

Computational Environment to Semi-Automatically Build
a Conceptual Model Represented in OntoUML

Joselaine Valaski, Sheila Reinehr, Andreia Malucelli

 PPGIa – Pontifícia Universidade Católica do Paraná (PUCPR)
Curitiba – PR – Brazil

joselaine.valaski@pucpr.br, sheila.reinehr@pucpr.br,
malu@ppgia.pucpr.br

Abstract. A conceptual model can be an important instrument to support the
software functional requirements elicitation because it promotes better
understanding of a domain. However, the representation quality of the
conceptual model depends on the expressivity of the language used. OntoUML
is a proposed language to solve expressivity problems. Nevertheless,
OntoUML models are complicated to build for novice modelers. This study
presents an experiment performed in order to semi-automatically build a
conceptual model represented in OntoUML. All the experiment steps were
executed by a computational environment named ENSURE. The results
showed that it is possible to identify 60% of the meaningful concepts.

1. Introduction
During software development, poor understanding of the business and poor
communication between the business specialists and the computing specialists can
compromise the quality of the software (Luis et al., 2008). Therefore, especially in its
early stages, the use of a common language that enables shared understanding among
stakeholders is necessary to aid the smooth flow of information obtained from different
sources (Lee and Gandhi, 2005).
 The conceptual model is an instrument that enables the use of a common
vocabulary and facilitates comprehension and discussion of elements that may appear in
the software. However, the suitability of a conceptual modeling notation is based on its
contribution to the construction of models that represent reality, thus enabling a
common understanding between their human users (Mylopoulos, 1992). One of the
most known conceptual metamodel is the Entity–Relationship (ER) model. However,
the reason for the popularity of the ER model is also its main weakness. Although the
metamodel is simple, which helps the conceptual modelers, it does not present high
expressivity. The UML is also a well-known language for building conceptual models,
which also presents the same problem of expressivity.
 Guided by these matters, Guizzardi (2005) proposed OntoUML, a language used
to represent ontology-based conceptual models. As the language is ontology-based, the
conceptual models constructed in OntoUML are assumed to be more expressive and
represent the real world of the domain more faithfully than other languages of
conceptual representation. The constructs proposed in OntoUML prevent the overload
and redundancy found in other languages, such as UML. However, as OntoUML is a

23

more expressive language, it proposes a larger set of constructs that are not easily
identified, especially by novice modelers (Guizzardi et al., 2011).
 Motivated by these challenges, this study describes an experiment to build semi-
automatically a conceptual model represented by OntoUML. All steps described in the
Experiment Method Section are executed by a computational environment called
ENSURE (ENvironment to SUpport Requirement Elicitation). One of the main goals of
ENSURE is to support the extraction of functional requirements of a domain using a
conceptual model represented by OntoUML. This paper is organized as follows: in
Section 2, the background of the proposal is outlined. Section 3 presents the method of
the experiment, while Section 4 presents the results of the experiment. The final
considerations and future works related to the proposal are presented in Section 5.

2. Background
This section presents the main concepts related to this study. The concepts are not
exhaustively explained due to space limitation. However, they are discussed enough to
understand the experiment executed.

