
Architectural Intelligence:
a Framework and Application to e-Learning

Jan Martijn E.M. van der Werf, Casper van Schuppen, Sjaak Brinkkemper,
Slinger Jansen, Peter Boon, and Gert van der Plas

Department of Information and Computing Science,
Utrecht University

{J.M.E.M.vanderWerf C.vanSchuppen, S.Brinkkemper, S.Jansen,
P.Boon, G.A.J.vanderPlas}@uu.nl

Abstract. Architects need insights on the extent to which quality attributes are
satisfied in order to adequately evolve software systems. This is especially true
for software products, which are delivered to many customers and undergo mul-
tiple releases, thereby offering ample opportunities for re-design. Available tech-
niques to validate quality attributes either rely on workshops with stakeholders
or are based on design-time software artifacts. Many quality attributes, however,
are better assessed at runtime when the software system is in operation. In this
paper, we present an approach that enables the systematic processing and inter-
pretation of software operation data to gain architectural knowledge about quality
attributes. In addition to introducing this approach—which we call Architectural
Intelligence—, we present through a case study on an e-Learning environment
a formal framework based on process mining that enables the development of
second-order information systems for analyzing software operation data to pro-
vide architectural intelligence.

1 Introduction

Quality attributes are an important aspect of the design of software architectures, as
they determine whether the system guarantees characteristics such as reliability, secu-
rity, and performance. Checking quality attributes is especially important for software
products [5], for failing to meet some qualities may result in the dissatisfaction of mul-
tiple customers and may propagate to future product releases.

While it is relatively simple to check if an architecture contains some functionality—
e.g., by verifying the existence of specific components in architectural diagrams—, the
assessment of quality attributes is more difficult [8] as they are cross-cutting concerns
that span across multiple components.

Existing methods include scenario-based approaches such as the Architecture Trade-
off Analysis Method (ATAM) [3], which assesses the adherence of a system architec-
ture with quality attributes by conducting evaluation workshops with stakeholders. The
drawback of this solution is that it heavily relies on the knowledge and analysis by
experts, and is thus subjective, error-prone and time-consuming.

Other approaches, such as prototyping or simulation [3], obtain more objective re-
sults. However, these techniques are mostly performed during the design phase, and



96 Architectural Intelligence: a Framework and Application to e-Learning

quality attributes are not measured accurately during the operational phase of the soft-
ware. In line with the work on requirements monitoring [6,14], we argue for measuring
quality attributes during software operation. By doing so, the architect gains valuable
insights on how the software actually is being used that can serve to shape the next
releases of a software product. For example, frequently used features could be grouped
differently to improve overall performance.

Techniques like reverse engineering and software architecture reconstruction fo-
cus on reconstructing the design, or even the architecture of a system [10]. Archi-
tecture Compliance Checking (ACC) focuses on testing to which degree the realized
artifacts conform to the intended software architecture [12]. However, all these tech-
niques mainly focus on the functional aspects of the system, and tend to ignore quality
attributes [10]. Some approaches take quality attributes into account, but tend to fo-
cus more on reconstructing architectural artifacts than on conformance checking of the
quality attributes during the software operation phase.

Dynamic architecture compliance is founded on generally available resources, such
as the call stack, process trees and message exchange [10]. However, these sources
hardly contain sufficient information to measure the relevant quality attributes of an
architecture [20].

In this paper, we present a holistic solution to quality attribute conformance check-
ing by combining the Software Operation Knowledge Framework (SOK) [17]—a method
that drives the evolution of software products based on operation knowledge—with in-
sights from process mining [1]—a technique that enables extracting knowledge by an-
alyzing the event logs of information systems.

In previous work, we have shown that process mining has a big potential in architec-
tural analysis. For example, software operation data can be analyzed to validate whether
the software adheres to the quality attributes set by the intended architecture [20]. Also,
process discovery techniques allow to improve architecture [11], or even generate ar-
chitecture documentation [19] and give insights in how the software is being used.

