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Abstract—This paper develops, in sections I-III, the virtual
machine architecture approach to explaining certain features of
consciousness first proposed in [1] and elaborated in [2], in which
particular qualitative aspects of experiences (qualia) are proposed
to be particular kinds of properties of components of virtual
machine states of a cognitive architecture. Specifically, they are
those properties of components of virtual machine states of an
agent that make that agent prone to believe the kinds of things
that are typically believed to be true of qualia (e.g., that they are
ineffable, immediate, intrinsic, and private). Section IV aims to
make it intelligible how the requirements identified in sections II
and III could be realised in a grounded, sensorimotor, cognitive
robotic architecture.

I. INTRODUCTION

Those who resist the idea of a computational, functional,
or architectural explanation of consciousness will most likely
concede that many aspects surrounding consciousness are so
explicable (the so-called “easy problems” of consciousness
[3]), but maintain that there are core aspects of conscious-
ness having to do with phenomenality, subjectivity, etc. for
which it is Hard to see how a computational explanation
could proceed. A typical way of characterising this “Hard
core” of consciousness employs the concept of qualia: “the
introspectively accessible, phenomenal aspects of our mental
lives” [4]. Surely there can be no computational explanation
of qualia?

This paper develops the virtual machine architecture ap-
proach to explaining certain features of consciousness first pro-
posed in [1] and elaborated in [2], in which qualia, understood
as particular qualitative aspects of experiences, are proposed
to be particular kinds of properties of components of virtual
machine states of a cognitive architecture. Specifically, they
are those properties of components of virtual machine states
of agent A that make A prone to believe:

1) That A is in a state S, the aspects of which are knowable
by A directly, without further evidence (immediacy);

2) That A’s knowledge of these aspects is of a kind such
that only A could have such knowledge of those aspects
(privacy);

3) That these states have these aspects intrinsically, not by
virtue of, e.g., their functional role (intrinsicness);

4) That these aspects of S cannot be completely commu-
nicated to an agent that is not A (ineffability).

Our emphasis on beliefs concerning these four properties
(immediacy, privacy, intrinsicness and ineffability), follows
the analysis in [5] in taking these properties to be central
to the concept of quale or qualia. But whereas [5] under-
stands this centrality to imply that the properties themselves
are conditions for falling under the concept, we understand
their centrality only in their role of causally determining the
reference of the concept. Roughly, qualia are not whatever has
those four properties; rather, qualia are whatever is (or was)
the cause of our qualia talk. And if we do know anything
about the cause of our qualia talk, it is this: it makes us prone
to believe that we are in states that have those four properties.

A crucial component of our explanation, which we call the
Virtual Machine Functionalism (VMF) account of qualia, is
that the propositions 1-4 need not be true in order for qualia
to make A prone to believe those propositions. In fact, it is
arguable that nothing could possibly render all of 1-4 true
simultaneously [5]. But on our view, this would not imply
that there are no qualia, since for qualia to exist it is only
required that that agents that have them be prone to believe
1-4, which can be the case even when some or all of 1-4 are
false.

It is an open empirical question whether, in some or all
humans, the properties underlying the dispositions to believe
1-4 have a unified, systematic structure that would make them
a single cause, and that would thereby make reference to
them a useful move in providing a causal explanation of
such beliefs. Is “qualia” more like “gold”, for which there
was a well-defined substance that was the source of mistaken,
alchemical talk and beliefs about gold? Or is “qualia” more
like “phlogiston”, in that there is no element that can be iden-
tified as the cause of the alchemists’ mistaken talk and beliefs
that they expressed using the world “phlogiston”? These are
empirical questions; thus, according to the VMF account of
qualia, it is an open empirical question whether qualia exist
in any particular human. By the same token, however, it is
an open engineering question whether, independently of the
human case, it is possible or feasible to design an artificial
system that a) is also prone to believe 1-4 and b) is so
disposed because of a unified, single cause. Thus, it is an
open engineering question whether an artificial system can be
constructed to have qualia. This paper goes some way toward
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getting clear on how one would determine the answer to that
engineering question.

