Implementing a Similarity Searchable Encryption Scheme
for Cloud Database Usage

Christian Gbége
Institut fur Informatik
GoldschmidtstraBe 7

37077 Gottingen, GERMANY

christian.goege@
informatik.uni-
goettingen.de

ABSTRACT

In this paper we address the use case of secure database-as-
a-service in the cloud, for example to implement an encryp-
ted email server. We empirically derive proper settings for a
similarity searchable encryption scheme, which allows sear-
ching in encrypted emails with search terms that can contain
misspells. The focus here is on describing and evaluation pa-
rameters of an existing scheme with its original settings and
comparing them to an improvement to this scheme introdu-
ced by us. The scheme is embedded into an existing frame-
work that can connect to Apache Cassandra and HBase.

Keywords

searchable encryption, similarity search, fuzzy search, secure
index, encrypted database

1. INTRODUCTION

Today, more and more data is outsourced to the cloud.
Especially smaller companies can outsource their data ma-
nagement to a remote service provider. Most business data,
such as emails, are sensitive, so outsourcing them as plain
text is not a good idea, since the service provider is able to
read them. Even if the service includes encryption at the ser-
ver side, the data needs to be sent to the service provider in
plain text first. For this reason, encryption of sensitive data
has to take place at the client side. However, outsourcing en-
crypted data prevents data users from searching in the data.
To obtain search results, one would have to download every-
thing and decrypt it first, which obviously ridicules the idea
of outsourced data. One solution is searchable encryption.
Searchable encryption schemes allow searching for single or
multiple keywords in a collection of documents. They often
achieve this by building a secure index [5], which is outsour-
ced together with the data collection. A secure index can be
queried using a “trapdoor”, an encrypted form of a query.

29th GI-Workshop on Foundations of Databases (Grundlagen von Daten-
banken), 30.05.2017 - 02.06.2017, Blankenburg/Harz, Germany.
Copyright is held by the author/owner(s).

Tim Waage
Institut fir Informatik
GoldschmidtstraBe 7
37077 Goéttingen, GERMANY

waage@informatik.uni-
goettingen.de

48

Lena Wiese
Institut fir Informatik
Goldschmidtstra3e 7
37077 Géttingen, GERMANY
wiese@informatik.uni-
goettingen.de

This article implements and expands the searchable en-
cryption scheme of Kuzu et. al. [6], who also achieve simi-
larity search that allows misspelled queries. The schemes
parameters are identified and evaluated with a real world
email dataset.

2. RELATED WORK

The most popular work on performing queries on encryp-
ted data is CryptDB [10]. It first introduced the onion layer
model. Onion encrypted columns have several encryption
layers, with the topmost being the most secure. Secondary
layers leak information, but allow lookup or range queries.
However, CryptDB only considers slow querying schemes be-
cause they avoid client and / or server side indexes, and it is
limited to mySQL and PostgreSQL. “Monomi” [14] tries to
achieve arbitrary SQL queries at the cost of higher compu-
tational requirements for the client machine. [8] introduces
“BlindSeer”, which addresses sub-linear searches for boolean
SQL queries. A non-relational database approach is “Arx”
[9], which builds on top of MongoDB. It uses two proxy ser-
vers and needs to know in advance which operations are to
be executed on which fields, in order to maintain the indexes.

After having reviewed some existing database encrypti-
on solutions, we turn our attention to searchable encryption
schemes. Song et. al. [13] were the first to tackle searcha-
ble encryption. Their scheme does not use an index, but an
encryption construct with two layers that allows sequential
search of the ciphertext. Goh [5] first described a secure in-
dex. Curtmola et. al. [2] developed a keyword-based index
and defined the key security definition of adaptive semantic
security. A similarity searchable encryption scheme that al-
lows multi-keyword queries was introduced by Wang et. al.
[16]. They use a bigram vector and LSH functions to achieve
the similarity search, but pay with a large overhead in the
search.

Bosch et. al. [1] provide a complete survey of provably
secure searchable encryption schemes and their properties
over the last decade.

