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ABSTRACT

Time series data are an ubiquitous and important data source
in many domains. Most companies and organizations rely
on this data for critical tasks like decision-making, planning,
and analytics in general. Usually, all these tasks focus on ac-
tual data representing organization and business processes.
In order to assess the robustness of current systems and
methods, it is also desirable to focus on time-series scenar-
ios which represent specific time-series features. This work
presents a generally applicable and easy-to-use method for
the feature-driven generation of time series data. Our ap-
proach extracts descriptive features of a data set and allows
the construction of a specific version by means of the modi-
fication of these features.

Categories and Subject Descriptors

1.6.7 [Simulation and modeling]: Simulation Support
Systems; G.3 [Probability and statistics]: Time Series
Analysis; H.2.8 [Database management|: Database Ap-
plications—Statistical databases
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1. INTRODUCTION

A time series is a sequence of measurements which repre-
sents the result of a dynamic process measured at successive
time instances. It is a popular and widely applied data type
which arises in a multitude of application domains like, for
example, in the energy domain, in market research, and in
manufacturing processes. But not only are they important
as descriptive information of the past. Being processed by
data mining techniques, such as clustering, classification or
forecasting, they reveal insights into the process behavior
which makes them a valuable source for decision-making and
planning.
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Time series have a high dimensionality due to their length.
This is why they are reduced to scalar values, so-called time
series characteristics, that represent their overall behavior.
For example, moments, extreme values and periodic varia-
tion are typical characteristics of a time series. Moreover,
they are often decomposed to components such as trend and
season before they are reduced to characteristics. These
characteristics, which we call features, are for example the
slope of a trend or the strength of a season and they are a
promising and flexible representation for time series in many
domains.

While all data mining techniques differ greatly with re-
spect to their individual goals, they have one thing in com-
mon: they require large amounts of time series data covering
a variety of possible time series characteristics. The training
of data mining techniques on large, variously shaped input
leads to better evaluation results and to more robust tech-
niques.

Although there is a high interest in time series analysis, it
is difficult for many stakeholders to get access to a satisfy-
ing data set. Basically, there are two sources: Stakeholders
may retrieve their data from their own measured processes
or from closed research projects. This data comes from the
same process but it does not necessarily cover all possible
characteristics. On the other hand, they have access to pub-
licly available data sets which covers a variety of time series
characteristics but where the generating processes are not
necessarily compatible. Our research aims to fill this gap by
focussing on time series generation. Generated time series
can express both, the processes of the given data and the
coverage of many different characteristics.

In the present work, we propose an approach for system-
atical time series generation based on features. By system-
atically modifying features of components we generate new
time series for a given set of target features. These time se-
ries keep the nature of given processes and represent features
that are not given by the data. Around this approach, we
build a visual exploration of features that enables interactive
usage.

The structure of the paper is as follows. Section 2 presents
our approach as a workflow of analytical tasks and user in-
teraction. Section 3 surveys related work on time series
characteristics and time series generation, followed by the
conclusion and future work in Section 4.



2. OVERVIEW OF OUR APPROACH

Our approach consists of an analytical and interactive
part. Figure 1 highlights the major steps as a flowchart.
Time series are stored in a database whose structure is de-
scribed in more detail in Subsection 2.1. After retrieving
the data, time series are transformed. The goal of the trans-
formation is to derive time series components and to reduce
components to features. Thus, this step addresses two tasks:
decomposition and feature extraction, which are explained
in Subsection 2.2. A feature space visualizes features and
allows for interaction.

Time series are generated by modifying specific features
such that they satisfy a target value given by the user. The
generation is presented in Subsection 2.3 and results in gen-
erated time series. Moreover, generated time series are again
transformed for being displayed in the feature space. The
step of visualization and interaction is explained in Subsec-
tion 2.4. A generated data set is exported to the database.

Throughout this paper, we explain our approach using the
following running example.