2.1 OntoUML
The OntoUML language proposed by Guizzardi (2005) was motivated by the need for
an ontology-based language that would provide the necessary semantics to construct
conceptual models with concepts that were faithful to reality. The classes proposed in
OntoUML are specializations of the abstract classes of the Unified Foundational
Ontology (UFO) and extend the original metamodel of UML.
 In this study, only the main constructs that make up the object type category will
be presented (Guizzardi et al., 2011). In this category, constructs are more closely
related to the static conceptual modeling of a domain. The Object Type constructs can
be Sortal and Non-Sortal. The Sortal constructs provide identity and individualization
principles to their instances, while the Non-Sortal constructs do not supply any clear
identification principles. The Sortal constructs are classified as Rigid Sortal and Anti-
Rigid Sortal. A Sortal is classified as rigid if it is necessarily applied to all its instances
in all possible worlds. A Sortal is said to be anti-rigid if it is not necessarily applied to
all its instances. The Rigid Sortal includes the Kind and Subkind categories. A Kind is a
Rigid Sortal, and therefore has intrinsic material properties that provide clear identity
and individualization principles. The Kind determines existentially independent classes
of things or beings and are said to be functional complexes. A Subkind is also a Rigid
Sortal that provides the identity principle and has some restrictions established and
related to the Kind construct. Every object in a conceptual model must be an instance of
only one Kind. There are two sub-categories of Anti-Rigid Sortal: Phases and Roles. In
both cases, the instances can change their types without affecting their identity. Whereas
during the Phase construct, the changes can take place as a result of changes of intrinsic
properties. In the Role construct, the changes take place because of relational properties.
 Compared with UML, OntoUML has a larger set of constructs, enabling greater
expressivity of conceptual models and avoiding overload and redundancy (Guizzardi,
2005). Nevertheless, OntoUML is more complex to use than the traditional languages,
such as UML, especially for novice modelers (Guizzardi et al., 2011). One of the
difficulties of constructing a model represented in OntoUML is identifying the correct

24

construct for a given concept to be represented. In this sense, it is important to develop
automatic or semi-automatic mechanisms that help the domain modeler to identify this
concept and its correct construct. A linguistic approach with a semantic focus can be
applied to aid comprehension of the concepts to be modeled (Castro, 2010).

2.2 Semantic types and Disambiguation
Dixon (2005) proposed a semantic organization for words in classes of meaning known
as semantic types. In this proposal, semantic types handle nouns, adjectives, and verbs.
Generally, in conceptual modeling, nouns are the semantic types that indicate important
concepts in a conceptual modeling. The semantic types can be mapped to the constructs
of OntoUML (Castro, 2010) and thereby enable semi-automatic support for their
identification using Natural Language Processing (NLP). However, one of the
challenges of automatic identification of the semantic type is the disambiguation of the
term (Castro, 2010; Leão et al., 2013).
 A word can have several meanings and the correct identification of its meaning
may depend on the context in which it is used. The task of computationally identifying
the meaning of words based on their context is known as Word Sense Disambiguation
(WSD) (Pedersen and Kolhatkar, 2009). Techniques and algorithms for disambiguation
are available, such as TargetWord, which is applied only in the case of a target word in
a sentence, and the AllWord, which is applied to all words in a sentence. An example of
a disambiguation technique is WordNet::SenseRelated (Pedersen and Kolhatkar, 2009).
WordNet:SenseRelate is based on WordNet, which is a lexical base for the English
language. This tool performs the disambiguation of a term found in the base and also
identifies the corresponding semantic type. Figure 1 illustrates the use of Semantic types
and Disambiguation concepts, where an example of “driver” term from WordNet
database is presented. The term “driver” can have different meanings that depend on the
context and each one can have different semantic type. In the “driver” example, the term
can be associated to three semantic types: person, communication, and artifact.
Considering the context, the TargetWord algorithm identifies the correct meaning.
When the correct meaning is identified, it is possible to retrieve the associated semantic
type.

Figure 1. Example of a semantic type identified by WordNet.

2.3 ENSURE
ENSURE is a computational environment developed to support the execution of tasks
related to Software Requirement Engineering. This environment contains in the

25

integration of relevant terms, extraction algorithms, terms disambiguation algorithms,
WordNet database, OLED (2015) (OntoUML editor) and others.
 This integration and interfaces allow the management of domain texts, identify
relevant terms, execute terms disambiguation using WordNet database, build conceptual
model, and derive functional requirements of a domain. The main goal of the
environment is to support the decision taking in each one of these tasks. The main users
comprise students of Requirement Engineering, the novice professionals.

3. Experimental Method
The experiment to build semi-automatically a conceptual model was conducted based
on the steps of the method proposed in (Leão et al., 2013; Valaski et al., 2014). The
main differences in this experiment are a new heuristic to identify the OntoUML
construct, the execution by a computational environment, and the partial building of a
conceptual model. Each one of these tasks are executed using the ENSURE.