3. OUR FRAMEWORK

Our group developed a framework!for cloud database en-
cryption that gives full control to the database user (client).
Each table column is, based on the data type, encrypted
with several encryption schemes which allow different search

!FamilyCuard https://github.com/dbsec/FamilyGuard

operations: deterministic encryption (DET) for direct loo-
kups, order-preserving encryption (OPE) for range queries
and searchable encryption (SE) for text search. Besides the
search over encrypted data, SE schemes provide additional
functionality which is not possible in standard databases:
the search for single words in text columns. Three searcha-
ble encryption schemes have been studied in this framework
in [15] using the Enron email dataset [3]. We now supple-
ment the framework with a similarity searchable encryption
scheme (SSE). Similarity search is the search for words in
a text corpus that are similar to a query word in terms of
spelling, so queries are able to find the correct documents
even if the query word was misspelled. The scheme was de-
scribed by Kuzu et. al [6] and expanded by us to achieve
better search results.

Before describing the search scheme, we first take a look
at the existing framework, describing the main package con-
tents. The database package controls all communication of
the database with the cloud databases. Adding support for
a new database is easy: It only requires writing a new DB-
Client class that translates the internal query language into
the database’s driver language and handles the connection.
Currently, we use Apache Cassandra and HBase for our tes-
ting environment.

The similarity searchable encryption scheme of Kuzu et.
al. [6] builds an indez from the document collection. This
index is simply stored in an additional database table at the
remote side. Searching for documents containing a query
word w requires two steps:

1. Querying the index. This returns an encrypted form of
document identifiers.

2. Querying the dataset for the documents.

All searchable encryption schemes in our framework com-
ply with an interface consisting of two key functions: encrypt
and search. The encrypt function expects an input string and
returns the encrypted form, such that the using class can
then decide where to store the encrypted document. There-
by the scheme creates its index table. The search function
executes the search on the index and returns a set of docu-
ment identifiers for that search.

4. THE SSE INDEX

The similarity searchable encryption scheme by Kuzu et.
al. [6] builds an inverted index on the document collection,
meaning that it relates keywords to a list of documents that
contain the keyword. Thereby it does not use the keywords
directly. From each keyword, a fixed number of A subfeatures
are extracted using locality sensitive hashing (LSH) [11]. Lo-
cality sensitive hashing is a nearest-neighbor approximation
algorithm for high-dimensional spaces. LSH functions have
the property that they produce the same value for two in-
puts with a probability that is directly linked to the inputs’
similarity. Used with keywords in the index, we get a mea-
sure of how likely it is to find the query word in a document:
On index construction, each keyword’s A LSH features are
extracted and related to the documents they contain. The
query process also extracts A LSH features from the query
and returns the lists of document identifiers that are linked
to each LSH feature. For each document identifier, we can
now count in how many lists it is contained. All document

49

jo oh _hn i% ~oh hh hn
4—*“+’>{"L P < f“r’ﬂk’;" <
[1[1fof1f1fof1foJo]1] [af1fof1f1fof1[1[0]1]
A = p(john) = {0, 1, 3, 4, 6, 9} B = p(johhn) = {0, 1, 3, 4,6, 7, 9}
Jd(AB) =1-6/7=0.14

Figure 1: Kuzu et. al.: Bloom filter hashed embed-
ding

h,n jo o‘h h‘h I}n]f 'h
(o.....0.1,0....,0,1,0.....0,1,0.....00) (0.....0,1,0.....0,1,0.....,0,1,0....,0.1,0.....0)
A = pljohn) = {195, 248, 371} B = pljohhn) = {189, 195, 248, 371}

Jd{AB) =1-3/4 =0.25

Figure 2: Our Bigram vector embedding

identifiers which occur in at least one list (bucket) are candi-
dates that are likely to contain a word that is indeed similar
to the query word.