Section II notes the general requirements that must be
in place for a system to believe 1-4, and then sketches
very briefly, in section III, an abstract design in which the
propensities to believe 1-4 can be traced to a unified virtual
machine structure, underwriting talk of such a system having
qualia.

II. GENERAL ARCHITECTURAL REQUIREMENTS FOR
HAVING QUALIA

General requirements for meeting constraints 1-4 include
being a system that can be said to have beliefs and propensities
to believe, as well as what those properties themselves require.
Further, having the propensities to believe 1-4 in particu-
lar requires the possibility of having beliefs about oneself,
one’s knowledge, about possibility/impossibility, and other
minds. At a minimum, such constraints require a cognitive
architecture with reactive, deliberative and meta-management
components [1], with at least two layers of meta-cognition:
(i) detection and use of various states of internal virtual
machine components; and (ii) holding beliefs/theories about
those components.

III. A QUALIA-SUPPORTING DESIGN

A little more can be said about the requirements that 1-4
might impose on a cognitive architecture.

1) A propensity to believe in immediacy (1) can be ex-
plained in part as the result of the meta-management
layer of a deliberating/justifying but resource-bounded
architecture needing a basis for terminating delibera-
tion/justification in a way that doesn’t itself prompt
further deliberation or justification.

2) A propensity to believe in privacy (2) can be explained in
part as the result of a propensity to believe in immediacy
(1), along with a policy of normally conceiving of the
beliefs of others as making evidential and justificatory
impact on one’s own beliefs. To permit the termination
of deliberation and justification, some means must be
found to discount, at some point, the relevance of
others’ beliefs, and privacy provides prima facie rational
grounds for doing this.

3) A propensity to believe in intrinsicness (3) can also be
explained in part as the result of a propensity to believe
in immediacy, since states having the relevant aspects
non-intrinsically (i.e., by virtue of relational or systemic
facts) would be difficult to rectify with the belief that
one’s knowledge of these aspects does not require any
(further) evidence.

4) An account of a propensity to believe in ineffability
(4) requires some nuance, since unlike 1-3, 4 is in
a sense true, given the causally indexical nature of
some virtual machine states and their properties, as
explained in [2]. However, properly appreciating the
truth of 4 requires philosophical sophistication, and so
its truth alone cannot explain the conceptually primitive

propensity to believe it; some alternative explanations
must be offered, but it is not possible to do so here.

IV. COGNITIVE ARCHITECTURE,
NOT COGNITIVIST ARCHITECTURE?

Given the anti-cognitivist, anti-representational, anti-
symbolic, embodied, enactivist, etc. inclinations of many in the
EUCognition community, the foregoing may be hard to accept
given its free use of representational and computational notions
such as belief, deliberation, justification, etc. The rest of this
paper, then, is an attempt at an in-principle sketch of how
one can have a grounded, dynamic, embodied, enactive(ish)
cognitive architecture that nevertheless supports the notions
of belief, inference, meta-belief, etc. that this paper has just
maintained are necessary for the subjective, qualia aspect of
consciousness, if not all aspects of consciousness.

This motivation is not strictly (that is, philosophically)
required, for two reasons:
• First, our self-appointed philosophical opponents do not

claim that the “easy problems” of consciousness can-
not be solved physicalistically, or even computationally.
Thus, in giving our explanation of the “Hard core” of
consciousness, qualia, we can help ourselves to any of
the capacities that are considered to fall under the “easy
problems”, which is the case for all of the requirements
we identified in sections II and III.

• Second, an aspect a of a cognitive architecture A can be
of the same kind as an aspect b of a distinct cognitive
architecture B, even if B is capable of the sorts of
beliefs mentioned in 1-4 because of possessing b, and
A, despite having a, is not capable of having those sorts
of beliefs. On our account, A might still have qualia by
virtue of having a; this is why our account does not,
despite appearances, over-intellectualize qualia, and is
instead consistent with, e.g., the empirical possibility that
animals and infants have qualia.

