
An Empirical Evaluation to Identify Conflicts
Among Quality Attributes in Web Services

Monitoring

Jael Zela Ruiz1,2 and Cecilia M. F. Rubira1

1 Institute of Computing,
University of Campinas, Sao Paulo, Brazil

jael.ruiz@students.ic.unicamp.br

cmrubira@ic.unicamp.br
2 National University of Saint Agustin, Arequipa, Peru

Abstract. Web service monitoring tools have become an essential com-
ponent for Service Level Agreement (SLA) because they can collect real
quality values of quality attributes to estimate the quality level of ser-
vices. Since users monitor more than one quality attribute at the same
time, quality levels are prone to vary during monitoring time, producing
a conflict among quality attributes. In this study, we conduct an empiri-
cal study in order to identify potential conflicts among quality attributes
during Web services monitoring. For this purpose, we monitor a Trave-
lAgent service in two scenarios: 1) monitoring attributes in isolation, and
2) monitoring attributes in pairs. Bootstrapping is used to estimate the
quality level for each scenario, then we compared the quality levels in or-
der to identify degradation. The results have shown that Response Time
and Accuracy are the most conflicting attributes during monitoring.

Keywords: Web Service, Quality of Service, QoS Conflict, Monitoring

1 Introduction

Quality of Service (QoS) is a major issue in Web Services because services are
ussually third-party software integrated in large systems. QoS is a set of qual-
ity attrbutes (e.g. availability and performance). The QoS analysis has become
a crucial task for service users, since they do not know the real quality level
provided for Web services. For this task, monitoring tools are used to collect
their quality values and evaluate the quality levels of Web services. Monitoring
tools collect quality values by means of metrics defined for quality attributes,
and applying two monitoring strategies [1]: a) passive monitoring is a strategy
based on sniffing the interaction between Web services and their users, in order
to minimize the interaction with them, and b) active monitoring is based on
sending requests to Web services, the monitor acts as a client in order to collect
the quality values of service responses. Although monitoring tools are a useful
mechanism for collecting quality values, they can become a quality degradation
factor for Web services by creating a stressful environment.

Jolita
Typewritten Text
X. Franch, J. Ralyté, R. Matulevičius, C. Salinesi, and R. Wieringa (Eds.):CAiSE 2017 Forum and Doctoral Consortium Papers, pp. 145-152, 2017.Copyright 2017 for this paper by its authors. Copying permitted for private and academic purposes.

The paper is organized as follows: Section 2 and 3 define our research problem
and related work, respectively. Section 4 exposes the planning and execution of
our evaluation. The results and analysis are in Sections 5. Threats to validity
and Conclusions are presented in Section 6. and 7.

2 Problem Statement

Today monitoring tools are part of Service Oriented Architecture (SOA) infras-
tructure. In general, they can be set up on the service side, on the client side or
as “man in the middle”. Since quality attributes have different metrics to mea-
sure their quality levels, a different monitor should be used for each attribute
separately. Thus, monitors can use different methods to collect quality values
depending on the quality attribute they monitor. However, these methods can
conflict between them producing a degradation in the quality level for one or
more quality attributes. In order to identify these potential conflicts, we propose
an empirical study to evaluate potential conflicting quality attributes during
Web service monitoring from a viewpoint of their users.

3 Related Work

Mairiza et al. [2] constructed a catalogue of conflicts among 26 types of non-
functional requirements (NFR) based on an extensive systematic literature re-
view. They defined three categories of conflicts between two NFRs: 1) Absolute
conflict, NFRs are always in conflict, 2) Relative conflict, NFRs are sometimes
in conflict, and 3) Never conflict, NFRs are never in conflict.

On the other hand, Zheng et al. [3] conducted a large-scale distributed eval-
uation of many real-world Web services. They evaluated the response time and
throughput of 21,358 Web services located in 89 countries. The results showed
that a long response time is caused by a long transferring time or a long request
processing time. While a poor average throughput is caused by poor network
conditions in the client side or server side.

Mairiza et al. [2] identified many conflicts between NFRs during analysis
phase and not during runtime execution of the systems. So, these conflicts do
not necessarily correspond to emergent conflicts by the monitoring executed
during runtime. On the other hand, the evaluation conducted by Zheng et al. [3]
is not focused on the identification of conflicts between quality attributes.

4 Experiment Planning

In this section, we present the objective and hypothesis of our empirical study,
as well as the independent and dependent variables, subjects and experiment
planning.

146

4.1 Objective and Hypotheses

The objective of our empirical study is defined by following the analysis model
GQM (Goal-Question-Metric) [4]. Table 1 shows the goals of our study, the
questions that describe the way to achieve the goals, and the metrics for each
question to validate the results in a quantitative way.