4.1 String distance

Using LSH requires a distance function for the keywords.
The best known way of measuring the distance between two
strings is the Levensthein or Edit distance [7], the number of
replace, delete and insert operations to transform one string
to the other. Unfortunately, no LSH functions are known
for this distance [6]. Therefore, we have to embed strings
in a metric space in which LSH functions are known. The
embedding function is denoted as p.

4.1.1 Hashed embedding

Kuzu et. al. adopt their way of measuring string distance
from [12]. A keyword’s bigrams are hashed into a Bloom
filter with a number of cryptographic hash functions. The
Bloom filters are then interpreted as sets of indices, where
the Bloom filter value is 1. The similarity between these sets
is measured with the Jaccard index (or Jaccard similarity)
J = }ﬁggi, the distance between two embedded strings is

then J; = 1 — J. This process is pictured in Fig. 1.

4.1.2 Direct Bigram embedding

We found we can improve the retrieval success of the sche-
me by using a similar, yet more precise and faster embed-
ding, because the cryptographic properties of Kuzu et. al.’s
embedding do not impact the security of the scheme. Our
embedding uses the set of bigrams directly to compute di-
stances, this way it is faster to compute and smaller in me-
mory than the original embedding. We only consider lower
case letters, then every possible bigram is numbered from
“aa’= 0 to “zz"= 675. We show the embedding in Fig. 2.

4.1.3 Implementation

For index security reasons, the above mentioned lists of
document ids all have to be the same size and are therefo-
re realised as bit vectors, denoted as Vp, . By is the bucket
identifier, the LSH feature extracted from a keyword that
is linked to this bit vector. The documents are simply num-
bered from 0 to n — 1 and Vp,[i] = 1 if LSH feature By
was derived from a keyword contained in document 7. The
index creation process (without encryption) is shown in Fig.
3. Before outsourcing this index, By and Vp, are encrypted
separately, By is encrypted with a keyed hash function and
the Vp, are encrypted using AES with one secrect key but

subfeatures

D1 {buckets) BkliD1 D2

wl|P_f1 LSH(po, 82,85} BOJ(1]1)

w2| f2 {e1,B3,B4} BLI(1/0)
B2|(1

D2 -

1)

\ 10)]
wl'l _f1'_ .(B0,B2, B6} B4[(1/0)
B5(10)

1)

simitar to w1 B6|(0 |

Figure 3: Index construction

VBk
query for wl round 1: Bk |(D1 D2)
o LsH BO [(1/1)
wl—~f1--{B0, 82,85} B2 (1 1)
{ Y Bs (a0

score, 3 2

— round 2: request best scored: D1, D2

Figure 4: Querying the index

with different init vectors. The init vectors can be outsour-
ced together with the Vp, .

Querying the index for a word ¢ runs the same steps as the
index construction on the word. g is first embedded in the
metric space using the embedding function p, then A LSH
features are extracted. The LSH features are encrypted the
same way as the bucket identifiers By. The A encrypted LSH
features are also called a trapdoor for the index. After recei-
ving the encrypted bit vectors Vg, , the client can decrypt
them, rank the results and request the best scored docu-
ments from the document collection. This is pictured in Fig
4.

4.2 Security

As an adversary model, we assume the cloud server to
be honest-but-curious, meaning it will honestly carry out
its assigned tasks while curiously trying to learn about the
data it contains. The scheme suffices the security definition
of adaptive semantic security (IND-CKA2) [2]. The search
scheme is secure, if the adversary, who has access to the
secure index and a query history, can not compute more
information about the dataset than what was leaked from
the index on purpose. The index purposely leaks

1. The number of documents and the length of each en-
crypted document,

2. the search pattern, e.g. which trapdoors are queried
frequently (since the encrypted trapdoors are determi-
nistic),

3. the access pattern e.g. which trapdoor corresponds to
which document,

4. the similarity pattern between keywords, that is the
number of shared subfeatures for two queries.

The proof uses a polynomial time simulator which constructs
a fake view of this leaked information with random numbers
but same properties. The adversary then has a chance of
only marginally greater than 1/2 to distinguish the real and
the fake view. The proof is completely carried out in [6]. Our
contribution alters only the computation of the unencrypted
By, the encryption of By stays the same as in [6]. Therefore
the security proof given there still holds.

