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ABSTRACT

The Resource Description Framework (RDF) pioneered by the
W3C is being widely used to model data of the Web from many
sources. RDF with the concepts like Linked Data is creating the
semantic Web. The result is linked huge data that needs to be
efficiently queried, analyzed and integrated with other diverse
data sources and entities in real life. Central systems may poorly
perform when used to manage such web-scale data; instead, a
parallelized system or distributed nodes of cloud infrastructure
could speed up the performance. However, this involves
partitioning of RDF graph to many machines, and efficiently
index, replicate, gather statistics and materialize pre-computed
results. Those different aspects would always require more storage
space. The storage space is an important resource that needs to be
wisely optimized over the mentioned aspects to serve the query
execution performance. Moreover, the current application
requirements are rapidly increasing in diverse directions which
put more challenges on the distributed environment. In this paper
we survey the optimization needs in distributed triple store, and
present the novel design of our triple store which is distributed
and adaptable to current storage space on different levels. The
system would dynamically employ the available storage to the
best query execution performance.
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1. INTRODUCTION

The available data in the virtual digital world become enormous,
and the growth in the data and the complexity of its processing
has shown exploding increase over the last years. The Resource
Description Framework (RDF) pioneered by the W3C is
increasingly being adopted to model data from different sources,
in particular data to be published or exchanged on the Web, this is
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mainly due to the structure of RDF. An RDF dataset consists of
what is called triples. Each triple is describing a relationship
between two resources; the first is called Subject (S), while the
second is called Object (O). The relationship is also labeled with a
value called Predicate (P). Thus, a triple has the format: Subject,
Predicate, and Object. What moves web triple data into another
dimension is the concept of the Linked Data [24]. Different data
sources could be linked together using unique URI and this
enables the ambitious idea of querying and talking to the web.
However, the heterogeneity of the data makes writing a query in
the RDF formal languages like SPARQL a time consuming task in
its own, as the user might often need to look into the raw data
while writing his query.

The support for systems that enable the user to talk to the web
with natural language queries would highly reduce the time used
to build the query and would increase the number of users who
are able to write these queries and would as a result increase the
number of queries the triple store can receive [25].

Managing RDF data on a Web scale in a central system may not
perform well; instead recent research works moved to make use of
the parallelization provided by cloud based systems. However,
storing RDF-Graph on a distributed system store where a query
processing engine can efficiently query data is a challenging task
due to the heterogeneity, big size, and complex relationships
found in the data, beside the growing application needs for
complex analytical queries and to provide the answers on time.
The current researches on parallel RDF data management involve
enormous open problems [4]. In such a distributed system the
RDF graph needs to be partitioned to the working nodes.
Moreover, in order to serve queries more efficiently, some parts of
the RDF graph need to be replicated to more than one node.
Deciding how the data is partitioned and replicated would have its
direct influence on the performance of the query processing. To
illustrate this, consider for example a query that is to be processed
by the distributed triple store, if each working node receives the
query and runs it against its local part of data; a poor performance
would be when only one node has the availability of required data
locally, and has to do the whole work load alone. A better
performance happens when the partitioning and replication are
well optimized to enable a parallel processing of the data on an
increased number of working nodes.

However, the replication requires more storage space on each
machine and the space itself might be considered scarce resource
with respect to each node, because the triple store needs to build
indexes for better performance of query processing, which



requires more storage space. Moreover, the space is also needed
to materialized-queries results and statistics. The complexity of
taking a decision about data partitioning can be overcome by
performing the optimization decision based on some application
trends. As we mentioned earlier the support of natural query
processing would provide rich and strong application trends. In
this context we present our triple store and its proposed structure.
The storage layer is designed to contain an optimizer that would
instruct the working nodes on the optimized way to employ any
available storage space for better performance.

The rest of this paper is structured as follows: In section 2 we
present briefly the work related to distributed RDF triple stores. In
section 3 we present our system architecture and show our
optimization directions on three aspects; the RDF graph
partitioning, the RDF indexes, and the space optimizer.