Table 1: Goal-Question-Metrics

Goals
G1. Identify potential conflicts between quality attributes during Web
services monitoring.

Questions

Q1. What is the quality level of each quality attribute monitored in
isolation?
Q2. What is the quality level of each quality attribute monitored in pairs?
Q3. What are the quality attributes with a degraded quality level during
monitoring in pairs?

Metrics

M1. The confidence interval of the sampling distribution for the quality
attributes monitored in isolation.
M2. The confidence interval of the sampling distribution for the quality
attributes monitored in pairs.
M3. The difference between the confidence intervals of monitoring in
isolation and in pairs.

We formulate our hypotheses as follows:

Null Hypotheses, H0: The quality level of a quality attribute is degraded
when monitored along with another attribute with respect to its quality
level monitored in isolation.
H0: Q

level(S,Ai) > Qlevel
Aj

(S,Ai)

Where Qlevel(S,Ai) represents the quality level of the attribute Ai moni-
tored in isolation, and Qlevel

Aj
(S,Ai) represents the quality level of the attribute

attribute Ai monitored along with the attribute Aj .

4.2 Variables Selection

The independent variables for our study are a set of quality attributes with their
metrics and the monitoring tool. The dependent variable is the quality level of
the Web service.

Quality Attributes: Our context is to monitor Web service at runtime. So,
our study focus on five quality attributes which are measurable at runtime and
can be easily observable by users (Table 2).

147

Table 2: Quality Attributes
Attribute Definition Metric

Accuracy
The error rate produced by the Web
service.

(1− nFaults
totalRequest

)× 100

Availability
The probability of the Web service to be
up and ready.

(upTime
totalT ime

)× 100

Response Time
The required time for the Web service in
response a request.

Tresponse − Trequest

Reliability
The ability to perform its required
function under stated conditions. Mean
Time Between Failures (MTBF)

∑nFailures−1
1 (FTi−FTi+1)

nFailures

Robustness
The degree of a Web service to work
correctly in the presence of invalid,
incomplete or conflicting inputs.

(1− acceptedFaults
nFaults

)× 100

Monitoring Tool: Currently there are many monitoring tools reported in the
scientific community, such as Cremona [5], SALMon [6], WebInject [7], and Flex-
MonitorWS [8]. Since we are interested in the quality level perceived for users,
we look for a monitoring tool which collects quality values from the viewpoint of
the users. Cremona is a tool integrated into Web services which collects quality
values from the service side viewpoint. WebInject is a standalone application de-
ployed on the client side, but it only works for the Response Time. SALMon and
FlexMonitorWS support their deployment on the service side, on the client side
and as “man in the middle”. For our study, we selected FlexMonitorWS since
it support the creation of different monitors using monitoring profiles based on
five features [8]: 1) Monitoring target (Web service, server application, server,
or network), 2) Quality attributes, 3) Operation mode (interception, invocation,
or inspection), 4) Monitoring frequency (continuous or periodic), and 5) Notifi-
cation mode (sending messages or writing in a log file).

Quality Level: Firstly, we define formally quality value. A quality value is a
numeric value, which is the result of applying a metric of a quality attribute in
a Web service in an instance of time. We present a quality value as:

Qvalue(S,Ai,Mij , t) = v (1)

where v ∈ R is the quality value of the quality attribute Ai with i = 1, ..., n
using the metric Mij with j = 1, ...,m and n,m ∈ N+ in the time t in the Web
service S.

The quality level for a quality attribute is composed of a set of quality values
collected in an interval of time. Since quality values present smooth variations
in the time, quality levels are represented by a range of quality values within a
confidence factor. For example, the response time is in the range [15 ms, 45 ms]
for 95% of the cases. The quality level is defined by:

Qlevel(S,Ai,Mij , t1, t2) = [vmin, vmax] for C% of the cases (2)

148

where t1 and t2 are the interval of time (start and end time, respectively) col-
lecting quality values, vmin and vmax are the minimum and maximum quality
values, and C is the confidence factor of the quality level.

Additionally, we define three types of degradation comparing two samples
of the same quality attribute collected in a different period of time: Absolute
degradation, when there is not an intersection in the quality level of the two
samples. Relative degradation, when there is an intersection in the quality level
of the two samples. No degradation, when the quality level of the two samples is
the same. We also define three types of conflicts between two quality attributes
based on Mairiza et. al [2]. Absolute conflict, when at least one attribute has an
absolute degradation. Relative conflict, when at least one attribute has a relative
degradation. Never conflict, when the attributes have no degradation.

4.3 Selection of Subjects

The subject of our study is a TravelAgent service. This service look for hotel
rooms, airline tickets and renting cars. TravelAgent is a service orchestration
composed by three third-party services: CarReservarion, FlightReservation, and
HotelReservation. In order to reproduce a real scenario, Web services were al-
located in different locations and hosted in different operating systems. It was
rented four virtual machines in Google Cloud Platform3 (Table 3). TravelAgent
service was installed in Apache ODE 4 and deployed in Apache Tomcat5. All
third-party services were developed in JAVA and deployed in Apache Tomcat.