50

4.3 Restrictions

Given the index scheme, the following restrictions in usa-
bility arise.

1. The index is basically not updatable. Maintaining the
security requirement of same-length bit vectors Vg,
makes adding a new document to the index very in-
efficient. The index is designed to be computed once
with the complete document collection and then to be
outsourced to the cloud.

2. For computing the index, we need to know the number
of documents beforehand.

3. The numbering restricts us to use integers as identi-
fiers in the data table or maintaining a second table
that maps the index numbering to the actual docu-
ment identifer used in the data table.

4. We need to maintain (and perhaps distribute to other
data users) not only the encryption keys for the index,
but also the used embedding and LSH functions.

The framework instantiates encryption scheme classes when

a new table is created, and the class representing a column
of a table has a reference to it. In this design, we cannot tell
the encryption scheme class how many documents are to be
inserted into the table at creation time, because this would
make the overall table usage very inflexible. Therefore we
decided to buffer all incoming documents and starting the
index creation and outsourcing with another method that is
called when a batch insertion is finished. Up to this point, the
encrypt function will keep the current index state in memory.
The index gets pretty large (at most A-#distinct keywords),
which makes this process rather RAM intensive.

5. EVALUATION

We evaluate our index scheme against the original from
Kuzu et. al. using the Enron email dataset [3]. Business
emails definitely can contain sensitive information and sto-
ring them on a foreign server should only be implemented
with encryption. The email’s fields (sender, subject, body, ti-
mestamp, ...) are parsed and encrypted using the framework.
The searchable encryption indexes additionally achieve sear-
ching for single words in bigger text columns like email sub-
ject or body, but we need to create a searchable encryption
index for each of those string columns.

5.1 Typo Generator

To evaluate the success of the search scheme in the context
of error-aware keyword search, the keywords in the mails
need to be misspelled. Sadly, the typo generator used by
Kuzu et. al. seems to be no longer available. Also, they do
not state how bad the misspellings were. For this setup, a
simple typo generator was implemented, which generates one
of the following spelling mistakes:

e Double Letter: The letter at a random position is in-
serted doubled.

e Skipped Letter: The letter at a random position is de-
leted.

e Switched Letters: At a random position, a letter is
switched with its neighbor.

These spelling mistakes have different impacts on the Jac-
card distance between a word and its misspelled version (see
next section).

5.2 LSH Parameters

Crucial for the correct retrieval of documents similar to
the query is the fuzzy search threshold used in LSH. Kuzu
et. al. only speak about “some empirical analysis”, which
lead to the chosen parameters for the LSH. This shall be
investigated here in detail.

The LSH algorithm can be tuned with two parameters: A,
the number of subfeatures extracted from a keyword, and k,
the number of internal functions to compute one subfeature
[11]. Let gi(-),4 € [1,A] denote the functions that compute
the LSH features, then the probability that two keywords
share at least one subfeature is

Pri3i| gi(z) = gi(y) =1 - (1= J(@,»)")* (1)
and J(z,y) is the Jaccard similarity. This function of k£ and
A forms an s-curve, as shown in Fig. 5. We have to choose
the parameters such that the LSH algorithm produces pro-
babilities according to the dataset needs. Therefore we need
to determine a threshold on the similarity to which keywords
are hashed to the same subfeatures with high probability.

1

0B

06

04

Proo, of sharing LSH feature

02

] 0.2 04 06 (2] 1
Jaccard Distance

Figure 5: s-curve, k =5, \ =37

To determine the thresholds, the distance between the
keywords and their misspellings was measured, this is seen
in Fig. 6. More than 50 % of the words have a distance shor-
ter than 0.5 to their generated misspells, so the threshold
of retrieving these misspells with high similarity should be
around this margin. Moreover, less than 10 % have a di-
stance of 0.6 or higher. Also, as seen in Fig. 7 almost all
keyword pairs existing in the documents have a distance
higher than 0.8. These observations justify the chosen LSH
thresholds: A mail D should be retrieved with high pro-
bability, if 3w € D : Jg(w,q) < 0.45, and not be retrie-
ved if Yw € D : Jy(w,q) > 0.8. This leads to parameters
k=5X=3T7.

