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DIETI, Università degli Studi di Napoli Federico II,

via Claudio 21, 80125, Naples, Italy.
{riccardo.caccavale, alberto.finzi}@unina.it

Abstract—We propose a robotic cognitive control framework
that exploits supervisory attention and contention scheduling
for flexible and adaptive orchestration of structured tasks.
Specifically, in the proposed system, top-down and bottom-up
attentional processes are exploited to modulate the execution
of hierarchical robotic behaviors conciliating goal-oriented and
reactive behaviors. In this context, we propose a learning method
that allows us to suitably adapt task-based attentional regulations
during the execution of structured activities.

I. INTRODUCTION

In this paper, we present a robotic cognitive control frame-
work that permits flexible and adaptive orchestration of mul-
tiple structured tasks. Following a supervisory attentional
system approach [12], [7], we propose an executive system
that exploits top-down (task-based) and bottom-up (stimulus-
based) attentional mechanisms to conciliate reactive and goal-
oriented behaviors [4], [5]. In this paper, we describe adap-
tive mechanisms suitable for this framework. Specifically, we
propose a learning method that allows us to regulate the top-
down and bottom-up attentional influences according to the
environmental state and the tasks to be accomplished. In con-
trast with typical task-learning approaches [11], [6], our aim
here is to adapt and refine attentional parameters that affect
the competition among active tasks and reactive processes.
Learning methods for robotic supervisory attentional system
have been proposed to enhance action execution automaticity
and reduce the need of attentional control [8], instead here we
are interested in flexible orchestration of hierarchical tasks.

In the following sections, we present the architecture of the
executive system and briefly introduce the associated adaptive
mechanisms.

II. SYSTEM ARCHITECTURE

The cognitive control framework presented in this paper is
based on a supervisory attentional system that regulates the
execution of hierarchical tasks and reactive behaviors. The
system architecture is illustrated in Fig. 1. The attentional
executive system is endowed with a long term memory (LTM)
that contains the behavioral repertoire available to the sys-
tem, including structured tasks and primitive actions; these
tasks/behaviors are to be allocated and instantiated in the
Working Memory (WM) for their actual execution. In particu-
lar, the cognitive control cycle is managed by the alive process
that continuously updates the WM by allocating and deallocat-
ing hierarchical tasks/behaviors according to their denotations

in the LTM. We assume a hierarchical organization for tasks
and activities [9], [12], [7] and this hierarchy is represented
in the WM as a tree data structure that collects all the tasks
currently executed or ready for the execution (see Fig. 2). More
specifically, each node of the tree stands for a behavior with
the edges representing parental relations among sub-behaviors.
In this context, abstract behaviors identify complex activities
to be hierarchically decomposed into different sub-activities,
instead concrete behaviors are for sensorimotor processes that
compete for the access to sensors and actuators. The allocated
concrete behaviors are collected into the attentional behavior-
based system illustrated in Fig. 1.

Fig. 1. System Architecture. The LTM provides the definitions of the available
tasks, which can be allocated/deallocated in the WM by the alive behavior.

In this framework, each behavior is associated with an
activation value, which is regulated by an adaptive clock
[3], [2]. This clock represents a frequency-based attentional
mechanism: the higher is the frequency, the higher is the reso-
lution at which a process/behavior is monitored and controlled.
The clock period is bottom-up and top-down regulated by a
behavior-specific monitoring function f (σ ,ε)= λ according to
the behavioral stimuli σ and the overall state of the WM ε . In
particular, the bottom-up frequency 1/λ is directly affected by
behavior-specific stimuli (e.g. distance of a target), while the
top-down regulation is provided by a value µ that summarizes
the overall top-down influences of the WM. In this context,
bottom-up stimuli emphasize actions that are more accessi-
ble to the robot (e.g. object affordances), while top-down
influences are affected by the task structures and facilitate
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the activations of goal-oriented behaviors. In this framework,
multiple tasks can be executed at the same time and sev-
eral behaviors can compete in the WM generating conflicts,
impasses, and crosstalk interferences [10], [1]. Contentions
among alternative behaviors competing for mutually exclusive
state variables (representing resources, e.g. sensors, actuators,
etc.) are solved exploiting the attentional activations: following
a winner-takes-all approach, the behaviors associated with the
higher activations are selected with the exclusive access to
mutually exclusive resources.

III. ADAPTIVE REGULATIONS

In the proposed framework, action selection depends on
the combined effect of top-down and bottom-up attentional
regulations. In order to set these regulations, we associate each
edge of the WM with a weight w j,i that regulates the intensity
of the attentional influence from the behavior j to the sub-
behavior i (bottom-up for i = j, top-down otherwise). This
way, the overall activation value associated with each node is
obtained as the weighted sum ∑ j wi, jci, j of the contributions
from the top-down and bottom-up sources. These weights
are to be suitably adapted with respect to the tasks and the
environment. For this purpose, we propose to deploy a neural
network approach. Specifically, during the execution the WM
tree is associated with a multi-layered neural network, while
the weights associated with the nodes are refined exploiting
error backpropagation. In this setting, the system can be
trained by a user that takes the control of the robot to correct
the execution of a task. The training session is associated
with an adaptive process: the difference between the system
behavior and the human correction is interpreted as an error
to be backpropagated through the task hierarchy in order to
adapt the associated weights.

Fig. 2. WM configuration during the execution of a take-and-return task. The
contending behaviors (leafs of the hierarchy) receive inputs from the upper
nodes (black links) producing output values for the shared variables (dark
blue box). The user can correct the execution (joypad) to train the system.

As an exemplification, we consider the instance of the
WM illustrated in Fig. 2. In this case, a mobile robot has
to take a colored object (ob jRed) and return it to the home
position. Here, five concrete behaviors compete to acquire two

contended variables ( f orwardSpeed and turnSpeed) which
are used to control the robots movements. For instance, the
avoidObstacle behavior is affected by two top-down influ-
ences (reach(ob jRed) and goto(home) subtasks), while the
bottom-up influence is inversely proportional to the distance
of the closest obstacle. During the execution of the task, the
system selects the most emphasized behavior and produces a
vector of values ~v representing motor patterns for the shared
variables. The robot navigation is monitored by the human,
which is ready to change the robot trajectory using a joypad
when a correction is needed. The user interventions generate
a new set of values for the shared variables ~v∗ that dominate
and override the ones produced by the other behaviors. As
long as the user drives the robot, the difference between the
systems output ~v and the suggested values ~v∗ is exploited
to estimate the total error of the task execution. This error
is backpropagated from the concrete behaviors to the rest of
the hierarchy, in so adjusting the weights associated with the
behavior and sub-behaviors which are active in the WM.

IV. CONCLUSIONS

We presented an adaptive mechanism suitable for a cog-
nitive control framework based on a supervisory attentional
system approach. The proposed method permits adaptive and
interactive adaptation of top-down and bottom-up attentional
regulations in order to execute structured hierarchical tasks.
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