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Abstract. Representation learning is a field that has rapidly evolved
during the last decade, with much of this progress being driven by the
latest breakthroughs in deep learning. Digital medical imaging is a par-
ticularly interesting application since representation learning may enable
better medical decision support systems. ImageCLEFcaption focuses on
automatic information extraction from biomedical images. This paper
describes two representation learning approaches for the concept detec-
tion sub-task. The first approach consists of k-means clustering to create
bags of words from SIFT descriptors. The second approach is based on
a custom deep denoising convolutional autoencoder. A set of perceptron
classifiers were trained and evaluated for each representation type. Test
results showed a mean F1 score of 0.0488 and 0.0414 for the best run
using bags of words and the autoencoder, respectively.
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1 Introduction

Representation learning has been a rapidly evolving field during the last decade
[2]. The discovery of more powerful representation learning techniques opens
up tremendous prospect for semi-supervised and unsupervised decision systems,
and further unlocks the potential of content-based image retrieval (CBIR). A
significant part of this progress comes as a consequence of the latest break-
throughs in deep learning. This extensive use of deep learning is no exception in
health informatics, including medical imaging, where a vast range of use-cases
have been tackled, and multiple solutions have relied on deep learning for such
purposes [15]. Due to the inherent nature of medical imaging datasets, which
are scarce and both frequently class-imbalanced and non-annotated, the rapid
developments in deep learning and representation learning pose particular in-
terest for the medical field, since such developments may enable better concept
representation of digital medical imaging.



Representation learning, sometimes called feature learning, is often defined as
learning a function that transforms the available data samples into a repre-
sentation that makes other machine learning tasks easier to approach. Feature
extraction is the related concept of obtaining these representations. This can be
achieved using a wide range of approaches, such as k-means clustering, sparse
coding [12] and Restricted Boltzmann Machines (RBMs) [8]. More recently, with
the shift of interest leading to a focus on deep learning techniques, approaches
based on autoencoders [16] have also been developed.

The long-running ImageCLEF initiative has introduced the caption challenge
for 2017 [10], aiming for the automatic information extraction from biomedi-
cal images. This challenge is divided into two sub-tasks: concept detection and
caption prediction. The concept detection sub-task [5] is the first part of the
caption prediction task, in which the goal is to automatically recognize certain
concepts from the UMLS vocabulary [3] in biomedical images. The obtained
list of concepts is then used in the caption prediction sub-task, where a small
human-readable description of the image must be generated.

For this challenge, we have hypothesized that a sufficiently powerful representa-
tion of images would enable a medical imaging archive to automatically detect
biomedical concepts with some level of certainty and efficiency, thus improving
the system’s information retrieval capabilities over non-annotated data.

This paper presents our solution proposal for the concept detection sub-task, and
describes our methods of image feature extraction for the purpose of biomedi-
cal concept detection, followed by their evaluation under the ImageCLEF 2017
challenge.

2 Methods

This task was accompanied with three data sets containing various images from
biomedical journals: the training set (164614 images), the validation set (10000
images) and the testing set (10000 images). Only the first two included the list
of concepts applicable to each image, whereas the testing set’s annotations were
hidden from the participants.

In order to evaluate the imposed hypothesis of a middle-level representation for
medical images, we have addressed the concept detection task in two phases.
First, two feature extraction methods for image representation were chosen and
built:

– In Section 2.1, as a classical approach, bags of visual words were used as
image descriptors, obtained from the clustering of visual keypoints;

– In Section 2.2, a deep convolutional sparse autoencoder was trained and
features were extracted from its bottleneck vector.



Secondly, the two representations were validated by training fast classifiers over
the new representations, in Section 2.3.

2.1 Bags of Visual Words

Without resizing or preprocessing the images, Scale Invariant Feature Trans-
form (SIFT) keypoint descriptors [13] were extracted from all three datasets.
An OpenCV [4] implementation was used for SIFT keypoint extraction and de-
scriptor computation. Each image could yield a variable number of descriptors
of size 128. In cases where the SIFT algorithm did not retrieve any keypoints,
the algorithm’s parameters were adjusted to loosen edge detection criteria.

From the training set, 500 files were randomly chosen and their respective key-
points collected to serve as template keypoints. A visual vocabulary (codebook)
of size k = 1000 was then obtained by performing k-means clustering on all tem-
plate keypoints and retrieving the centroids of each cluster, yielding an ordered
list of 1000 vectors of fixed size V = {Vi}.

Once a visual vocabulary was available, we constructed an image’s bag of visual
words (BoW) by determining the closest visual vocabulary point and increment-
ing the corresponding position in the BoW for each image keypoint descriptor.
In other words, for an image’s BoW B = {oi}, for each image keypoint descrip-
tor dj , oi is incremented when the smallest Euclidean distance from dj to all
other visual vocabulary points in V is the distance to Vi. Finally, each BoW was
normalized so that the sum of all elements in a BoW equals 1. We can picture
the bag of visual words as a histogram of visual descriptor occurrences, which
can be used for representing visual content in CBIR.