Additionally, this investigation is also done for the bigram
embedding of strings (see Fig. 8, 9). The distances appear to
be distributed very similar to the hashed embedding, but it is
worth noticing that distances between distinct words are in
even more cases higher than 0.9. This might allow choosing
the LSH parameters slightly different in order to shift the s-
curve even more to the right. However, in order to compare
both embeddings in the same setting, the parameters Kuzu
et. al. chose for their hashed embedding were adopted.

51

0.3

025

Percentage
o
s
o

01

0.05

Distances

Figure 6: Distances keywords vs misspells

(Bloom filter)

07

06

05

04

03

Percentage

02

01

] 01 02 03 04 05 06 07 08 08 1
Distances

keyword pairs

between

Figure 7: Distances
(Bloom filter)

0.3

025

015

Percentage

01

0.05

Figure 8: Distances keywords vs misspells (Bigram
embedding)

Both distributions also show the effect of the three possi-
ble misspells on the Jaccard distances between the misspells
and the correctly spelled query word. Theoretically, a dou-
ble letter will simply add another bigram to the bigram set.
The Jaccard similarity between a keyword and such a typo
is then J = n/(n + 1), where n is the number of bigrams in
the word (Ex: john vs jjohn: J = 3/4). If a letter was skip-
ped, in the worst cast we delete two bigrams and create a
new one. This means, the words now share two less bigrams
and the total number goes up by one: J = (n —2)/(n + 1)
(Ex: john vs jon, J = 1/4). Switching two letters will in the

Fercentage
o
2

Figure 9: Distances between keyword pairs (Bigram
embedding)

worst, case delete three bigrams and create three new ones.
(Ex: john vs jhon have no bigrams in common. J = 0/6).
This analysis is directly applicable to the bigram embed-
ding. For the hashed embedding this is only asymptotically
correct because it can produce collisions in the Bloomfilter,
which makes two strings more similar. We can see that the
stability of a word against misspelling in the Jaccard metric
is highly dependent on the number of bigrams it is made
of. This would not be the case with the Levensthein or edit
distance, but again, in our application we need a distance
metric for which a LSH family is known. However, the re-
sults of our misspell analysis shows that most misspells show
enough similarity to their original word.

5.3 Average Distances

The secure search scheme relies on the correlation between
the distance between the documents in the database and the
number of shared buckets in the LSH index. The distance
between a query word g and a document D is the distance
between g and the word w € D, which is closest to ¢:

dist(q, D) = melg dist(q, w) (2)

If the query word ¢ is contained in D, the distance bet-
ween ¢ and D is 0 and they share the maximum number
of X\ buckets. With increasing distance, the probability of
sharing buckets decreases. To evaluate this property, 1000
keywords were chosen randomly from the set of all featu-
res. Their query scores (i.e. the common number of buckets
with a document) and distances were evaluated against all
documents in the testing sample. The average distance for a
query ¢ and the documents D°, which share b buckets with
the query is
: _ X, dist(q, D7)

adisty(q) DY 3)

The average distance per bucket for the query set of 1000
keywords is shown in Fig. 10.