EXAMPLE 1 (M3-COMPETITION). The M3-Competition
is the latest of three M-Competitions in 2000 [9]. Its goal
is the systematic evaluation of forecast method accuracy on
a defined data set. The data set consists of 8003 time se-
ries that are from different origins (industry, finance, de-
mographic, macro-/microeconomic, other). The values of
each time series are measured at defined time intervals (year,
quarter, month, other).

2.1 Database

Our approach is built on top of a database where time
series are loaded from and where generated data sets are
exported to. As a schema, we adopt the time series re-
lation which is a unified representation for time series in
databases [2]. Tuples of the relation consist of time, mea-
surement and categorical attributes that are strictly ordered
by time. Time instances are equidistant and complete.

Table 1 represents a time series relation from the M3-
Competition. The meterid uniquely describes a given time
series. Code is a categorical attribute, date is the time at-
tribute and consumption the measurement attribute.

2.2 Transformation

The goal of the transformation is to derive time series
components and to reduce components to features. Thus,
this step addresses two tasks: decomposition and feature
extraction, which are subsequently explained.

2.2.1 Time Series Components

Most existing techniques describe a time series as a combi-
nation of three components: a trend, a season and a residual
component[11]. The trend represents the long-term change
in the mean level of the series, whereas the season describes
a cyclical repeated behavior. Residuals usually represent
unstructured information that is generally assumed to be
random. The sum of these components is called additive
model and represents economic and energy time series [11].

Whether a series contains a trend or season component
has to be checked first. In our automatic approach, this is
carried out with test methods. The trend check is done by
extracting the long-term mean of the time series and by test-
ing whether this mean is a trend. We use a kernel smooth-
ing method to extract the long-term mean and refer to the
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Figure 1: System Overview

bandwidth parameter b = 2 given by [11]. Subsequently, the
trend test of Mann-Kendall [8] enables us to check whether
this mean is considered as a trend.

Second, we check for a seasonal behavior on the detrended
series. For this purpose, we rely on the autocorrelation anal-
ysis presented by Wang et al. [14] with one modification.
The autocorrelation function of the detrended series returns
autocorrelation coefficients for all lags up to 1/3 of the series
length. Peaks and lows are visible and show which lag has
the highest autocorrelation. The season length is the lag of
the first peak of a positive autocorrelation that is preceded
by a low. As we only want to assert the existence of a sea-
son, we modify this method in that we only accept the lag as
season length if (1) the autocorrelation difference between
peak and low is at least 0.1 [14], (2) the autocorrelation is
significant in that it is within the confidence interval and
positive, and (3) the lag confirms the season length given by
the data.

The lag that is returned either confirms the season length
given by the data or it is 1 (no season). If only a season but
not a trend component exists we smooth the season with
bandwidth b = 5/L (where L is the season length) as given
by [11]. If no season component exists but a trend, the
trend is the extracted long-term mean. If both components
exist we carry out a decomposition which is subsequently
explained.

2.2.2  Decomposition

During decomposition, the time series is split into a trend,
season and residuals component. The classical technique
dates back to the 1920s and is the basis for most subse-
quent decomposition techniques [7, 4]. The key concept is
to retrieve the trend by applying a moving-average process
on given time series. Due to several shortcomings (missing
robustness, endpoints of a series may not be decomposed),
there are more recent techniques.

Cleveland [1] found that Loess smoothing, a locally-
weighted regression technique, also leads to good results for
detrending and deseasonalizing a time series. His method,
STL, is considered as a versatile and robust decomposition
technique, handling every type of season length and decom-
posing endpoints [4]. Since this method is widely and re-
cently applied [12], we adopt it in our approach.

2.2.3 Feature Extraction

We aim for reducing components to scalar values, so-called
features, that represent their characteristics. Three trend
features are chosen: determination, slope, and linearity. Ad-



Table 1: Example Time Series Relation

Code Meterid Date Consumption

SME N1050  2009-07-14 36.809

SME N1050  2009-07-15 34.941
Residential N1052  2009-07-14 15.206
Residential N1052  2009-07-15 11.256

ditionally, we choose the season determination. The trend
and season determination describe the influence of the re-
spective components compared to the residuals, the trend
slope captures local trend changes, and the trend linearity
the similarity of a trend to a linear behavior.