3.1 Identifying relevant terms
The first step was the selection of the text. In this experiment, the same text applied on
Valaski et al. (2014) was used. This decision was taken to facilitate the comparison
between the previous and present experiment. The text selected is presented in Table 1
and describes a domain of bus route. The next step was the selection of the relevant
terms. The starting point to define the relevant terms is the conceptual model relative to
the text. The conceptual model is represented using the ER model (Gemino and Wand,
2005). Table 2 presents the 32 terms identified as relevant. In the context of this
experiment, the terms are called “gold terms”. They were compared with the terms
automatically extracted.
 The last step was the selection of algorithm to extract the relevant terms. The
topia.termextract version 1.1.0, developed by Python
(https://pypi.python.org/pypi/topia.termextract/) was used. This tool was chosen
because of its satisfactory results (Valaski et al., 2014) and its use is free. To analyze
Topia algorithm results, the metrics precision and recall Fawcett, T. (2006) were used.

Table 1. Selected text

Text

There are two ways for people to travel with Voyager. Either passengers can make a
reservation on a trip, or passengers can show up at the boarding gate without a reservation
and purchase a ticket for an unreserved seat. Passengers with a reservation are assigned a
reservation date, whereas, passengers without reservations are assigned a boarding date. The
name and addresses of all passengers are collected. Telephone numbers are collected where
possible. All bus trips are organized into daily route segments. All daily route segments
have both a start time and an end time. Each daily route segment. Voyager organizes is
classified as a route segment with a segment number, start town, and finish town. Voyager
offers a range of trips, and each trip is made up of one or more route segments. For every
trip there is a trip number, start town, and finish town. If the trip is organized around a
special event, the event name is also associated with the trip. Each daily route segment that
Voyager offers is part of a dally trip. A daily trip is undertaken by one or more bus drivers.
The name, address, and employee number of all drivers is collected. Voyager also records
information about absent drivers. When a driver is absent. Voyager records the absence start
date and the details about the absence. The absent driver provides one or more reasons for

26

being absent and each reason is assigned a detail number and a short description. Voyager
also collects information about the buses used for daily trips. Buses have a make, model,
and registration number. For buses in use, the average daily kilometers is collected. If a bus
requires maintenance, Voyager notes the date on which the bus entered maintenance and
records the one or more problems with the bus. Voyager assigns a problem number and a
short description for every maintenance problem. Finally, the average cost to repair all
problems with a bus in maintenance is also recorded.

Table 2. Gold terms

Terms

Absence; Absence Start Date; Address; Average Daily Kilometers, Average Cost to Repair;
Boarding Date; Bus; Daily Route Segment; Daily Trips; Date Maintenance; Description;
Details; Driver; Employee; End time; Finish Town; Maintenance Problems; Make; Model;
Name; Passengers; Problem; Registration number; Reservation Date; Route Segment;
Segment; Event name; Start Time; Start Town; Telephone; Trip; Trip Number

3.2 Identifying OntoUML construct
After selecting the relevant terms using Topia algorithm, the following heuristics were
applied:
 Rule i: For each relevant term (simple or compound), verify if the last word is
number, name, or date. If true, the construct suggested must be Datatype. This rule was
built because it was observed in previous experiment (Valaski et al., 2014) that these
terms in general are not identified in the semantic database. Furthermore, these terms in
general are observed to be related to attributes.
 Rule ii: For each relevant term, where Rule i is not true, apply the algorithm
TargetWord to disambiguate the term. If the TargetWord obtained the term
disambiguate, retrieve the associated semantic type. With the semantic type, retrieve the
OntoUML construct using the mapping described in Table 3. This mapping was
established by partially using the proposal of Castro (2010). Castro used the Dixon
(2005) theory to propose some mapping between semantic types and OntoUML
construct.

Table 3. Semantic type vs Construct, map.