However, showing how architectures that do have the kinds
of beliefs mentioned in 1-4 can be constructed out of grounded
sensorimotor components is required if we are to achieve any
understanding of what a system that is incapable of having
those beliefs would have to be like for it to nevertheless
warrant ascription of qualia.

This section (that is, the rest of this paper) will not
have much to say about consciousness or qualia per se.
Furthermore, the sketched architectures are likely not optimal,
feasible, or even original. That there is some better way to
solve the task that we use for illustrative purposes below is
not to the point. The architectures and task are intended merely
to act as a proof-of-concept, as a bridge between the kind of
robotic systems that many in the EUCognition community are
familiar or comfortable with, and the kind of robotic cognitive
architecture that we have argued is required for qualia.

A. Robotic architecture, environment and task

Consider a robot that is static except that it can move its
single camera to fixate on points in a 2D field. The result
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R of fixating on point (x, y) is that the sensors take on a
particular value s out of a range of possible values S. That is,
R(x, y) = s ∈ S.

The visual environment is populated by simple coloured
polygons, at most one (but perhaps none) at each fixation point
(x, y). This visual environment is static during trials, although
it may change from trial to trial.

The robot has learned a map M that is a discrete partition of
S into a set of categories or features F (e.g., a self-organising
feature map): M(s) = fi ∈ F . In general, M is always applied
to the current sensory input s, thus activating one of the feature
nodes or vectors. For example, f1 might be active in those
situations in which the robot is fixating on a green circle, f2
might be active in those situations in which the robot is fixating
on a red triangle, etc.

Suppose also that the robot has the ability to detect the
occurrence of a particular auditory tone. After the tone is
heard, a varying visual cue (for example, a green circle)
appears in some designated area of the field (the upper left
corner say). The robot’s task (for which it will be rewarded)
is to perform some designated action (e.g. say “yes”) if and
only if there is something in the current visual environment
(other than in the designated cue area) whose feature map
classification matches that of the cue, that is: say “yes” iff
∃(x, y) : M(R(x, y)) = M(cue).

There are, of course, many strategies the robot could use
to perform this task. For illustrative reasons, we will consider
three.

B. Strategy One: Exhaustive search of action space

The first strategy is an exhaustive search of action space.
The robot performs a serial exhaustive search of the ac-
tion space R(x, y), stopping to say “yes” if at any point
M(R(x, y)) = M(cue). This requires motor activity, and is
likely to take a relatively long time to perform, although it
requires no “offline” preparation time. It is a “knowledge-free”
solution.

C. Strategy Two: Exhaustive search of virtual action space

The second strategy is to perform an exhaustive search of
a virtual action space.

1) Strategy Two, Version 1: Prior to hearing the tone, the
robot learns a forward model Ew from points of fixation
(x, y) to expected sensory input s at the fixated location:
Ew(x, y) = s ∈ S. After the tone and presentation of
the cue, the robot then performs a serial exhaustive search
of the expectation space Ew(x, y), stopping if at any point
M(Ew(i, j)) = M(cue). The robot then fixates on (i, j), and
if M(R(i, j)) = M(cue), then it says “yes”. Otherwise, the
search of the expectation space resumes. As this search is
for the most part virtual, only occasionally requiring action
(assuming E is reasonably accurate), this will be much faster
than the first strategy.

2) Strategy Two, Version 2: If the idea of an exhaustive se-
rial search of the expectation space is not considered neurally
plausible enough, a a second version of the second strategy

could employ a kind of content-addressable search (following
ideas first presented in [6]). The difference between cue and
E(x, y) (or between M(cue) and M(E(x, y)); see below) can
be used as a differentiable error signal, permitting gradient
descent reduction of error not in weight w space, but in visual
space (which is here the same as fixation space and action
space). That is (hereafter re-writing (x, y) as u), the robot can
apply the Delta rule, changing u proportionally to the partial
derivative of the error with respect to u:

∆u = µ
∂[ 12 (cue−E(u))2]

∂u .