The average distance per bucket for the query set of 1000
keywords is shown in Fig. 10 for both string embeddings. In
addition to Kuzu et. al., we also take a look at the theore-
tically expected value of shared buckets between a query g
and documents with distance d to g. For the LSH functions
g (see Sec. 5.2) holds:

Prig(q) = g(w)] = J(q,w)". (4)

52

Hashed embedding
Esgram embedding
Theary
0B
0B R
o
=
!
-
a
04
0.2
o .
o 5 10 15 20 25 30 35 40

Number of shared LSH features (score)

Figure 10: Average distances for number of shared
buckets

If we draw A independent LSH functions g, the number of
shared buckets Br = ¢:(q) = gi(w) (the score s) is a bino-
mially distributed random variable s ~ B(X, J(g,w)). From
this follows that the expected score is E(s) = A - J. There-
fore the theoretical curve for the average Jaccard distance
Jq =1 —J for s shared buckets is

Ja=1-3{/s/n (5)

This evaluation shows a big difference between the two em-
beddings. While both show a similar distance distribuiton
in the previous section, the LSH step leads to very diffe-
rent results. With Kuzu et. al.’s hashed encoding, the di-
stance shows an almost linear dependency on the number
of common buckets while it is expected to follow the root
term. The bigram vector embedding however shows distan-
ces much shorter than theoretically expected. To explain
this, we will take a look at the index construct. The index
was built from a total of about 48,000 keywords that were
extracted from all documents. For each keyword, A = 37
LSH features were computed, which form the buckets B
in the index. If all words compute to A distinct buckets, we
would expect a maximum number of index entries of \ times
the number of keywords. With A = 37, this is a total of 1.7
million expected index entries. Now, due to the properties of
LSH, if words are similar, they might share some of their A
buckets. For the hashed embedding, the index has a size of
about 500,000 entries, which means that on average a word
shares about two thirds of its bucket identifiers with other
words. For the bigram vector embedding, the index size is
1.2 million, so we see words sharing a bucket in less than
one third of their LSH features. This partly results from the
distances to other words: for the bigram embedding, more
than 90% of the words have a distance larger than 0.9 to
the other words, making it less probable for them to share a
bucket than the hashed embedding, where only 60% of the
words have distances larger than 0.9.

Both results stem from the fact that the hashed embed-
ding Kuzu et. al. use is computed by hashing the bigrams
into a Bloom filter of length 500 with 15 different functions,
which introduces the probability of collisions in the Bloom
filter. That can lead to the similarity between two embedded
words being larger than the similarity between their bigram
vectors (see Fig. 1 and 2). Another factor is also the size
of the embedding, here meaning the size of the sets that

ng | ng | ne | |In] | [T
1000 | 18 k | 235k | 252k | 530k
2000 | 30k | 532k | 340 k | 809 k
3000 | 36 k | 764k | 384k | 946 k
4000 | 44k | 1.08 m | 440k | 1.15 m
5000 | 47k | 1.2m | 458k | 1.2m

Table 1: #Index entries in a real world setting

represent the embedding. While in the bigram embedding
the size is the number of distinct bigrams, in the hashed
embedding this number is multiplied by 15 (minus the col-
lisions in the Bloom filter). That also increases the chance
for two embeddings to be considered similar in the hashed
embedding. In conclusion, the bigram vector embedding is
more suitable to building the index, because it makes the
number of common buckets for a query and similar words
in the documents much more meaningful, which we will also
see in the retrieval evaluation in the next section.

5.4 Index Evaluation

In their work, Kuzu et. al. [6] evaluate the performance of
their scheme in an artifical setting: From the default values
of ng = 3000 documents indexed with ny = 3000 preselected
distinct keywords and k = 5, A\ = 37 as LSH parameters,
they proceed to alter one of the parameters while leaving the
others at these default values and showing the impact on the
query performance. Increasing the number of documents ng
linearly increases the search time because the ranking step
involves addition of bit vectors of length ng to obtain the
scores. Increasing ny has very little impact on the search
performance, because a query always has the constant size
of X encrypted LSH features. Altering A linearly increases
the search time for this exact reason. Increasing & however
decreases the search time. This is because with increasing k,
the probability that query shares a LSH feature decreases,
and such a query has an increasing probability of not hitting
a LSH bucket in the index. This results in less than X\ bit
vectors having to be added to achieve the scores.