2. RELATED WORK

The distributed storage and processing of RDF data has taken a
lot of attentions in the latest research. Some direction of work
maintained the RDF graph in a distributed file system like HDFS
[19], those systems are designed for reliable and scalable storage,
but the drawback is that DFS does not natively provide fine
grained access to the data in the stored files. Some works
performed indexing mechanism to enhance the access over HDFS
like [20, 7]. Another direction is based on key-value stores. Such
systems depend on indexing the triples by keys. The key can be
the Subject S, Object O or Predicate P; or any combination of
them. The most basic indexes are SPO, POS, and OSP which are
used in systems like Rya [14] and AMADA [21]. RDF-3X [8] is a
central RDF store; it focuses on providing high performance by
relying on building many indexes. It pre build all the six possible
indexes of S, P and O of the triple data. Other types of systems
using key value stores include H2RDF [9] and MAPSIN [22]
built on top of HBase [19]. Other systems like Trinity. RDF [3]
achieved high performance by processing the query as graph
exploration algorithm. On the other hand, some systems maintain
cluster of centralized triple-store nodes, coordinated by single
master node. The Master node partitions the graph using
partitioning algorithms that aim to minimize the network
communications during query execution while increasing the
parallelization among slave nodes. The work of [10] follows this
approach and uses METIS [11] which partitions the graph trying
to achieve min-cut. Each triple is assigned to the machine where
its subject belongs (1-hop guarantee) or where its subject and
object belong (2-hop guarantee). More guarantee can be achieved
by replication of those triples that are located on the partitions
boundary (n-hop guarantee). However, such approaches do not
scale well when the query execution targets certain regional part
of the graph; this happens when there are non-variable inputs in
the query. Such situation affects the parallelization of the query.
WARP [15] extends the approach of [10] to consider query work
load as a factor to determine the triples that need to be replicated.
Partout [12] also focuses on query load to achieve balanced
partitioning by counting the number of queries that reference each
fragment and the triples that match the fragment. The works [15,
12, 10] made use of the high performance provided by the indexes
strategy of RDF-3X [8] which is used as the underlying central
store on each node. However, they didn't provide a mechanism or
a strategy to work on when there is not enough storage available
for such exhaustive indexes. TriAD [26] partitions the graph also
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based on METIS and presents an interesting approach to provide
RDF graph summary; the author’s results of this summary showed
enhancements in the query execution time. However, this graph
summary requires more storage space and this could add another
storage optimization variable to our storage optimizer shown
latter in section 3.3.

3. SYSTEM ARCHITECTCTURE

Our distributed triple store is composed of a cluster of working
nodes, where each node is built on top of RDF-3X [8]. One of the
nodes is set to be the master node. Its role is to perform the initial
RDF data partitioning to the working nodes. Each node has its
own local indexes and query processing engine. The storage
system has initially all the 6 possible permutation of indexes for S,
P and O. The Master node contains a dictionary which compresses
the textual data representing URIs into integer codes which
consume much less storage space. The partitioning, replication
and shipment of data between nodes is done in the integer format.
The master has also a global storage optimizer, and each node also
has its own local storage optimizer.
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Figure 1. System Architecture.
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3.1 RDF Graph Partitioning and NL Queries

The RDF data is to be partitioned at the Master node. The
partitioning objective is to have maximum parallelization later
when executing a query in the distributed store. Due to the nature
of the linked RDF data, it is usually very complex to have a
partitioning approach that directly achieves absolute maximum
parallel query performance. So far, we have adopted random
partitioning using hashing similar to the key value stores
mentioned earlier in related work. Some of the optimization over
the random partitioning is to use the min-cut mentioned earlier in
[10], or to adjust the partitioning results depending on the query



workload [15]. To overcome the optimization process we propose
to partition the RDF graph according to a given direction of
application trends. The pre optimization in the partitioning
algorithm serving these query trends would greatly affect the
performance in the parallel sense. One of the very important
application trends is the request of Natural Language (NL)
Queries interface that we would deeply investigate to make the
partitioning and replication optimized towards better performance
of such queries. What makes the optimization on these NL queries
more beneficial is that they have more common trends than the
normal SPARQL queries. When the natural query translation
receives an NL query, it would usually try to understand the
question queried by the user so that it can generate the suitable
SPARQL query and return the result back to the user. The
translation process itself requires generating several SPARQL
sub-queries that would run against the triple store. On the contrast
with the final SPARQL queries that is required by the user, the
sub-queries generated by the NL translator have similar trends and
this would obviously enable the pre-optimization process to serve
the translating queries much better than supporting the
optimization on the final SPARQL query. Consider for example
the NL query "What is the country that contains the highest
mountain in the world?" It could be generally transferred to
"What is the (x-->instance of: country) that contains the highest
(y-->instance of: mountain) in the (z--> instance of: world)". In
this type of translation, the detected variables in the NL query can
be always associated with the predicate "instance of". Thus we
would have a lot of queries generated on the same trend
overcoming the problem of heterogeneity and diversity which are
found in the normal queries, and this allows performing pre-
optimization when partitioning and replicating the data.