Since the task question is primarily about matching one
of the cue categories fi and not the cue itself, this process
requires changing the robot’s virtual fixation point u according
to the above equation, and then checking to see if M(E(u)) =
M(cue)). If not, u is again updated according to the Delta rule.
Alternatively, one could measure the error directly in terms of
differences in feature map (M ) output; then the Delta rule
would prescribe:

∆u = µ
∂[ 12 (M(cue)−M(E(u)))2]

∂u .

In either case, this process should eventually arrive at a
value u′ that is a minimum in error space, although the number
of iterations of changes to u required to do so will depend on
a number of factors, including µ, which itself is constrained
by the “spikiness” of the error space with respect to fixation
points. This could result in many changes to u, but as such
changes are virtual, rather than actual changes in robot fixation
point, they can be performed much faster than real-time.

Standard problems with local minima apply: the fixed point
in u/error space where the derivative is zero may not only
not be a point for which actual error is zero (that is, where
M(R(u′)) = M(cue)); it may not even be a point for which
expected error is zero (that is, where M(E(u′)) = M(cue)).
Nonetheless, u′ can serve as a plausible candidate solution,
which can be checked by having the robot fixate on u′ via
R(u′). If a match (M(R(u′)) = M(cue)) is not achieved,
standard neural network methods for handling local minima
can be applied, if desired, to see if a better result can be
obtained.

This second version of the second strategy may in some
cases be more efficient than the first variation, in that it is
non-exhaustive. But both verisons of the second strategy buy
online performance at the price of prior “offline” exploration
of the action space, and the computational costs of learning
and memory.

As an aside, we note that the second version of strategy two
can be used in conjunction with strategy one (or even the first
verison of strategy two), in that it can suggest a heuristically-
derived first guess for a real-world (or virtual) search of points
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in the vicinity of that guess. In the case of failure, it wouldn’t
be useful as it stands, it seems; since E is deterministic,
when asked for a second guess after the failure of the first,
strategy two would give the same recommendation again.
However, it should be noted that the gradient descent method
is dependent on an initial guess u, and derives candidate
solutions as modifications to u. Therefore, it will give different
u′ answers if a different initial u is selected to seed the
gradient descent process, with the new u′ corresponding to
the local error minimum that is closest to the new u seed
chosen. Thus, search of the entire virtual (or actual) fixation
point (u) space can be reduced, in theory, to a virtual search of
the much smaller space of error basins in u-space. To prevent
wasteful duplication of effort, there would have to be some
way for the network to consider only previously-unconsidered
seeds; perhaps inhibition of previously-considered seeds could
achieve this.

D. Strategy Three: Learning a mapping from mappings to cues

A third strategy builds on the second strategy by employing
a form of reflection or meta-cognition to guide search more
efficiently. As with the second strategy, an expectational,
forward model Ew is used. Note that for any given kind of cue
(node or reference vector in the range of the feature map M ),
we can define the set Pcue to be all those parameter (weight)
sets w for E that yield a forward model that contains at least
one expectation to see that cue. That is, Pcue = ∀w : ∃(x, y) :
M(Ew(x, y)) = cue.

With a network distinct from the one realising E, the robot
can learn an approximation of Pcue. That is, the robot can
learn a mapping Fcue from weight sets for E to {1,0}, such
that Fcue(w) = 1 iff w ∈ Pcue. Generalising, the robot can
learn a mapping F from cues and weight sets for E to {1,0},
such that F (cue, w) = 1 iff w ∈ Pcue. That is, F is a
network that, given a vector w and a cue, outputs a 1 only
if w parameterises a forward model Ew for which there is at
least one fixation point (x, y) such that Ew “expects” cue as
input after performing R(x, y).