Semantic type OntoUML Construct
Act Relator
Artifact Kind
Cognition Kind
Communication Relator
Location Kind
Person Role
Possession Kind

 Rule iii: For each relevant term, where Rules i and ii were not true, apply the
following rules: if compound term (two or more words), verify if it is the suggested
construct for each word individually. If suggested individually, the construct is either
Kind or Relator; suggest the construct Relator. Example: Bus Trips, this term does not

27

exist in the WordNet database. However, the terms bus and trip exist. When the
TargetWord algorithm was executed, the construct Kind was identified to the bus term
and the construct Relator to the trip term. In this example, rule iii must suggest the
construct Relator to the term Bus Trips. Rule iii was also extracted based on the
observation of previous experiments. The simple terms were found, but the compound
terms were not. This rule is a suggestion to try solving cases where the terms are not
found in the WordNet database. It is important to emphasize that despite the application
of these three rules, some terms are not suggested by the environment. The obtained
results of this step were compared with previous results (Valaski et al., 2014).

3.3 Building conceptual model represented in OntoUML
Using the relevant terms, where the corresponding constructs were identified, the
conceptual model was built. The OLED editor (2015) was used to build the model. In
this experiment, the model was limited to represent only the elements without their
relationship. This is a challenge to be addressed in future works. A complete model was
manually built to compare the results obtained between the manual and automatic
processes. The precision and recall metrics were used to calculate the accuracy and
completeness of the results.

4. Experiment Results
The results of the experiment are presented according to the steps described in Section
3. All steps are executed automatically by ENSURE.

4.1 Identifying relevant terms
Figures 2 and 3 present the execution sequence to identify the relevant terms. Figure 2
shows the text selection, which was previously added in ENSURE, and Figure 3 shows
the results of Topia algorithm execution. The algorithm processing returned 31 relevant
terms, which are listed in Table 4.

Figure 2. Step 1: Text selection Figure 3. Step 2: Topia results

28

Table 4. Extracted relevant terms by Topia vs gold terms

Topia terms Gold terms (exact) Gold terms (partial)
Bus Bus
Bus drivers - Bus; driver
Bus trips - Bus; trips
Date - Boarding date
Detail number - Details
Driver Driver
Employee number - Employee
End time End time
Event name Event name
Maintenance - Maintenance problems
Maintenance problems Maintenance problems
Name Name
Number - Registration number
Passenger Passenger
Problem Problem
Problem number - Problem
Record - -
Records information - -
Registration number Registration number
Reservation - Reservation date
Reservation date Reservation date
Route - Route segment
Route segment Route segment
Segment Segment
Segment number - Segment
Telephone numbers - Telephone
Town - Finish town; Start town
Trip Trip
Trip number Trip number
Unreserved seat - -
Voyager - -

 The results presented in Table 4 show that among the 31 terms identified by
Topia, 14 terms have exact correspondence with the gold terms, while 17 terms do not
have exact correspondence. On the other hand, the results presented in Table 5 show
that among the 32 gold terms, 14 terms have exact correspondence with the relevant
terms extracted by Topia, while 18 terms do not have exact correspondence. Based on
these results, the precision (formula 1) and recall (formula 2) metrics were calculated.
To proceed with the calculation, the following auxiliary variables are used: CT (total of
correct terms returned by Topia); nCT (total of not correct terms returned by Topia);
and CGn (total of gold terms do not returned by Topia).
 Precision = CT/(CT + nCT) = 14/(14 + 17) = 0.4516 (1)
 Recall = CT/(CT + CGn) = 14/(14 + 18) = 0.4375 (2)

29

Table 5. Gold terms vs Relevant Topia terms.

Gold terms Topia terms (exact) Topia term (partial)
Absence - -
Absence start date - -
Address - -
Average daily
kilometers

- -
Average cost to repair - -
Boarding date - Date
Bus Bus
Daily route segment - Route segment
Daily trips - Trip
Date maintenance - Maintenance
Description - -
Details - Detail number
Driver Driver
Employee - Employee number
End time End time
Finish town - Town
Maintenance problems Maintenance problems
Make - -
Model - -
Name Name
Passengers Passenger
Problem Problem
Registration number Registration number
Reservation date Reservation date
Route segment Route segment
Segment Segment
Event name Event name
Start time - -
Start town - Town
Telephone - Telephone numbers
Trip Trip
Trip Number Trip Number