Table 3: Technical Features of TravelAgent service environments
br-campinas-sp us-east1-c us-central1-c europe-west1-c asia-east1-c

Web service – (Monitor) TravelAgent FlightReservation CarReservation HotelReservation

Location Campinas, SP, Brazil South Carolina, USA Iowa, USA
St. Ghislain,
Belgium

Changhua County,
Taiwan

SO GNU/Linux Microsoft Windows GNU/Linux GNU/Linux GNU/Linux

SO Distribution Fedora release 21
Windows Server

2012 R2 Datacenter
Ubuntu 16.04 LTS

Debian GNU/Linux
8.4 (jessie)

CentOS Linux
release 7.2.1511

(Core)
Number Cores 2 1 1 1 1

Processor
Intel(R) Core(TM)

i3-2130 CPU @ 3.40GHz
Intel(R) Xeon(R)
CPU @ 2.30GHz

Intel(R) Xeon(R)
CPU @ 2.30GHz

Intel(R) Xeon(R)
CPU @ 2.50GHz

Intel(R) Xeon(R)
CPU @ 2.50GHz

4.4 Experiment Design

Our experiment was designed into two steps:

Step 1: Creation of Different Monitors. An independent monitor was cre-
ated for each quality attribute according to Table 2 using FlexMonitorWS. Table
4 shows the monitoring profiles for each quality attribute.

3 https://cloud.google.com/
4 Orchestation Director Engine which execute business process defined in WS-BPEL.
5 A open source web server and servlet container developed by Apache Software Foun-
dation.

149

Table 4: Monitoring Profiles for the Empirical Study
Mon. Profile Mon. Target Quality Attribute Operation Mode Freq. notification

AccMonitor Service Accuracy Invocation 30 seg. log file
AvaMonitor Service Availability Invocation 30 seg. log file
ResMonitor Service Response Time Invocation 30 seg. log file
RelMonitor Service Reliability Invocation 30 seg. log file
RobMonitor Service Robustness Invocation 30 seg. log file

Step 2: Execution. In order to identify degradation in the quality levels,
monitoring was executed during 24 hours considering two scenarios:

1. Scenario 1: Monitoring in Isolation. Every quality attribute is moni-
tored when no other attribute is monitored. The aim of this scenario is to
create a basis state of the quality level of the Web service (Q1).

2. Scenario 2: Monitoring in Pairs. All possible pairs of quality attributes
are monitored at the same time in the same Web service (Q2). The aim of
this scenario is to produce a degradation in the quality level of at least one
attribute (Q3).

5 Results and Discussion

Since the quality level is prone to vary in the time, we estimated the magnitude
of these variations and its error range by applying bootstrapping. It is a sta-
tistical technique that estimates the sampling distribution by making random
re-sampling, with replacement, from the original sample [9]. The aim is to pro-
duce more samples and apply the same statistical operation (e.g. mean, median,
or correlation) to every new sample. Consequently, we represented the quality
level for a quality attribute using the confidence interval of the sampling dis-
tribution with a confidence factor of 95% (M1, M2). In Figure 6(a), Accuracy
presented a quality level of [99.95%, 100.00%] when it was monitored in isolation,
and [99.50%, 99.88%] when it was monitored with Availability. Quality levels can
be also observed in the graph where every curve represents the probabilistic dis-
tribution of the quality values for each scenario6 with a confidence factor of 95%
(shadow under the curve). It is clearly observed that the quality level was de-
graded when it was monitored with Availability. A similar degradation can be
observed when it was monitored with Reliability and Robustness. On the other
hand, the quality level for Accuracy was the same when it was monitored with
the Response Time. Degradations can be observer in every quality attributes
monitored in all scenarios (M3). Table 5 summarizes all the identified conflicts
(G1).

Most of the observed degradations were caused by the number of invalid re-
sponses returned by the service. Invalid responses were caused by lack of memory

6 All collected quality values are in: http://www.students.ic.unicamp.br/

~ra153621/empirical-conflicts-qos-monitoring.html.

