
Identifying non-redundant literals in clauses
with uniqueness propagation

Hendrik Blockeel

Department of Computer Science, KU Leuven

Abstract. Several authors have proposed increasingly efficient meth-
ods for computing the least general generalization of two clauses under
theta-subsumption. The most expensive step in this computation is the
reduction of the clause to its minimal size. In general, this requires test-
ing all literals for redundancy, which in the worst case requires a theta-
subsumption test for each of them. In this paper, we present a small result
that is complementary to earlier published results. It basically extends
the conditions under which a literal can be decided non-redundant with-
out running a theta-subsumption test. Preliminary experiments show a
speedup factor of about 3 on one dataset when this new result is used.

1 Introduction

Several ILP systems rely on computing the least general generalization (lgg) of
two clauses under theta-subsumption. This computation consists of two steps.
In the first step, a clause is constructed that contains all pairwise lgg’s of liter-
als from the first and second clause. This clause may contain many redundant
literals, therefore, in the second step, which is called reduction, all redundant lit-
erals are removed from this clause. Checking whether a literal is redundant boils
down to a theta-subsumption test in the worst case. Therefore, while the first
step has polynomial complexity (O(mn), with m and n the number of literals in
the first and second clause, respectively), the second step is NP-hard (O(nm)).
Unsurprisingly, attempts to make the computation of the lgg more efficient focus
on reducing the number of theta-subsumption tests needed (in addition to using
an efficient theta-subsumption test, which is a separate problem).

In this paper, we present a result that, while simple, does not seem to have
made it into the literature. We show that exploiting this result can substantially
reduce the number of theta-subsumption tests needed during the reduction.

2 Theta-subsumption, lgg and reductions

We assume familiarity with standard terminology from logic programming, and
with the Prolog programming language.

8

2.1 Definitions and notation

Definition 1 (theta-subsumption). A clause c theta-subsumes another clause
d, denoted c �θ d, if and only if there exists a variable substitution θ such that
cθ ⊆ d.

Definition 2 (lgg). The least general generalization under theta-subsumption
(briefly, lgg) of two clauses c and d is e if and only if e �θ c, e �θ d, and there
does not exist a clause e′ 6= e such that e �θ e′, e′ �θ c and e′ �θ d.

Theta-subsumption is a semi-order; it is reflexive and transitive but not anti-
symmetric. Different clauses may subsume each other; they are called variants
of each other.

Definition 3 (variants). Two clauses c and d are variants, denoted c ∼ d, if
c �θ d and d �θ c.

Variants are logically equivalent to each other.

Definition 4 (redundant literals). A literal l in a clause c is redundant if
and only if c \ {l} ∼ c.

Let |c| denote the number of literals in c.

Definition 5 (reduced clauses). A clause c is reduced if there is no c′ ∼ c
such that |c′| < |c|.

In other words, a clause is reduced if there is no shorter clause equivalent to
it. Reducing a clause c means computing its shortest variant.

2.2 Computing the lgg

The lgg of two clauses can be computed using an algorithm proposed by Plotkin
[5]. In a first phase, the algorithm constructs the lgg of two clauses c and d by
including each literal that is a least generalization of a literal in c and one in d.
The resulting clause can contain many redundant literals. In a second phase, it
is reduced: all redundant literals are removed.

Gottlob and Fermüller (1993) proposed the following algorithm for reduction
of clauses:

for each literal l in the original clause c:
if c �θ c \ {l} then remove l from c

This algorithm takes |c| calls to theta-subsumption. As indicated by Gottlob
and Fermüller, this number can be reduced, by skipping those literals for which
it is obvious that they cannot be removed. More generally, to reduce a clause
more efficiently, the following scheme can be used:

1. efficiently identify non-redundant literals
2. efficiently identify redundant literals

9

3. for the remaining literals, determine redundancy by means of a subsumption
test

Gottlob and Fermüller point out that the test c �θ c \ {l} can only succeed
if there exist a θ such that lθ ∈ c \ {l}, in other words, there must be another
literal l′ ∈ c, besides l, such that lθ = l′. A literal l that has no matching literal
l′ is certainly non-redundant.