 The precision metric shows that Topia algorithm has an accuracy of 45.16%,
while the recall metric shows that Topia algorithm has a completeness of 43.75%. The
results were considered reasonable mainly because only the terms with exact
correspondence were considered. On the other hand, if terms with partial
correspondence (third column Tables 4 and 5) were also considered, better results were
obtained. Topia extracted 27 terms with partial correspondence with gold terms (CT),
while only 4 terms (Record; Records information; Unreserved seat) do not have partial
correspondence (nCT). Only 9 terms (Absence; Absence start date; Address; Average
daily kilometers; Average cost to repair; description; make; model; Start time) from the
gold list do not have partial correspondence (CGn). The precision (formula 3) and recall
(formula 4) metrics were recalculated.

30

 Precision = CT/(CT + nCT) = 27/(27 + 4) = 0.8709 (3)
 Recall = CT/(CT + CGn) = 27/(27 + 9) = 0.75 (4)
 If partial terms are considered to collaborate with the identification of the
relevant concepts of a model, Topia had an accuracy of 87.09% and completeness of
75%.

4.2 Identifying OntoUML construct
The heuristic described in Section 3.2 was applied with the list of relevant terms
extracted by Topia. Figures 4 and 5 show the execution sequence to identify the
construct. Figure 4 shows the XML file created. An XML file is required to execute the
TargetWord algorithm described in Section 3.2, rule ii. In this file, the relevant terms
are tagged in the original text. The TargetWord algorithm performs the disambiguation
using the WordNet database and returns the corresponding semantic type. Figure 5
presents the disambiguation result and the construct suggested according to the mapping
proposed in Table 3.

Figure 4. Step 3: XML file created

Figure 5. Step 4: Disambiguation
results

 Among the 31 relevant terms extracted by Topia, the environment suggested
construct to 28 terms, which comprise about 90% accuracy. Considering these 28 terms,
13 had the construct suggested as Datatype (rule i), 12 had the construct suggested using
the disambiguation process (rule ii), and 3 had the construct suggested using semantic
type assigned by the simple terms (rule iii). In the experiment described in Valaski et al.
(2014), among the 31 identified relevant terms, only 12 terms had suggested construct,
comprising about 40% accuracy. The new heuristic contributed to identify mainly terms
associated to Datatype construct. It also contributed to identify the construct of terms
not found in the WordNet database, such as Bus Trips, Route Segment, and
Maintenance Problems. These terms exemplified situations where the compound terms
are not found but the simple terms are found. It is important to state that this experiment

31

only indicates the possibility to explore this kind of association. Other experiments with
a diversity of text must be executed to confirm the validation of rule iii.

4.3 Building conceptual model represented in OntoUML
The conceptual model was generated both automatically and partially using the relevant
terms list and the construct suggested. The conceptual model was built on OLED editor.
Figure 6 shows the results of Figure 5 execution. The automatic identification of the
relationship among terms is not yet possible on ENSURE. This is a challenge to be
addressed in future work.

Figure 6. Identified automatic elements

 The conceptual model in Figure 7 is manually built corresponding to the
processed text (bus route) to analyze the result of this step. This model represented only
the elements related to Kind, Role, and Relator (12 elements). The ER conceptual model
presented in (Gemino and Wand, 2005) was also used to validate the model built. The
elements associated to Datatype construct were not presented as they were considered
less representative in this experiment. The model in Figure 7 was named as “gold
model”.
 Considering only elements associated to Kind, Role, and Relator construct, the
environment automatically identified 15 elements (Bus, Bus drivers, Bus Trips, Driver,
Maintenance, Maintenance Problems, Passengers, Problem, Reservation, Route, Route
Segment, Segment, Town, Trip, Voyager). Among of them, nine are present in the gold
model (gray elements). Only the terms Bus drivers, Bus Trips, Maintenance, Route,
Segment, and Voyager do not have exact correspondence in the gold model. However,
all terms, except Voyager, have partial correspondence in the gold model. That is, if the