150

Isolated
Availability
Response Time
Reliability
Robustness

99.95 100.00
99.50 99.88
99.94 100.00
99.48 99.87
98.37 99.39

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Accuracy (%)
10099.899.699.499.299.098.898.698.498.2

(a) Accuracy

Isolated
Accuracy
Response Time
Reliability
Robustness

100.00 100.00
99.31 99.78

100.00 100.00
98.84 99.65

100.00 100.00

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Availability (%)
98.6 98.8 99.0 99.2 99.4 99.6 99.8 100.0

(b) Availability

Isolated
Accuracy
Availability
Reliability
Robustness

892.92 902.83
1187.61 1260.03
1099.83 1243.96
1055.73 1196.11
1022.08 1154.78

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Response Time (ms)
800 900 1000 1100 1200 1300 1400

(c) Response Time

Isolated
Accuracy
Availability
Response Time
Robustness

21h10m37s 1d2h45m21s
9h58m35s 19h21m17s
1h36m42s 11h50m30s
0h44m17s 4h28m30s

19h01m29s 1d0h42m31s

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Reliability (time)
0h0m 5h33m 11h06m 16h40m 22h13m 1d3h46m

(d) Reliability

Isolated
Accuracy
Availability
Response Time
Reliability

99.96 100.00
100.00 100.00
100.00 100.00

99.86 99.96
100.00 100.00

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Robustness (%)
99.80 99.85 99.90 99.95 100.0

(e) Robustness

Fig. 1: Sampling distribution for monitoring TravelAgent service.

Table 5: Conflict Quality Attributes for TravelAgent service monitoring
Accuracy Availability Response Time Reliability Robustness

Accuracy x o x x
Availability x o x o
Response Time x x x x
Reliability x x x *
Robustness o o x o

x: absolute conflict; *: relative conflict; o: never conflict; blank: unexplored case

on the server side in order to execute a large number of requests. The observed
degradation during Web service monitoring confirm our null hypothesis (H0).

6 Threats to Validity

Threats to conclusion validity concerning the relationship between treatment
and outcome. An incorrect execution of the experiment and incorrect treatment
of the collected information can produce biases in the results. In order to min-
imize this threat, the experiment was designed in order to be reproducible by
someone else, following the guidelines purposed by Wohlin [4].

Threats to external validity concern the possibility of generalizing our results.
The generalization of our results depends on to take a representative sample of

151

monitoring quality values. The Web service was monitored for 24 consecutive
hours, and generalize its quality behavior by using bootstrapping. However, this
is limited by the subject evaluation because it was only for a single service.

7 Conclusions and Future Work

This work has presented an experimental study for Web services monitoring, in
order to identify potential conflicts between quality attributes. For this aim, a
set of quality attributes were monitored during 24 hours considering two scenar-
ios: monitoring quality attributes in isolation and in pairs. The results showed
that 1) Response Timeand Accuracy were the most conflicting attributes since
it presented quality degradation during monitoring with all the other attributes.
2) Fault injection used to monitor Robustness was the most intrusive technique
because faults are sent to the services in order to produce errors in the service,
and subjecting the service under stress condition or disabling it. 3) Active mon-
itoring can become intrusive in the Web service generating degradation in the
quality of service, since this strategy send request directly to services. New stud-
ies are necessary in order to evaluate more complex services and generalize the
result for Web services.

References

1. O. Cabrera and X. Franch, “A quality model for analysing web service monitoring
tools,” in The Sixth International Conference on Research Challenges in Information
Science, ser. RCIS 2012, Valencia, Spain, May 2012, pp. 1–12.

2. D. Mairiza and D. Zowghi, “Constructing a catalogue of conflicts among non-
functional requirements,” in Evaluation of Novel Approaches to Software Engineer-
ing, ser. ENASE 2010. Springer Berlin Heidelberg, 2011, vol. 230, pp. 31–44.

3. Z. Zheng, Y. Zhang, and M. Lyu, “Investigating QoS of real-world web services,”
IEEE Transactions on Services Computing, vol. 7, no. 1, pp. 32–39, January 2014.

4. C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén, Exper-
imentation in Software Engineering: An Introduction. Norwell, MA, USA: Kluwer
Academic Publishers, 2000.

5. H. Ludwig, A. Dan, and R. Kearney, “Cremona: An architecture and library for
creation and monitoring of WS-Agreements,” in Proceedings of the 2nd International
Conference on Service Oriented Computing, ser. ICSOC 2004. New York, NY, USA:
ACM, November 2004, pp. 65–74.

6. M. Oriol, X. Franch, and J. Marco, “Monitoring the service-based system lifecycle
with SALMon,” Expert Systems with Applications, vol. 42, no. 19, pp. 6507 – 6521,
November 2015.

7. C. Goldberg. (2011, October) Web/HTTP Test & Monitoring Tool. Available in:
http://www.webinject.org. [Accessed on 11/11/2016].

8. R. Franco, C. Rubira, and A. Nascimento, “FlexMonitorWS: Uma solução para
monitoração de serviços web com foco em atributos de QoS,” in Congresso Brasileiro
de Software: Teoria e Prática, 21th Sessão de Ferramentas, vol. 2, September 2014,
pp. 101–108.

9. B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap. Chapman and
Hall/CRC, 1994.

152