3.2 Indexes Optimization

We use in each node a central RDF store which is built upon
RDF-3X [8]. This underlying store uses all the six possible
permutations of the S, O and P for faster data access; besides
using aggregate indexes which returns the counts of existence
rather than the values of S, P, and O. This excessive indexing
creation has shown very good performance, but it requires more
storage space. On the other hand, graph-based triple stores like
Trinity.RDF [3] have also shown notable good performance due
to its indexing and query processing methods which are graph-
based approaches. In our system, we would have the ability to
adaptively create more indexes when there is more assigned
storage space from the space optimizer. The extra indexing would
look to the RDF data conceptually as a graph, and build extra
indexes in important and hot regions of the graph per working
node; the important regions of the graph are the parts that are
highly queried with respect to other parts. In an RDF graph: S and
O are modeled as vertices, and P is modeled as edges. Then for
some important vertices v (S or O ), we would have extra SP(10)
or OP(iS) indexes, where i is some classified-entity ID, that is a
common entity-id between the neighbors of v. The usual index
SPO would return all of the O which match for given S and P;
each of the returned O might be investigated again in the index,
and this could be a huge list if O is a big vertex in term of its
connected edges. The index SP(iO) would accept further
parameter i about the required O, and would efficiently returns
only the triples that have same S,P and i in one step.
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We would explain the concept with an example query shown in
Figure 2. "Find all the museums located in France and exhibit
paintings of an Italian artist "". The SPARQL representation of the
query is shown in Fig2.B, while the corresponding query graph is
shown in Fig2.A. Any sub graph from the distributed RDF graph
that matches the given query graph in Figl.A should be part of the
answer. The query has five triple patterns, and the order of their
execution obviously affects the query execution time. If for
example, the query pattern (call it p;) is ?z :located in :france,
was the first to execute, then its result set (call it R) is all the
entities that located in France which is typically a big set. The
second triple pattern to be executed say p,: 7z exhibits ?y would
be run against R instead of the whole RDF graph. The partial
result is so far all the entities which are located in France and have
the predicate "exhibits".

The entities which are connected to ":france" by the predicate
":located ", can be classified and grouped according to a common
properties. If the data is considered holistic and on a web-scale ,
there should be more than 1 k museums in France, and hundreds
times this number of entities that are located in France. If we are
able to extract all the museums in one step, then we would speed-
up the local processing of the triple pattern p; hundreds of times.
Each of the neighbors of vertex France is marked with its most
frequent predicate which is in this example used as the classified-
entity ID of vertex "France". Now, when we process pl, we would
use the index OP(iS) and set O to ":france", P to located and i to
exhibits then retrieve all the S that match. In this example, we
used the most frequent predicate that lies one step ahead form the
currently executing triple pattern. However, a more complicated
combination of nearby edges and vertices could be used.

To some extent, these extra indexes may be considered some type
of materializing join results, and it requires more space that could
be assigned by the storage space optimizer to increase the
performance.

Adding more indexes within important nodes is away for
increasing conceptual local knowledge within the RDF graph;
which would consume more space and require more processing
but it would pay off with a better execution time. Moreover, the
analyzing process and indexes building are very scalable and
suitable to be done in parallel on clustered machines, as each
machine can work on its local part of the graph.

The selection of eligible vertices to build the local indexes is done
by an iterative algorithm. At working node i, after the execution of
any query-pattern on single or set of vertices, the index optimizer
records a stat about each queried vertex "v" and its neighbors,
then calculate or adjust the value of the performance gain g(v),
which is a referential metric of the expected performance increase
gained of building the local index in this vertex. When the gain of
a vertex g(v) reaches a certain threshold, the vertex v is pushed
into eligible-vertices-queue which is basically a priority queue on
the values of g(v). Assume that the local space optimizer in
working node i is assigned k space to build extra local indexes;
the index optimizer will pop a vertex from the priority queue and
start building the indexes for the popped vertex. Then it
recursively pops another vertex until the queue is empty or there
is no more storage space left for further employment

Any vertex which has been assigned an index is pushed into
another priority queue called indexed vertices queue, which



organizes its vertices priority on the reverse value of g(v). The
continues execution of queries triple pattern on a vertex v would
adjust its v(g) value. In the case of no more storage space
available, and when the value of g(v.), (Where v, is the vertex on
the top of the eligible-vertices-queue) becomes larger than the
value of g(v;)+t, (where v; is the vertex on the top of the indexed
vertices queue, and t is stability margin), the local index in v; is
eligible for deletion and the space gained is employed for the
benefit of v,.

The value of t would ensure that the deletion only happens when
there is obvious performance gain from building the new index in
the other selected vertex.

| select 2y 7z

where{
?x :type :artist.
?x :paints ?y.

]

x :naltionality :italy.

?z :exhibits ?y.

|
:exhibtes

7z :located _in :france.

slocated_in
sfrance

Fig.2A Fig.2B

Figure 2. Query Example.

3.3 Space Optimizer

The storage space is a very precious resource in a triple store
especially in a distributed environment. The space is required to
build indexes and replication. And if there is enough space it is
always a good idea to employ it for performance. For example,
replicating all of the data so that each node has all the data
available locally. However, the available storage space is a
dynamically changing variable, since within some point in time,
more data could be added to the store, more storage equipped in
the system, or when needs more space to build indexes, the
decision about what to do with the available space needs to be
taken wisely.

In our triple store, we would have local space optimizer in each
working node as well as a global optimizer in the Master node.
The role of the optimizer is to provide decision about the
assignment of space to each task that requires space. Those are in
our case indexes, materialized results, statistics and replications.
This decision would be taken dynamically and adaptively. That
means that if the storage availability variables change, the system
would adapt itself to the new situation. This would usually happen
when new data is added to the store, or when new storage space is
assigned; we would then have that at any moment in time, all the
available storage space is employed and used for better
performance.
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