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Abstract— Current approaches to emotion recognition do not
address the fact that emotions are dynamic processes. This work
concerns itself with the development of a gray-box framework
for dynamic emotion intensity estimation that can incorporate
findings from appraisal models, specifically Scherer’s Compo-
nent Process Model. It is based on Dynamic Field Theory
which allows the combination of theoretical knowledge with
data-driven experimental approaches. Further, we conducted
an exemplary user study applying the proposed model to esti-
mate intensity of negative emotions from physiological signals.
Results show significant improvements of the proposed model
to common methodology and baselines. The flexible cognitive
architecture opens a wide field of experiments and directions
to deepen the understanding of emotion processes as a whole.

I. INTRODUCTION

Current efforts in Human-Robot-Interaction (HRI) aim
at finding ways to make interaction more natural. In this,
knowledge of the user’s emotional state is considered an
important factor. Methods of automatic estimation of affec-
tive states from various modalities, including physiological
signals, have therefore received much attention lately.

Recent work in emotion theory, e.g. Scherer’s Compo-
nent Process Model (CPM), points out the dynamic nature
of emotion processes which therefore, “require a dynamic
computational architecture” [1]. To date, however, most work
on emotion recognition concerns itself with static prediction
of emotion labels from a window of time series data using
machine learning methods (i.e. black-box approach).

Our main research objective is to design a gray-box model
for emotion recognition from physiological signals, which
is capable of combining theoretical knowledge incorporated
in the CPM with experimental data to train parameters the
model. In this paper, we address the hitherto neglected
dynamic evolvement of the affective state by proposing an
architecture for emotion intensity estimation based on the
Dynamic Field Theory (DFT) [2].

II. MODEL

In the CPM, the subjective feeling (i.e. affective state) is
characterized by the emotion intensity I of an emotion quality
ϑ at time t and can generally be written as I(ϑ, t). The CPM
provides detailed relations between the so-called stimulus
evaluation checks (SECs) that happen in the appraisal process
and their effects on physiology. For example, a novelty
check can lead to an increase in skin conductance or the
obstructiveness of an event changes the heart rate of a person.
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Fig. 1. The subjective feeling component is divided into consecutive
estimation of emotion quality ϑ̂(t) and emotion intensity Î(ϑ, t).

Similar to Bailenson et al. [3], we separate estimation
of emotion quality and intensity (see Fig. 1). We control
the former by experimental design, i.e. we assume ϑ̂(t) to
be a known input to our model. The architecture of our
dynamic model is based on DFT. These fields usually span
over physical dimensions such as space or angle and model
dynamic changes along this dimension. Fields are governed
by differential equations and can represent functionalities like
memory (for details, see [4]).

For our model, we define the field over the emotion quality
ϑ as shown in Fig. 2. The core part of the model is the
intensity layer i(ϑ, t) together with a memory layer m(ϑ, t),
which model the changes in the subjective feeling, i.e. the
output Î(ϑ̂, t). The second part are the input layers, where
we use one layer for each prediction from the SECs provided
by the CPM, e.g. u(ϑ, t) in Fig. 2. For example, a change
in skin response would be an input layer.
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Fig. 2. Architecture of the proposed dynamic model: three-layer field
spanned over the dimension of emotion quality ϑ.
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III. EXPERIMENTAL DESIGN

We control the emotion quality ϑ̂ in our experimental
design by fixing it through choice of emotion induction. This
results in a simplified dynamic model at one location of the
fields, i.e. three neurons and their governing equations.

For the dataset, we recorded the galvanic skin response
(GSR) of subjects. Additionally, we used a slider device
interface to record the emotion intensity experienced by the
subject. For emotion induction, we used standardized IAPS
pictures of a fixed emotion quality, here, negative emotions
[5]. After segmentation, we had collected 7 trials of 110 s
recordings for each of three subjects.

The change in GSR is computed as a prediction of SECs
and used as model input. The continuously recorded intensity
measures of the slider served as ground truth. For training of
the dynamic model, free parameters are determined by means
of experimental data applying leave-one-out cross validation.
In this, we minimize the error between the output of the
dynamic model and the ground truth s.t. boundary conditions.

IV. RESULTS

First, we compare the accuracy of our model with common
static methods and baselines, i.e. linear regression and ran-
dom regressors. We use the match of estimate with ground
truth plus an acceptable error margin as accuracy measure.
In summary, the dynamic model performs significantly better
than common methodology and baselines. Limitations of the
model become apparent for small error margins.

Secondly, capabilities and limitations of the model in its
current version are examplified in Fig. 3. In the upper graph,
we see the changes in GSR, which characterize the onset
as well as the increase of intensity well. The memory layer
(bottom graph) helps to stabilize the decay at an appropriate
rate. However, limitations of the current model are apparent,
as the third change in GSR should not have any impact on the
intensity. This points towards the need to include additional
input layers where appropriate interaction can avoid this
behavior.

V. CONCLUSION

For the first time, a dynamic gray-box model framework
based on DFT has been proposed for emotion recognition,
which allows to include theoretical knowledge into the model
and learn free parameters from experimental results. We
designed and carried out an exemplary study to estimate
emotion intensity from physiological signals. In this, the
dynamic model performed significantly better than baselines.
We also identified current limitations and ways to improve
the model. Future work includes several extension to the
architecture as well as carrying out experiments to further
evaluate the model.
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Fig. 3. Example of a single location of all layers over time.
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