Given this, a third strategy for performing the task is to
simply input the current E parameter configuration w and
the cue into F , and say “yes” iff F (w, cue) = 1 (or, if one
prefers, make the probability of saying “yes” proportional to
F (w, cue)).

Like strategy two, strategy three spends considerable “of-
fline”, pre-task resources for substantial reductions in the time
expected to complete the online task. However, unlike both
strategy one and strategy two, this third strategy answers the
task question directly: it determines whether the existential
condition of the task question holds without first finding a
particular fixation point that satisfies the property that the task
condition (existentially) quantifies over. A drawback of this
is that the robot cannot, unlike with strategy two, check its
answer in the real world (except by essentially performing
strategy one). But as it is essentially a lookup computation, it
is very fast: no search, even virtual, is required. Admittedly,
this is only useful if F can be learned, and if the space

is not too spiky (nearby values for w should, in general,
imply nearby values for M(E(u))). Nevertheless, the the third
strategy would be useful for situations in which immediate,
gist-based action is required.

E. Metamappings as metacognition

As explained at the beginning of this section, we have
taken these efforts to incrementally motivate the architecture
in strategy three in order to illustrate how a grounded, sensori-
motor based system can merit ascription of the kinds of
metacognitive abilities that we have proposed are necessary
for crediting a system with qualia:
• In effect, the forward model E confers on the the system

belief-like states, in the form of expectations of what
sensor values will result from performing a given action.
These (object, not meta) belief-like states are total in that
a given state vector w yields an Ew that manifests a range
of such expectational beliefs, each concerning a different
action or point of fixation.

• Similarly, the forward model F confers on the the system
meta-belief-like states, in that they indicate which total,
object belief states have a particular content property.
(Note that the meta beliefs are not of the form, for some
particular w, u and cue: w manifests the belief that (or
represents that) M(R(u)) = M(cue). Rather, they are of
the form, for some particular w and cue: ∃u : w manifests
the belief that M(R(u)) = M(cue).)

Meta-belief is not only an explicit requirement for the kind
of qualia-supporting architecture outlined in section II and III;
it also opens to door to the further requirements of inference,
deliberation and sensitivity to logical relations. To see how,
consider one more addition to the architecture we arrived at
when discussing strategy three. As with the individual nodes
in the feature map, we can define the set Pc1,c2 to be all those
parameter sets w that yield a forward model that contains at
least one expectation to see c1 and one expectation to see c2;
that is, Pc1,c2 = ∀w : ∃(u1)(u2) such that:
• M(Ew(u1)) = c1; and
• M(Ew(u2)) = c2

With another network G distinct from E (and F ), the robot
can learn an approximation of Pc1,c2 : G(w, c1, c2) = 1 iff
w ∈ Pc1,c2 . That is, G is a network that:
• takes the parameters w of E as input
• outputs a 1 only if those parameters realise a forward

model Ew for which:
– ∃u1 : M(Ew(u1)) = c1; and
– ∃u2 : M(Ew(u2)) = c2;

Note that it is a logical truth that w ∈ Pc1,c2 → w ∈ Pc1 .
It follows that there is a logical relation between G and
F ; specifically, it should be true that G(w, c1, c2) = 1 →
F (w, c1) = 1. Assuming F and G are themselves reasonably
accurate, the robot could observe and learn this regularity.
But because F and G are only approximations, there might
actually be cases (values of w) where they are inconsistent
(where G(w, c1, c2) = 1 but F (w, c1) = 0). That such a
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mismatch constitutes error could be built into the architecture,
yielding an error signal not between expected and empirical
object-level states of affairs, but between a logical norm and
the empirical relation between meta-belief states that should
respect that norm.

How should the robot respond to this error signal, which
indicates the violation of a logical norm? In the case of
empirical, object-level error, the direction of fit is from model
to world, so error should be reduced by changing the model
(pace Friston and active inference[7]). But in this case, the
error is not between model and world, but between two models
of the world: should the robot modify F , or G, or both?