After describing the framework (Sec. 2) and results applied on a case study (Sec. 3),
we outline our conclusions and present future directions (Sec. 4).

2 Architectural Intelligence Via Architecture Mining

One of the main tasks of the software architect is to design the system and to develop
a project strategy. By making architectural design decisions, the architect constructs a
software architecture. We consider the software architecture of a system to be the “set
of structures needed to reason about the system, which comprises software elements,
relations among them and properties of both” [3]. An important aspect of software
architectures is to address the quality attributes that stakeholders expect the system to
exhibit. These quality attributes are “measurable or testable properties of a system that
are used to indicate how well the system satisfies the needs of its stakeholders” [3].

Opposed to the level of software architecture, many software analysis tools and
techniques exist on the software level itself to build better software. For example, ex-
ecution traces can be used to discover failures [13] or to support continuous integra-
tion [4].



Architectural Intelligence: a Framework and Application to e-Learning 97

Metrics

Runtime 
Analyzer

Changes

Deviations

Architecture 
Reconstruction 0

Deployment 0

Software artefacts Intended architecture

Quality 
AttributesRealization 0

Runtime 
environment

Software 
Operation 

Data

Component

Evolution
Analyzer

Realized architecture

Quality 
Attributes

Architecture 
Improvement 
Recommender

Architecture
Conformance

Fig. 1. Architectural Intelligence Framework based on software operation data

This paper advocates the use of runtime software operation data [17, 20] to assess
the quality of a software architecture. Its analysis has the potential to close the loop
between software architecture and the realized software product by monitoring and an-
alyzing the actual realized system. In this way, data analytics techniques can provide
architectural intelligence to the software architect. Such techniques aid in making a
step forward toward continuous architecting of software systems. This is what we pro-
pose with Architecture Mining: the collection, analysis, and interpretation of software
operation data to foster architecture evaluation and evolution.

The conceptual overview of Architecture Mining is depicted in Fig. 1. It consid-
ers an architecture consisting of a set of structures, represented by architectural views,
and quality attributes that define quality constraints on the set of structures [3]. The
black arrows indicate the dependencies between the different elements, whereas the red
arrows indicate which steps can benefit from software operation data. The intended ar-
chitecture is separated from the realized architecture due to architectural erosion [7]:
the realization of software typically tends to drift away from the intended architecture.
A system realization consists of many different artifacts, including source code and
documentation, and is eventually deployed in some environment in which the system
operates. Once the system is operational, it starts collecting software operation data.

The conceptual overview does not impy an order between the phases, only the de-
pendencies are shown. Following the framework from top to bottom, the intended archi-
tecture is used to derive the software artefacts. The framework does not specify whether
e.g. a waterfall method or an agile method is used to realize the software artifacts.
The realized software artefacts are deployed, which results in an operational software
system. The software artifacts are input for Software Architecture Reconstruction and
Architecture Conformance Checking. The former results in an explicit realized archi-
tecture. Together with the intended architecture, the latter results in a set of deviations



98 Architectural Intelligence: a Framework and Application to e-Learning

from the intended architecture. Based on the software operation data, the Runtime An-
alyzer analyzes to which degree quality attributes specified in the intended architecture
are satisfied, and results in a set of metrics. Comparing the realized architecture and the
intended architecture gives insights in how the realized architecture drifted apart from
the intended architecture. This is the task of the Evolution Analyzer which results in a
set of changes with respect to the intended architecture.

The derived actual architecture, the metrics, deviations and changes are input for
the Architecture Improvement Recommender, which ultimately results in an improved
intended architecture.

3 Formalisation and Application in the e-Learning Domain

We applied the Architecture Intelligence framework to a software product called DME 1,
an e-Learning application for practicing mathematics and aimed mainly at secondary
school students. DME is actively used by teachers and researchers to develop courses,
and to analyze didactic behavior [9]. Currently, around 120 schools in the Nether-
lands actively use the product for their mathematics classes. The product serves in total
around 60,000 pupils, students and teachers. The purpose of this study was to evaluate
feasibility and effectiveness.

