k. The location 

of the maximum is considered as the appropriate number of clusters. 

Fig.  1. Frequent proper nouns 

in real estate. 

116

https://git.io/v9YJ3


We visualize that our approach allows iterative discovering of latent words in re-

adme texts, e.g., once the clusters are identified, each cluster can become the input of 

the discovery activity to deepen the search of latent words. 

4 Preliminary Assessment 

In this section, we present an assessment of 20 readme texts to verify the quality of our 

recommendation approach. We queried “real estate zillow” on GitHub and selected the 

first 10 readmes (Table 1). We called this group GitHub recommendation. On the other 

hand, we selected 10 readmes from our GH4RE recommendation group. We combined 

both groups of readme texts randomly, and then we asked six users to assess the use-

fulness of the information in the texts. For such measures, we used the Likert scale 

technique [27]. The following text was presented to users:  

Imagine a scenario where a client desires an application, for instance, an application for the 

Real Estate domain. One of the tasks you may need to perform as a (requirements engineer, 

developer, project-manager or designer) is the learning about the Real Estate domain. By 

observing the Wordcloud (Fig. 1), you may perceive that Zillow is an important word in this 

domain. The excel file (https://git.io/v9YJc) presents 20 links to Readme texts containing in-

formation about Zillow. We want to measure the usefulness of information in texts for the 

concept Zillow and for the scenario described. 

   Six people with experience in Software Engineering were selected to perform such 

assessment. Among these people, three are RE senior researchers, one is an HCI senior 

researcher, one is a senior developer, and the last one is a project manager. It is im-

portant to note that all corpuses used in this work, as well as the assessments files, are 

available at GitHub for further research and feedback (https://git.io/v9YJ8). 

Each readme text is named following the pattern below to keep the traceability to its 

sources: 

Number of original relevance in GitHub.-.userName.-.projectName 

From GH4RE recommendation, we ranked the readme texts according to the fre-

quency of Zillow word in texts, and then we took the top10 readme texts (Table 1). On 

average, each participant took 30 minutes to complete the assessment. Half of the users 

performed the assessment online. From our recommendation, the first two readme texts 

were rated as extremely useful by five people (83% of users). By contrast, the first two 

readme texts of Github’s recommendation were evaluated with the lowest scores 

(useless or not very usefull). We note that the assesment of 80% of readmes from our 

recommendation range from somewhat useful to extremely useful, which we consider 

as a positive result, given the various profile of participants. 

117

https://git.io/v9YJc
https://git.io/v9YJ8


Table 1. Top10 Projects Recommended by GitHub and Top10 projects of GH4RE 

Recommendation 

GitHub Recommendation GH4RE Recommendation 

Frequency 

of Zillow in 

GH4RE 

0001.-.jdemaris.-.real 1380.-.CurleySamuel.-.Thesis 26 

0002.-.litianbo.-.AndroidZillowFetch 
1357.-.MichaelAHood.-

.real_estate_recommender 21 

0003.-.annaplusdavid.-.real-estate-comps 0774.-.hanneshapke.-.pyzillow 16 
0004.-.hi08060204.-.Real-Estate-Search 1541.-.shawncxc.-.zillow-analysis 8 
0005.-.matlai17.-.Zillow-Classification-599 1336.-.verdi327.-.zillow_api 6 
0006.-.eternalmothra.-.real_estate_values 1586.-.aminge37.-.prime-group-project 6 
0007.-.samidakhani.-.zillow_web_search 2094.-.imFORZA.-.re-pro 6 
0008.-.Brian-Koscielniak.-.realtorApp 1073.-.fascinatingfingers.-.ZillowR 5 
0009.-.wilk916.-.ZPropertyEvaluator 1349.-.Tim-K-DFW.-.zillow_scraper 5 
0010.-.jamesxuhaozhe.-.Real-Estate-Information-

Search-Engine-using-Zillow-API-web-based 1534.-.cran.-.ZillowR 5 

 

For the readme texts with the lowest score in the GH4RE recommendation, 

<https://github.com/hanneshapke/pyzillow> and <https://github.com/imFORZA/re-pro>, we 

manually verified their contents and found that the first one describes a client package 

as well as its functions, and the second is a brief text indicating the features of  a tool. 

As this is information that can be better apreciated by a person with a developer profile, 

we looked for the assessment of the user with this profile. Contrarily to what we 

assumed, we found this user rated those readme texts as not very useful. This result may 

lead to several intepretations, since this particular assessment (with the developer 

person) was online, and we could not receive any feedback from him. On the other 

hand, for the presential assessment performed with a Requirement Engineer, we found 

that his feedback is suitable for this situation: “In general I perceived those readmes 

can be useful in different times, for instance the ones I rated with higher values is 

because I could easily obtain knowledge about Zillow. However, if my objective after 

learning is the reuse of source code, for sure I would use the ones I rated lowest, 

because I know they contained development words”. 