Subsequently, we explain these features with respect to
the additive time series model. Let x; be the original time
series, then

(1)

where tr; is the trend, seas: the season and res; the residual
component.

Ty = try + seast + res:

Trend Determination.

According to [14], the ¢rend determination represents the
influence of the trend component on the time series. The
coefficient of trend determination is then

var(rest)

R=1-—"0
¢ var(rest + tre)

(2)

where var(y) = 77 S, (ye — §)? is the sample variance,
ye (1 <t <T)is asample of T values and 7 is the sample
mean. The trend determination ranges between 0 and 1:
R?. = 0 means that the trend influence is negligible whereas
the RZ. = 1 shows a high trend influence.

Trend Slope.

Assuming that there is a linear trend, we can state that
a trend slope captures an overall increase or decrease of the
time series, whereas the trend component tr; derived by STL
captures also local trend changes. In an attempt to identify
the slope, we fit a linear regression model to tr::

tre =601+ 02 - 1t + Ot 3)
0, is the base value from which the trend starts. The
slope is represented by 62, subsequently, it will be used as
a feature. A high slope results in a high increase of the
trend whereas a slope near 0 means that there is no over-
all increase. [; is the vector of time instances. The differ-
ence between a trend from STL and from linear regression
is expressed as ;, representing the difference of local trend
changes in STL compared to the overall trend behavior.

Trend Linearity.

The trend linearity expresses the relation between the lin-
ear regression model (3) and the trend component. This
feature is captured by

var(dt)

RQin =1-
! var(tre)

(4)
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RZ, = 1 means that the trend is a straight line and the
residuals §; are negligible. Otherwise, the trend fluctuates.

Season Determination.

The season determination represents the strength of the
season component on the time series [14]. Analogous to the
trend, the coefficient of season determination is

var(rest
R?eas =1- ( )

e il 7 5

var(res; + seast) (5)
Concluding the transformation, the data set consists of time
series components tagged with its respective features. It
enables users to generate time series with modified features.

2.3 Generation

In our approach, a time series is generated for a given
feature combination or target. Features are representatives
of components and we propose to modify components by
introducing factors. Subsequently, we first present the mod-
ification with factors and their calculation for a given target.

2.3.1 Modification with Factors

We describe four factors f, g, h and k that express the
modification of a the time series component and that affect
the four features trend determination, slope, linearity as well
as season determination. Figure 2 gives an overview of how
these factors affect the resulting time series.

Trend Determination Factor.
Let f be a factor that varies trend determination:

tro =01+ f (021 + 60 (6)

This equation represents the linear regression model that is
fitted to the trend. f is a factor applied to the slope 6; and
the difference 6;. Depending on f, R}. increases (f > 1),
decreases (0 < f < 1), or is left unchanged (f =1). f <0
is not admissible.

The effect of this factor is represented by Figure 2(a).
The plot shows the original trend (blue with triangles) and
three modified trends. The latter ones are modified by a
trend determination factor f = 1.25, f = 0.75, and f =
0.50, respectively. Overall, the main characteristics of the
trend are kept but they are a multiple of the former value.
The influence on the trend determination RZ, is given in the
figure’s legend.

Trend Slope Factor.
Let g be a factor that varies the trend slope:

tro=01+g-02- 1+ 6 (7)

Again, we apply the factor to the linear regression model.
But in this case, only the slope is modified and not the dif-
ference ;. Depending on g, ¢2 increases (g > 1), decreases
(0 < g < 1), or is left unchanged (g = 0). g < 0 is not
admissible.

This effect is represented in Figure 2(b). Again, the orig-
inal trend (blue with triangles) and three modified trends
(with factors g = 2.00, g = 0.75, g = 0.50) are shown. All
time series start at the same base level and they keep the
same trend changes but their directions are different.
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Figure 2: Scenarios for Modification

Trend Linearity Factor.