Malobert and Suzuki point out that, when cθ ⊆ c \ {l}, all literals in c \
{l} \ cθ can be concluded to be redundant, not just l. They provide a method
for computing the θ that minimizes |cθ|, thus identifying a maximum number of
redundant literals using one complete subsumption test (a complete subsumption
test is one that returns {θ|cθ ⊆ d} rather than just a boolean that indicates the
non-emptiness of this set).

The main contribution of this paper is that we generalize the conditions
under which literals can easily be identified as non-redundant, thus increasing
the impact of (1).

3 Efficiently identifying non-redundant literals

We now generalize the conditions under which a literal l can safely be assumed
non-redundant.

Definition 6. Given a clause c, a literal l′ ∈ c matches a literal l ∈ c if ∃θ :
lθ = l′.

Definition 7. A literal l in a clause c is called unique if and only if there is no
literal l′ ∈ c \ {l} that matches l.

Now consider the following procedure:

function ReduceUP(clause C):
U := ∅
repeat

for all l ∈ C:
if there is no l′ in C ∪ U \ {l} that matches l
then remove l from C, add l to U

skolemize U
until C does not change anymore
for all l ∈ C: if U ∪ C �θ U ∪ C \ {l} then remove l from C
deskolemize U ∪ C
return U ∪ C

The for-all loop in this algorithm moves all unique literals from C to U .
Literals in U are certainly non-redundant and need not be tested afterwards.

After this for-all loop comes a skolemization step. Skolemization instantiates
each variable in U with a different and new constant (that is, one that does
not yet occur in U ∪ C). Note that U and C share variables; if a variable in

10

U is instantiated, its occurrences in C are too. This may introduce new unique
constants in C, and therefore, a literal that had a matching literal earlier on may
no longer have one now. A new check for non-matched literals is then run. More
literals may be added to U as a result; more variables will be instantiated in the
new skolemization step, and so on, until C no longer changes. At that point, the
literals in C are tested for redundancy using theta-subsumption.

Example 1. Consider C = {p(a, Y), p(Y, b), p(X, b), p(X,Z)}.
In the first run, p(a, Y) is the only literal that does not match any other

literals. Therefore, after one execution of the outer loop, U = {p(a, Y)} and C =
{p(Y, b), p(X, b), p(X,Z)}. We now skolemize U , which results in U = {p(a, y)}
and C = {p(y, b), p(X, y), p(X,Z)} (where y is the constant that variable Y
was instantiated to). At this point, p(y, b) no longer matches any other literal
and therefore joins U , giving U = {p(a, y), p(y, b)} and C = {p(X, b), p(X,Z)}.
At this point U contains no variables, therefore skolemization does not change
anything and C will not change. The algorithm will now only test the literals
in C for redundancy using theta-subsumption. Both literals in C turn out to
be redundant (by θ = {X/y, Z/b}), yielding as final result U = {p(a, y), p(y, b)}
and C = ∅, and after deskolemization, returning {p(a, Y), p(Y, b)} as the reduced
clause.

It is intuitively clear that this procedure is sound: if a literal l in C becomes
unique through the skolemization (while it wasn’t before), this is because it
shared a variable with a literal u in U . Hence, any substitution θ that could be
used to make l equal to another literal l′ (which is necessary to have (U ∪C)θ ⊆
U ∪ C \ {l}) would have an effect on u as well, and would map u to a literal
outside U ∪C (since no substitution exists that maps u to a literal in U ∪C, by
definition of uniqueness of u).