32

exact concept is not identified, it is believed that the partial concept can help in finding
the exact concept. Among the elements represented in the gold model, only three terms
were not identified by the environment, namely, Person, Daily Trip, and Daily Route
Segment. However, the partial terms Trip and Route Segment were found. Considering
these results, the precision (formula 5) and recall (formula 6) metrics are calculated.
 Precision = 9/(9+6) = 0.60 (5)
 Recall = 9/(9+3) = 0.75 (6)
 In this context, considering only the more representative elements (Kind, Role,
Relator) of the gold model, the environment had an accuracy of 60% and completeness
of 75%. The quality and complexity of the text directly influence the accuracy of the
results.

Figure 7. OntoUML gold model.

5. Conclusion
An experiment was performed to demonstrate the semi-automatically building of a
conceptual model represented in OntoUML. The execution was performed through a
computational environment called ENSURE. The initial results were considered
satisfactory because through a domain text, it was identified 60% of the meaningful
concepts. However, a number of challenges need to be addressed to improve the used
methods and the environment. Some of these main challenges are: availability of
algorithm and tools to process natural language with better results and availability of
terms in semantic database to perform disambiguation. Another challenge is to identify
automatic relationship among the elements in a conceptual model.
 ENSURE is an environment built to promote Requirement Elicitation using a
conceptual model represented in OntoUML as support. From the conceptual model, the
environment suggests functional requirements of a domain. New implementations are

33

currently executed to improve the building of the conceptual model and the extraction
of its functional requirement.

References
Castro, L. (2010) “Abordagem Linguística para Modelagem Conceitual de Dados com

Foco Semântico”, Msc Dissertation, Universidade Federal do Estado do Rio de
Janeiro, Rio de Janeiro, Brazil.

Dixon, R.M. (2005) “A Semantic Approach to English Grammar”, 2nd ed. Oxford
University Press, USA.

Fawcett, T. (2006) “An introduction to ROC analysis”. Pattern Recognition Letters, 27,
861–874.

Gemino, A. and Wand, Y. (2005) “Complexity and clarity in conceptual modeling:
Comparison of mandatory and optional properties”, Data & Knowledge Engineering,
55(3), pp 301–326.

Guizzardi, G. (2005) “Ontological Foundations for Structural Conceptual Models”,
Telematica Institut Fundamental Research Series 15, Universal Press.

Guizzardi, G., Graças, A. and Guizzardi, R.S.S. (2011) “Design Patterns and Inductive
Modeling Rules to Support the Construction of Ontologically Well-Founded
Conceptual Models in OntoUML”, 3rd Workshop on Ontology Driven Inf. Systems
(ODISE 2011), London.

Leão, F., Revoredo, K. and Baião, F. (2013) “Learning Well-Founded Ontologies
through Word Sense Disambiguation”, in proceeding of: 2nd Brazilian Conference
on Intelligent Systems (BRACIS-13), 2013

Lee, S.W. and Gandhi, R. (2005) “Ontology-based active requirements engineering
framework”, in Engineering Conference, APSEC.

Luis, J., Vara, D. and Sánchez, J. (2008) “Improving Requirements Analysis through
Business Process Modelling  : a Participative Approach”, 1, pp 165–176

Mylopoulos, J. (1992) “Conceptual modeling and Telos, In P. Loucopoulos and R.
Zicari, editors, Conceptual modeling, databases, and CASE. Wiley.

OLED (2015) “Ontouml-lightweight-editor” https://code.google.com/p/OntoUML-
lightweight-editor/, acessado em: 2015 04.

Pedersen, T. and Kolhatkar, V. (2009) “WordNet :: SenseRelate:: AllWords: a broad
coverage word sense tagger that maximizes semantic relatedness”, Human Language
Technologies.

Valaski, J., Reinehr S. and Malucelli, A. (2014). “Environment for Requirements
Elicitation Supported by Ontology-Based Conceptual Models: A Proposal”. In
Proceedings of the 2014 International Conference on Software Engineering Research
and Practice (SERP'14), ISBN 1-60132-286-0, Las Vegas, USA, p. 144–150.

34