We define the trend linearity as the determination of trend
changes due to STL and of the linear trend. Let A be a factor
that varies the trend linearity:

t?‘t—91—|—92 lt+— Ot (8)
Depending on h, R, increases (h > 1), decreases (0 < h <
1) or is left unchanged (h =1). h < 0 is not admissible.

The effect of this factor represented in Figure 2(c). Again,
the original trend (blue with triangles) and three modified
trends (with factors h = 1.50, h = 1.25, h = 0.75) are
shown. If the factor h increases the resulting trend is more
linear because the difference J; is diminished.

Season Determination Factor.
Let there be a factor k that sets the season determination:

9)

Depending on k, R%,,, increases (k > 1), decreases (0 < k <
1), or is left unchanged (k = 1). k < 0 is not admissible.

This effect is represented by Figure 2(d). The plot shows
the original season (blue with triangles) and two modified
season components from the Smart Metering Project. The
latter ones are modified by a season determination factor
k = 2.00 and k£ = 0.50, respectively. Modifying the season
by factor k leads to higher peaks and lows. The resulting
R2., is given in the legend.

’
seas, = k - seasy

2.3.2 Feature Target Calculation

Based on time series features and factors, we are able to
generate time series that systematically cover features for a
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given target. Generated time series keep the nature of given
time series except for the modified features.

Users set a feature interval which restricts the features of
the generated time series. This may be a single value or
an interval of values (for more than one target). Moreover,
they indicate a number of time series that has to be gen-
erated. Within the feature interval, generated time series
are equidistant with respect to the modified features so that
they cover the features systematically.

Calculating the factor that corresponds to the target re-
quires the calculation of the inverse function of a feature. We
exemplify this by showing how a factor f is calculated that
modifies the trend determination. Let z; = tr; —|—seast —‘,—rest
be a time series that is shlftocl to a feature target R2. such
that the modified trend is trt. Let try = 05 -l + &; the trend
component without the offset component 0.

Rf: i var(rest) /
var(resy + tr,)
var(res:)
- var(ress + 01 + f - try)
var(rest)

war(resy) + f2 - var(try) + 2 - f - cov(res, try))

Solving the following equation returns factor f which is the
positive real solution:

0= f2 var(tr,) - (Rf; -1)
+ f -2 cov(res, tr) - (R?; -1)
+RY. var(res;)

This enables us to modify a time series such that its fea-
tures is exactly the target value. For the other features this
calculation is similar and omitted due to space restrictions.

2.4 Visualization and Interaction

To provide an easy way of generating time series, we pro-
pose a visual exploration and interaction approach. It allows
users to explore the given data sets and its features, to select
the feature interval for which time series will be generated
and to display the resulting time series.

Features form dimensions by which time series are sorted.
Together, these dimensions build a feature space which is
described by Kang et al. [5]. In our work, we focus on two
features at a time.

Figure 3 shows the instances of the M3-Competition in a
two-dimensional scatterplot. The axes show the trend lin-
earity and the season determination. Every dot represents a
time series. We choose four time series (red triangles) which
exhibit different features and which are also plotted as a line
plot. Series N1078 clearly shows a strong season (compared
to its residuals) and a very linear behavior. Therefore, it is
in the upper right corner of the scatterplot. Series N1085
is less linear due to a trend which is not constantly increas-
ing. While series N0754 is still very linear, it does not show
a strong season. Finally, the series N2374 does not exhibit
any of these two features. Thus, the users get an insight of
(1) how the time series are spread across the feature space
and (2) which are the time series that reside in a certain
feature interval.

We further the idea of Kang et al. in that users interact
with the feature space. Users indicate the feature interval
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either by clicking (indicating a target) or by brushing (indi-
cating a feature interval as a target). Moreover, they indi-
cate a number of time series to be generated. A sample of
time series is selected for the given number. Each time series
is modified so that their features are moved to the target.
In case of a feature interval, the features of generated time
series are equally distributed such that they form a grid.
The time series generation tool is implemented as an R
package [10]. Figure 4 gives an overview of the visualization
showing time series of the M3-Competition. The feature
space shows a scatter plot of the features, the time series
summary shows a line plot with original time series (black)
and the generated time series (red). Below, users may set
features that are displayed (select azis) and select the num-
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ber of time series to generate. In this example, time series
instances are generated (red triangles) whose trend determi-
nation is between 0.50 and 1.00 and whose season determi-
nation is between 0.00 and 0.50 (blue rectangle). From all
available time series (black dots), a sample is selected and
shifted towards the target.