The final subsumption tests in our algorithm are performed using the par-
tially skolemized clause. Indeed, it makes no difference whether these tests are
run on the deskolemized or partially skolemized clause: by definition of unique-
ness, we know that the literals in u cannot map onto any other literal than
themselves, therefore the variables in them cannot occur in any substitution
except one that assigns them to themselves, therefore replacing these variables
by constants does not make a difference for the outcome of the test. The sub-
sumption test may be faster when performed on the partially skolemized clause,
though, simply because this clause contains fewer variables (and the number of
variables affects the efficiency of theta-subsumption).

4 Discussion

The algorithm presented above causes a kind of “propagation of uniqueness”
(hence its name, ReduceUP). While it trivial that a literal with a unique pred-
icate symbol or a unique constant must be unique (hence, non-redundant), the
skolemization of unique literals can cause their neighbors (that is, the literals
that share a variable with them) to become unique too. This may substantially

11

increase the number of literals considered unique and therefore trivially non-
redundant.

The above result is complementary to existing results on lgg computation.
Both the procedure proposed by Gottlob and Fermüller [3] and the one by Mal-
oberti and Suzuki [4] can be made faster if more literals can be decided before-
hand to be non-redundant.

5 Experiments

We performed preliminary experiments on a dataset used by Becerra-Bonache
et al. [1, 2] for language learning experiments. Processing the first 100 examples
gave rise to 525 lgg computations. The lggs contained on average 58 literals.
Of these, 5.13 on average were unique in the sense of Gottlob, and 11.26 were
unique after “ uniqueness propagation”.

Our lgg implementation uses another, more trivial, optimization: literals that
do not share any variables with other literals and subsume a unique literal are
automatically removed (indeed, as they do not share variables with any other lit-
erals, their matching substitution cannot be incompatible with substitutions for
other literals). This further reduces the number of remaining literals that needs
to be tested by subsumption. With an overall CPU time of 7.1s for processing
100 examples, the version with uniqueness propagation is over 3 times faster
than the one with standard uniqueness (25.0 seconds). This factor 3 is higher
than the reduction of the number of subsumption tests, but as said before, the
tests themselves tend to become more efficient too.

6 Conclusions

The computation of the lgg of two clauses contains a reduction step, which itself
is NP-hard and generally has to rely on multiple theta-subsumption tests. The
fewer such tests are needed, the more efficient the lgg computation becomes.
“Unique” literals, which have no other literals that match it, can trivially be
excluded from such testing. In this paper, we have showed that the concept of
uniqueness can be broadened, so that more literals fulfill the criterion, and that
this can lead to faster computation of the lgg.

This work is preliminary. A more extensive experimental comparison of lgg
computation methods would be useful; this comparison should be done on a
wider range of datasets, and should assess not only the effect of uniqueness
propagation in a simple implementation of lgg, but also when combined with a
more advanced version such as Maloberti and Suzuki’s Jivaro.

References

1. Becerra-Bonache, L., Blockeel, H., Galván, M., Jacquenet, F.: A first-order-logic
based model for grounded language learning. In: Advances in Intelligent Data Anal-
ysis XIV - 14th International Symposium, IDA 2015, Saint Etienne, France, October
22-24, 2015, Proceedings. pp. 49–60 (2015)

12

2. Becerra-Bonache, L., Blockeel, H., Galván, M., Jacquenet, F.: Relational grounded
language learning. In: Proceedings of the 22nd European Conference on Artificial
Intelligence (2016), to appear

3. Gottlob, G., Fermüller, C.G.: Removing redundancy from a clause. Artif. Intell.
61(2), 263–289 (1993)

4. Maloberti, J., Suzuki, E.: An efficient algorithm for reducing clauses based on con-
straint satisfaction techniques. In: Inductive Logic Programming, 14th International
Conference, ILP 2004, Porto, Portugal, September 6-8, 2004, Proceedings. pp. 234–
251 (2004)

5. Plotkin, G.D.: Machine Intelligence 5, chap. A note on inductive generalization, pp.
153–163. Edinburgh University Press (1970)

13