3.1 Formalisation of Events

The premise of our formal framework is that software systems can be regarded as large-
scale event-based systems: calling a system method, passing a message, and executing
functionalities all occur at some time, and in some (partial) order, and are triggered by
some source, such as the user, or other system modules. One way to monitor the system
operation is by gathering and store these events [20]. Each event is generated by some
resource and a time window in which it occurred. Events can contain additional data,
such as the function being called, its parameters, etc. We refer the reader interested in
the full formalisation to [15].

3.2 Runtime Analysis

A first simple use on operation data is to visualize the execution trace [13]. An example
trace within our case study is shown as a UML Timing diagram in Fig. 2(a). This figure
reveals useful information, such as which modules are called, and in what order. Each
stage generates events, such as the start and end time.

To gather software operation data in a structured way, we build in this case study
upon the process mining log framework XES [18], by adding a connection to the soft-
ware architecture through architectural features. Different conceptual models exist to
represent software operation data, such as [2], that focus on storing execution traces.
Such models, however, mainly focus on the system execution itself, whereas with ar-
chitectural intelligence, we would like to relate the operation data to higher abstractions,
for which XES is highly suited.

1 https://app.dwo.nl/site/index en.html



Architectural Intelligence: a Framework and Application to e-Learning 99

Data

Application 
server

Client 
application

User

FEstart

BEend

AEend FEendAEend

BEend BEend

AEstart BEstart BEstart

AEstart

BEstart

(a) Feature call

Access 
Event

Event type = AE
URL
Request 
parameters
Access type

Feature 
Event

Feature ID
Actor ID (user)
Actor role
Event type = FE

Feature

Feature ID
Feature 
description

*1

Event

Event ID
Timestamp
Event type

Back-end 
Event

Event type = BE

Query Event

Query 
classification

(b) Conceptual model

Fig. 2. Event-Based software operation data as feature calls

In our model, depicted in Fig. 2(b), events originate from different sources, and thus
may have different properties. The Event is the core concept. Each event can be linked
to some Feature, which represents a dedicated, coherent set of functionality. As per
Fig. 2(a), events can be linked to different architectural elements. In this case study, we
link the events to architectural elements by creating sub concepts of Event. An Access
Event records the login of an end user, Back-end Events represent events raised by the
application server and Feature events are triggered through the actions of end-users. As
there might be different back-end systems in use, these can be differentiated as separate
specializations of the Back-end Event, such as the execution of queries (Query Events).

3.3 Design of the Data Collection through GQM

Collecting all possible software operation data is typically infeasible. An operational-
ized system generates too many events if all function and system calls are being recorded.
On the other hand, just recording operation data is not sufficient. As an example, in an
event-bus system, just recording which messages are sent over the bus is typically not
sufficient: it is not possible to derive when a component has actually read the message.
Additionally, the stored data needs to be related to the architectural elements.

Thus, the architect should think already during system design how quality attributes
can be measured and which data needs to be collected to evaluate the metric. For green-
field designs, the architect can add an operation-data view to the architecture docu-
mentation, and design the operation-data collection from scratch. However, for evolv-
ing existing applications, this is more difficult, and the available data sources—such
as performance monitors or even sources of functional data—need to be analyzed and
integrated in the Architectural Intelligence Framework.

To assist the architect in deciding what data to record, we use the Goal-Question-
Metric (GQM) method [16]. The architect defines a set of goals that the system should
fulfill and for which insights are needed. Based on these goals, the architect collects the
design decisions for that goal, the perspectives of the relevant stakeholders, the quality
attributes that are related to this goal, and which questions and metrics the architect
wants to monitor. Additionally, the architect should add a section on how data is gener-
ated and collected.