Related to GitHub recommendations, 90% of the readme texts were qualified with 

the lowest scores. This situation supports our belief that GitHub is envisioned for 

development purposes. We verified the first <https://github.com/jdemaris/real> 

recommendation and found this readme text has few lines and describe the installation 

of a development package related to the Zillow API. As for the verification of outliers, 

we found that the unique readme rated as somewhat useful,  

<https://github.com/eternalmothra/real_estate_values>, is a brief text explaining one feature 

related to Zillow. 

5 Conclusions 

GitHub is becoming an ideal information source for research related to Software Engi-

neering. However, most of the works have explored GitHub projects from the viewpoint 

118

https://github.com/jdemaris/real
https://github.com/CurleySamuel/Thesis
https://github.com/litianbo/AndroidZillowFetch
https://github.com/MichaelAHood/real_estate_recommender
https://github.com/MichaelAHood/real_estate_recommender
https://github.com/annaplusdavid/real-estate-comps
https://github.com/hanneshapke/pyzillow
https://github.com/hi08060204/Real-Estate-Search
https://github.com/shawncxc/zillow-analysis
https://github.com/matlai17/Zillow-Classification-599
https://github.com/verdi327/zillow_api
https://github.com/eternalmothra/real_estate_values
https://github.com/aminge37/prime-group-project
https://github.com/samidakhani/zillow_web_search
https://github.com/imFORZA/re-pro
https://github.com/Brian-Koscielniak/realtorApp
https://github.com/fascinatingfingers/ZillowR
https://github.com/wilk916/ZPropertyEvaluator
https://github.com/Tim-K-DFW/zillow_scraper
https://github.com/jamesxuhaozhe/Real-Estate-Information-Search-Engine-using-Zillow-API-web-based-
https://github.com/jamesxuhaozhe/Real-Estate-Information-Search-Engine-using-Zillow-API-web-based-
https://github.com/cran/ZillowR
https://github.com/hanneshapke/pyzillow
https://github.com/imFORZA/re-pro
https://github.com/jdemaris/real
https://github.com/eternalmothra/real_estate_values


of code developers. Despite taking the code developers’ viewpoint, the approach pro-

posed by Guendouz et al. [16] is similar to ours in the sense that it predicts useful re-

positories by exploring the fork perspective based on the users’ activity history.   

Our use of clustering is geared towards recommending potential usefulness of 

GitHub projects as to empower requirements engineers with domain knowledge that 

will be useful in performing requirements elicitation. The results so far show that our 

approach for recommending projects based on the readme perspective performs better 

than the direct querying the GitHub base.  Such result is important as it improves our 

overall goal of using GitHub mining as a key strategy for requirements elicitation.  

Future work will continue to improve the clustering strategy and will explore other 

GitHub perspectives from the viewpoint of requirements elicitors. Moreover, we plan 

to further validate our approach in the context of other domains, involving more partic-

ipants from both academia and industry. In particular, we would like to encapsulate our 

approach as APIs for public use, and try to directly get feedback from end users. 

Acknowledgement 

R. Portugal acknowledges the support of Capes. J.C. Leite and M.A. Casanova 

acknowledges the support of CNPq. J.C. Leite thanks Faperj (Cientista do Nosso Es-

tado) support, as well. Tong Li acknowledges the support of Startup Funding 

No.007000514116022. 

References 

1. Castro-Herrera C, Cleland-Huang J.: Utilizing recommender systems to support software 

requirements elicitation. Proc. 2nd International Workshop on Recommendation Systems 

for Software Engineering. pp. 6-10. ACM. (2010) 

2. Pazzani MJ, Billsus D.: Content-based recommendation systems. In The adaptive web. pp. 

325-341. Springer Berlin Heidelberg. (2007). 

3. Fleischman M., Hovy E.: Recommendations without user preferences: a natural language 

processing approach. Proc. 8th Int’l. Conf. on Intelligent user interfaces. pp. 242-244 (2003) 

4. Portugal R.L.Q., Roque H.F., Leite J.C.S.P.: A Corpus Builder: Retrieving Raw Data from 

GitHub for Knowledge Reuse in Requirements Elicitation. 3rd Annual Int’l. Symposium on 

Information Management and Big Data. (2016) 

5. Leite J.C.S.P.: Viewpoints on viewpoints. Joint Proc. of the 2nd Int’l. Software architecture 

workshop (ISAW-2) and international workshop on multiple perspectives in software devel-

opment (Viewpoints' 96) on SIGSOFT'96 workshops. pp. 285-288. ACM. (1996). 