3. RELATED WORK

Our approach makes use of time series features for mod-
ification and generation. Relevant to this work are data
mining techniques, such as clustering, classification and fore-
casting, that make use of global time series characteristics.
We will present these approaches (Subsection 3.1), followed
by a review on time series generation (Subsection 3.2).

3.1 Time Series Characteristics

Wang et al. present a time series clustering technique
based on time series characteristics [14]. They select char-
acteristics as well as features that are related to time series
components. Due to the the dimensionality reduction, their
clustering is very fast and it can easily support gapped se-
ries. Among their features, they define a trend and a season
determination. We adopt these features in our work and
introduce a modification for time series generation.

Fulcher and Jones [3] present an application of time series
characteristics in classification. They describe time series
with thousands of characteristics that arise from many dif-
ferent application domains. Subsequently, an automatical
feature selection recommends the most competitive features
for the classification.

In forecasting, time series characteristics are a promis-
ing representation of the data as they can recommend a
suitable forecasting method. Kang et al. [5] present an ap-
proach that selects among six forecasting methods and rec-
ommends a forecasting method with regard to the time se-
ries’ characteristics. Although the authors cannot show that
a forecasting methods performs best for a given set of char-
acteristics, they can recommend which forecasting method
should be avoided. With our generation approach, we en-
able forecasters to systematically check for which features
this recommendation is possible and how this can be used
for forecasting recommendation systems [13].

3.2 Time Series Generation

The generation of time series presented by Kang et al.
[5] is related to our approach in that it aims at generating
data sets for assessing the robustness of data mining meth-
ods. The authors reduce time series to global characteristics
which are further combined by principal component analy-
sis and visualized in a feature space. In terms of generation,
they rely on a genetic algorithm that generates new time
series by selection, crossover, and mutation of given time
series.

In our work, we limit ourselves to the visualization of fea-
tures of time series components that are not further com-
bined to prinicipal components. In this case, the feature
space gives users better insights and enables them to explic-
itly generate time series for a given feature such as, for ex-
ample, a time series with a target trend determination. The
generation in our work relies on the time series modification
with target features. This makes the generation process re-
producible and assumes that no other features are affected
by this generation. While Kang et al. focus on generating



Figure 4: Screenshot of Time Series Generation Tool

time series for assessing the robustness of forecasting meth-
ods we also aim to provide data for other analytic purposes
and robustness checks.

Recently, we presented Loom, which is a framework for
time series generation [6]. A generated data set is either
synthetic or derived from a given data set. In the first case,
it represents a realization of a mathematical model which de-
fines the time series process. In the second case, the genera-
tion from a given data set consists of sampling, recombining,
or simulating given time series and their components. Al-
though this system offers different approaches for time series
generation, it does cover systematically time series features.

4. CONCLUSION AND FUTURE WORK

Data generation enables users to cover the ubiquity of
possible input configurations of a system or a method in
order to assess their robustness. Applied on time series, it
gives better insights into recorded data and it results in more
complete and various scenarios. Features are a generally ap-
plicable reduction of time series components that are easily
visualized and explored by the feature space. With our ap-
plication Loom [6], we are now able to generate data sets
that systematically cover time series for different targets.

Future work will mainly cover the extension of the feature
set in order to provide a variety of time series characteristics
and their respective modification rule. By automatically
selecting features that are highly discriminatory, we enable
users to focus on the most important features of a given
data set. Regarding the feature space, we will study the
combination of two concurrent features such as, for example,
two trend modifications. They may set further constraints
for generating time series for a given target.
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