Although it seems unlikely that there is a general, situation-
independent answer to this question, one could certainly
imagine another iteration of reflection and complexity that
would enable a robot to learn an effective way for handling
such situations. For example, F and G could be part of a
network of experts, in which a gating network learns the kinds
of situations in which any F /G mismatch should be resolved in
F ′s favour, and which in G′s. But there is also the possibility
of a resolution due to implicit architectural features that do
not constitute a semantic ascent. An interactive activation
competition between F and G might, for example, always
be resolved in F ′s favour simply because F has fewer inputs
and parameters than G – or vice versa. Such a system could
be understood as having a belief, albeit an implicit one, that
object-level beliefs manifested in F are always more reliable,
justified, etc. than beliefs manifested in G. And again, a
sophisticated architecture, although continuous with the kinds
of systems considered so far, could observe instances of this
regularity, and thus learn the regularity itself. It could thus
come to know (or at least believe) that it always takes F -based
judgements to be more reliable than (logically conflicting) G-
based ones. From the error signal that is produced whenever
they disagree the system could come to believe that G and
F are logically related. The crucial point is that the robot
has the essentials of a notion of logical justification and
logical consistency of its own beliefs. It could use a systematic
mismatch between G and F as evidence that G requires more
learning, or indeed use that mismatch as a further error signal
to guide learning in G, or even E itself.

One could ask: why go to all this trouble? Couldn’t all of
this have been motivated simply by considering a robot that
contains two forward models, E and E′, that are meant to have
the same functionality, but which might contingently evolve in
such a way that they disagree on some inputs? The answer is
yes, and no. Yes, an instance of being a logically-constrained
cognizer is that one eschews believing P and ¬P . But no: to
start with such an architecturally unmotivated example would
not serve to make a general case for how meta-beliefs as a
whole could get going in a sensorimotor grounded architecture.
For one thing, it doesn’t suggest how sensitivity to logical
relations between sub-networks could assist in inference. But
with what has been presented concerning the conjunctive cue
network G, it is possible to understand, for example, how there
could be a disjunctive cue network H that maps weights w to

1 only if either one or the other of its associated cues c1 and
c2 is in the range of Ew. Such a network having output of 1
for w, in the face of F (w, c1) = 0, would allow the network
to infer that F (w, c2) should be 1, and use that in place of
computing F (w, c2) explicitly, or to generate an error signal
if F (w, c2) 6= 1, etc.

Further sophistication, conferring even more of the kinds
of metacognitive abilities discussed in sections II and III,
could be added by not just allowing the robot to observe
the holding or not of various logical relations in its own
beliefs, but by giving it the ability to take action on the meta-
level, and allow such actions to be guided, as on the object
level, by expectations realized in forward models on the meta-
level. Such forward models would not manifest expectations
about how sensory input would be transformed by performing
this or that movement, but rather how object-level forward
models such as E would change, if one were to perform
this or that operation on their parameter sets w. To give a
trivial example, there might be a primitive operation N that
could be performed on a forward model’s parameters that
had the effect of normalizing those parameters. A network’s
understanding of this might be manifested in a network J
such that J(w1, N) = norm(w1), J(w2, N) = norm(w2),
etc., with J being consulted when normalization is being
considered as a possible meta-action to perform.

V. CONCLUSION

The “Hard core” of consciousness is meant to be qualia, but
sections I-III argue that qualia, understood as the underlying
phenomenon (if any) that explains qualia-talk and qualia-
beliefs, might be explicable in terms of phenomena that are
considered to fall under the “easy problems” of consciousness.
The speculations of section IV fall short of closing the
loop started in sections II and III, but they hopefully give
one an idea how a grounded sensorimotor robotic cognitive
architecture could merit attribution of such features as having
beliefs and having beliefs about beliefs. In particular, it is
hoped that some substance has been given to the possibility
of such an architecture being able to employ concepts such as
justifcation, deliberation and consistency.
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