6. Leite, J. C. S. P and Freeman P., "Requirements validation through viewpoint resolution. 

IEEE Transactions on Software Engineering, vol. 17, no. 12, pp. 1253-1269, (1991) 

7. Mohebzada JG, Ruhe G, Eberlein A. Systematic mapping of recommendation systems for 

requirements engineering. Proc. Int’l Conf. on Software and System Process. pp. 200-209. 

IEEE Press. (2012) 

8. Maalej W, Thurimella AK. Towards a research agenda for recommendation systems in re-

quirements engineering. Proc. 2nd Int’l. Workshop on Managing Requirements Knowledge. 

pp. 32-39. IEEE Computer Society. (2009) 

119



9. Portugal R.L.Q., do Prado Leite J.C., Almentero E. Time-constrained requirements elicita-

tion: reusing GitHub content. In Just-In-Time Requirements Engineering (JITRE). IEEE 

Workshop. pp. 5-8. IEEE. (2015) 

10. Castro-Herrera C, Duan C, Cleland-Huang J, Mobasher B. Using data mining and recom-

mender systems to facilitate large-scale, open, and inclusive requirements elicitation pro-

cesses. Proc.16th IEEE Int’l. Requirements Engineering Conf. pp. 165-168. IEEE. (2008)  

11. Castro-Herrera C, Duan C, Cleland-Huang J, Mobasher B. A recommender system for re-

quirements elicitation in large-scale software projects. Proc. Symposium on Applied Com-

puting. pp. 1419-1426. ACM. (2009) 

12. Castro-Herrera C, Cleland-Huang J, Mobasher B. Enhancing stakeholder profiles to improve 

recommendations in online requirements elicitation. In 17th IEEE International Require-

ments Engineering Conference. pp. 37-46. IEEE. (2009) 

13. Castro-Herrera C, Cleland-Huang J. Utilizing recommender systems to support software re-

quirements elicitation. In Proceedings of the 2nd International Workshop on Recommenda-

tion Systems for Software Engineering. pp. 6-10. ACM. (2010) 

14. Lim SL, Finkelstein A. StakeRare: using social networks and collaborative filtering for 

large-scale requirements elicitation. IEEE Trans. on Software Eng. pp. 707-35. (2012) 

15. Hariri N, Castro-Herrera C, Cleland-Huang J, Mobasher B. Recommendation systems in 

requirements discovery. Recommendation Systems in Software Eng. pp. 455-476 (2014) 

16. Guendouz, M., Amine, A., & Hamou, R. M. Recommending relevant GitHub repositories: 

a collaborative-filtering approach. on Networking and Advanced Systems, 34. (2015) 

17. Team RC. R: A language and environment for statistical computing. (2013)  

18. Portugal R.L.Q, Leite J.C.S.P.: Extracting Requirements Patterns from Software Reposito-

ries. In Requirements Patterns (RePa), IEEE 6th International Workshop. (2016) 

19. Portugal R.L.Q.: Mineração de Informação em Linguagem Natural para Apoiar a Elicitação 

de Requisitos. MSc. Dissertation. PUC-Rio University, Rio de Janeiro, Brasil. (2016) 

20. Rinker, T. W. qdap: Quantitative Discourse Analysis Package. 2.2.5. University at Buffalo. 

Buffalo, New York. http://github.com/trinker/qdap. (2013) 

21. Schmid H. Probabilistic part-of-speech tagging using decision trees. In New methods in lan-

guage processing. p. 154. Routledge. (2013) 

22. Michalke, M. koRpus: An R Package for Text Analysis (Version 0.06-5). Available from 

http://reaktanz.de/?c=hacking&s=koRpus (2016) 

23. Hiemstra D. A probabilistic justification for using tf×idf term weighting in information re-

trieval. International Journal on Digital Libraries. Aug 1;3(2):131-9. (2000) 

24. Ian Fellows. Wordcloud: Pretty word clouds. Package 2.5. https://CRAN.R-

project.org/package=wordcloud. (2014) 

25. Kaufman, L. and Rousseeuw, P.J., 1990. Partitioning around medoids (program pam). Find-

ing groups in data: an introduction to cluster analysis, pp.68-125. 

26. Jain AK, Dubes RC. Algorithms for clustering data. Prentice-Hall, Inc.; (1988) 

27. R.A. Likert. A technique for the measurement of attitudes Archives. 

 

 

120

http://reaktanz.de/?c=hacking&s=koRpus