In our e-Learning environment, the architects aimed to answer the question “When
is the application used for what purposes?”. Based on the metrics from the GQM tem-



100 Architectural Intelligence: a Framework and Application to e-Learning

(a) Time of the day (b) Over the week (starting at Sunday)

Fig. 4. Distribution of mutations and queries

plates, we gathered data to compute those metrics. The data gathering was done using
the SOK acquisition tool JAMon 2 which provided data per query (22 MB) and per time
period aggregated access data (17 MB). Each of the queries was subsequently classi-
fied and related to a specific feature. Additionally, the database mutations (inserts, up-
dates) were examined based on extracted event data from daily backups of the database
(MySQL binlog files, total of 35 GB). JAMon data was gathered for two weeks, and
query mutation data for 6 months.

Early observations about the events over time (hour) and the load over the day show
that it is convenient to split the analysis into week and weekend days. Analysis of the
data shows that most usage originates from students doing exercises. Many features,
as well as the overall view, show a specific usage daily distribution, shown in Fig. 4.
Additionally, we looked at the fraction of mutations and queries, which seems to be
rather constant over time. This gives the advantage that less data collection is required
to sufficiently fill the metrics to answer the questions of the architects.

3.4 Evaluation with the Architect

Based on the metrics on the software operations, the software architecture was evalu-
ated with the lead architect of DME. The study provided valuable insights, including
answers to the goals and the initial concerns of the architect. During the study, a key
challenge was to keep up with the architectural changes that occurred quickly. A num-
ber of important development changes were ongoing, including a refactoring of the
database model and the exploration for the on-going adaptation for deployment in a
cloud environment. It is essential to document these evolving aspects of the architec-
ture, and moreover to analyze pending or optional architectural changes and base our
recommendations on them instead of analyzing a static architectural snapshot.

We found that the definition of the questions from the architect, getting the required
data, and doing the right analysis are a process by themselves and require a number
of iterations in order to become sufficiently accurate. We have only started shaping
this process, and the use of the GQM template was positive; however, more research is
necessary to create a reliable, general method to support these activities.

2 http://jamonapi.sourceforge.net/



Architectural Intelligence: a Framework and Application to e-Learning 101

Threats to validity First, the case study was conducted for a relatively short time
frame over which the data was available and the model was stable, an essential aspect
required to use this framework. To fill all the defined metrics as intended, we should
have collected more data or employed a complete dataset. Determining the logging re-
quired to acquire the relevant software operation data is therefore essential for using
this framework. Second, we did conduct a single case study; thus, the generalizability
of the results is low. Third, we used convenience sampling to choose the application;
nevertheless, DME is a large and real-world system that goes way beyond being a toy
example. Fourth, the interviews with the lead architect were conducted through infor-
mally; in further researches, semi-structured interviews should be preferred to obtain
more reliable knowledge.

4 Conclusion and Future Work

In this paper, we advocate the use of software operation data to provide useful informa-
tion about the extent to which a software architecture conforms to the desired quality
attributes. We have proposed Architecture Mining that synergistically combines exist-
ing fields like reverse engineering, software architecture reconstruction and architec-
ture compliance checking with large scale data analysis techniques like process mining.
These techniques add the capability to analyze event-based software operation data
to discover dynamic architectural views to perform conformance checking about the
quality attributes. The proposed approach emphasizes the central role of the software
architecture in providing useful insights to software designers, especially to architects.

To validate the framework, we applied it on a case study on an real-world, large-
scale e-Learning environment and evaluated the results with the architects, who per-
ceived the gained insights and recommendations on flexibility and adaptability as ef-
fective. The case study revealed that defining and obtaining the right software operation
data is a process in itself, and therefore we have proposed to use the GQM method to
define the appropriate data sources for software operation data. This use of GQM was
perceived positively by the architects. However, more research is required to create a
reliable, general method to support this process.

We found that, in order to better manage log data and for the continuous acquisi-
tion of software operation data, the logging mechanisms should be an integral part of
the design of a system. Preferably, the acquired data should be easily adaptable to the
specific questions and goals of the architect during the software life cycle.