We are now more interested in the performance of the
scheme in a real world scenario. Therefore we build indexes
from ng = 1000 to 5000 randomly chosen mails from the
Enron email set. Because the LSH parameters are crucial
for retrieval performance and would be chosen to fit the
retrieval needs, we fix them at £k = 5, A = 37, as altering
them would greatly change the retrieval probabilities. Table
1 shows the number of distinct keywords ny in the mails, the
total number of words n., across all mails and the sizes of the
indexes (that is, the number of index entries) for both string
encodings, Ij, for the hashed encoding and I, for the bigram
embedding. We see that the number of distinct features is
much larger than chosen in Kuzu et. al.’s artificial testing
set. Also, the index sizes are greatly different for the two
encodings, the reason for this was discussed earlier.

6. CONCLUSIONS

In this article we provided a practical evaluation of choo-
sing appropriate parameters for a similarity searchable en-
cryption scheme. We compared the scheme in [6] based on
hashed Bloom filter embedding to our proposed direct bi-
gram embedding. Future work will include benchmarking in
combination with other encryption schemes in our frame-

53

work (DET, OPE, SE) as well as development of improved
fuzzy searchable encryption schemes.

7. REFERENCES

[1] C. Bosch, P. Hartel, W. Jonker, and A. Peter. A
survey of provably secure searchable encryption. ACM
Computing Surveys (CSUR), 47(2):18, 2015.

[2] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky.
Searchable symmetric encryption: improved definitions
and efficient constructions. TACR Cryptology ePrint
Archive, 2006(Rep. 210), 2006.

[3] Enron email dataset.
https://www.cs.cmu.edu/\textasciitilde./enron/,
2015.

[4] C. Goge, T. Waage, D. Homann, and L. Wiese.
Improving fuzzy searchable encryption using bigram
embedding. under review.

[5] E.-J. Goh. Secure indexes. IJACR Cryptology ePrint
Archive, 2003, 2004. Rep. 216.

[6] M. Kuzu, M. S. Islam, and M. Kantarcioglu. Efficient
similarity search over encrypted data. In Data
Engineering (ICDE) 2012, pages 1156-1167. IEEE,
2012.

[7] V. 1. Levenshtein. Binary codes capable of correcting
deletions, insertions, and reversals. In Soviet physics
doklady, volume 10, pages 707-710, 1966.

[8] V. Pappas, F. Krell, B. Vo, V. Kolesnikov, T. Malkin,
S. G. Choi, W. George, A. Keromytis, and S. Bellovin.
Blind seer: A scalable private dbms. In Security and
Privacy (SP), 2014 IEEE Symposium on, pages
359-374. IEEE, 2014.

[9] R. Poddar, T. Boelter, and R. A. Popa. Arx: A
strongly encrypted database system. IJACR Cryptology
ePrint Archive, 2016:591, 2016.

[10] R. A. Popa, C. Redfield, N. Zeldovich, and
H. Balakrishnan. Cryptdb: processing queries on an
encrypted database. Communications of the ACM,
55(9):103-111, 2012.

[11] A. Rajaraman, J. D. Ullman, and J. Lescovec. Mining
of massive datasets, volume 1. Cambridge University
Press Cambridge, 2010.

[12] R. Schnell, T. Bachteler, and J. Reiher.
Privacy-preserving record linkage using Bloom filters.
BMC Medical Informatics and Decision Making,
9(1):41, 20009.

[13] D. X. Song, D. Wagner, and A. Perrig. Practical
techniques for searches on encrypted data. In IEEFE
Symposium on Security and Privacy, pages 44-55.
IEEE, 2000.

[14] S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich.
Processing analytical queries over encrypted data. In
Proceedings of the VLDB Endowment, volume 6, pages
289-300. VLDB Endowment, 2013.

[15] T. Waage, R. S. Jhajj, and L. Wiese. Searchable
encryption in Apache Cassandra. In FPS, pages
286-293. Springer, 2015.

[16] B. Wang, S. Yu, W. Lou, and Y. T. Hou.
Privacy-preserving multi-keyword fuzzy search over
encrypted data in the cloud. In INFOCOM, pages
2112-2120. IEEE, 2014.