Initial research shows that analyzing software operation data provides useful in-
sights on software usage from an architectural perspective. Although our baseline con-
sists of solid techniques from different fields, further research is required to define a
more comprehensive method that supports architectural intelligence. We argue archi-
tectural intelligence to be crucial for closing the gap between the design and operation
of software, and a building block of continuous architecting.

References
1. W. M. P. van der Aalst. Process Mining: Discovery, Conformance and Enhancement of

Business Processes. Springer, Berlin, 2011.



102 Architectural Intelligence: a Framework and Application to e-Learning

2. L. Alawneh, A. Hamou-Lhadj, and J. Hassine. Towards a common metamodel for traces
of high performance computing systems to enable software analysis tasks. In SANER 2015,
pages 111–120. IEEE, 2015.

3. L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. Series in Software
Engineering. Addison Wesley, Reading, MA, USA, 2012.

4. M. Brandtner, E. Giger, and H. C. Gall. Supporting continuous integration by mashing-up
software quality information. In CSMR-WCRE 2014, pages 184–193. IEEE, 2014.

5. Sjaak Brinkkemper and Xu Lai. Concepts of product software. European Journal of Infor-
mation Systems, 16(5):531–541, 2007.

6. Fabiano Dalpiaz, Paolo Giorgini, and John Mylopoulos. Adaptive socio-technical systems:
a requirements-driven approach. Requirements Engineering, 18(1):1–24, 2013.

7. Lakshitha de Silva and Dharini Balasubramaniam. Controlling software architecture erosion:
A survey. Journal of Systems and Software, 2012.

8. L. Dobrica and E. Niemelä. A survey on software architecture analysis methods. IEEE
Transactions on Software Engineering, 28(7):638–653, 2002.

9. P. Drijvers, M. Doorman, P. Boon, H. Reed, and K. Gravemeijer. The teacher and the tool: in-
strumental orchestrations in the technology-rich mathematics classroom. Educational Stud-
ies in mathematics, 75(2):213–234, 2010.

10. S. Ducasse and D. Pollet. Software architecture reconstruction: A process-oriented taxon-
omy. Software Engineering, IEEE Transactions on, 35(4):573–591, 2009.

11. S. Klock, J. M. E. M. van der Werf, J. P. Guelen, and S. Jansen. Workload-based clustering
of coherent feature sets in microservice architectures. In ICSA 2017. IEEE, 2017.

12. J. Knodel and D. Popescu. A comparison of static architecture compliance checking ap-
proaches. In WICSA 2007, pages 12–12. IEEE, 2007.

13. M. Perscheid, T. Felgentreff, and R. Hirschfeld. Follow the path: Debugging state anomalies
along execution histories. In CSMR-WCRE 2014, pages 124–133. IEEE, 2014.

14. W. N Robinson. A requirements monitoring framework for enterprise systems. Requirements
engineering, 11(1):17–41, 2006.

15. C. van Schuppen. Quality attribute tradeoff in learning infrastructure scaling. Utrecht Uni-
versity, 2015.

16. R. van Solingen, V. Basili, G. Caldiera, and D. H. Rombach. Goal question metric (GQM)
approach. Encyclopedia of Software Engineering, 2002.

17. H. van der Schuur, S. Jansen, and S. Brinkkemper. Reducing maintenance effort through
software operation knowledge: An eclectic empirical evaluation. In CSMR 2011, pages 201–
210. IEEE, 2011.

18. H. M. W. Verbeek, J. C. A. M. Buijs, B. F. van Dongen, and W. M. P. van der Aalst. XES,
XESame, and ProM 6. In Information System Evolution, volume 72, pages 60–75. Springer,
Berlin, 2011.

19. J. M. E. M. van der Werf and E. Kaats. Discovery of functional architectures from event
logs. In PNSE 2015, volume 1372 of CEUR-WS, pages 227–243. CEUR-WS.org, 2015.

20. J. M. E. M van der. Werf and H. M. W. Verbeek. Online compliance monitoring of ser-
vice landscapes. In BPM Workshops, Revised Papers, volume 202 of LNBIP, pages 89–95.
Springer, Berlin, 2015.