2.2 Sparse Autoencoder

A deep convolutional neural network was designed for the unsupervised ex-
traction of visual features from biomedical images (Figure 1). It is a quasi-
symmetrical autoencoder with a series of encoding and decoding blocks (respec-
tively named henceforth ci and di for i ∈ {1, 2, 3}) with shared weights. A sparse
latent code representation of dimensionality 10000 (ten thousand) lies in the mid-
dle. As a denoising autoencoder, its goal is to learn the pair of functions (E,D)
so that x′ = D(E(x̃)) is closest to the original input x, where x̃ is a slightly
corrupted version of x. The aim of making E a function of x̃ is to force the
process to be more stable and robust, thus leading to representations of higher
quality [16].

2.2.1 Encoder / Decoder Specification Each encoder block ci is composed
of two sequences of 2D convolution components, where each convolution is fol-
lowed by batch normalization [9] and Rectified Linear Unit (ReLU) activations.
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Fig. 1: Schematic representation of the autoencoder. The c# and d# blocks
contain convolutional and pooling/unpooling layers in the indicated order. The
dashed arrows represent the transfer of pooling indices to guide the unpooling
layers.

Then, a 2D max-pooling layer with a 2x2 kernel is added. The first convolu-
tional layer of c1 relies on a kernel (filter) of size 7x7, whereas the remaining
convolutions have a kernel of size 3x3. The exact numbers of kernels in each con-
volutional layer are shown in Figure 1, starting with 64 filters and duplicating
upon each new encoder block. The layers are also described with greater detail
in Table 1. Instead of max-pooling in the third block, a 1x1 kernel convolution
is performed, followed by global average pooling and a ReLU activation, yield-
ing the code tensor z. The 1x1 convolution followed by global average pooling
behaves similarly to a fully connected network, with the advantage of making
the network invariant to input dimensions.

Tbl. 1: A tabular representation of the encoder layers’ specifications. The Details
column may include the normalization and activation layers that follow a layer
(where BN stands for batch normalization and ReLU(x) = max(0, x)).

Layer Kernels Size/Stride Details
conv1 128 7x7 /2 BN + ReLU
conv2 128 3x3 /1 BN + ReLU
pool2 N/A 2x2 /2
conv3 256 3x3 /1 BN + ReLU
conv4 256 3x3 /1 BN + ReLU
pool4 N/A 2x2 /2
conv5 512 3x3 /1 BN + ReLU
conv6 512 3x3 /1 BN + ReLU
pool6 N/A 2x2 /2
conv7 10000 1x1 /1 BN, linear activation
avgpool N/A 8x8 ReLU, h = E(x̃)



The decoding blocks replicate the encoding process in inverse order (Table 2).
It starts with an upsampling of the code to the same three-dimensional feature
shape as the encoder’s final convolutional layer. Convolutions in these blocks are
transposed (also called fractionally-strided convolution in literature, and decon-
volution in a few other papers). Furthermore, the unpooling layer is a guided
unpooling operation, in which the exact position of the encoder’s max-pool ac-
tivation is replicated in the same position in the corresponding decoding phase.
This is achieved by passing the switch indices from the encoder’s max-pooling
layers, as in [14].

Tbl. 2: A tabular representation of the decoder layers’ specifications. The Details
column may include the normalization and activation layers that follow a layer,
as well as information about weight sharing.

Layer Kernels Size/Stride Weight share Details
upsample N/A 8x8
dconv7 512 7x7 /2 BN + ReLU
unpool6 N/A 2x2 /2 Guided by "pool6"
dconv6 512 3x3 /1 conv6 BN + ReLU
dconv5 256 3x3 /1 conv5 BN + ReLU
unpool4 N/A 2x2 /2 Guided by "pool4"
dconv4 256 3x3 /1 conv4 BN + ReLU
dconv3 128 3x3 /1 conv3 BN + ReLU
unpool2 N/A 2x2 /2 Guided by "pool2"
dconv2 127 3x3 /1 conv2 BN + ReLU
dconv1 3 7x7 /2 conv1 Linear activation, x′ = D(h)

The autoencoder was designed with this symmetry to enable the encoder and
decoder pair to share the weights of the kernels. These weights were initialized
as in [7], and were shared in a way that matrix Wi is used by the ith convo-
lution layer in the encoder (counting from the left) and by the same transpose
convolution number when counted from the right. The only exception lies in
the convolutional layer pair closest to the latent code, which do not share any
parameters. The layers’ bias parameter and batch normalization coefficients are
also not shared among the two parts of the network.

2.2.2 Preprocessing and Augmentation Training samples were obtained
through the following process: images were resized so that its shorter edge size
was 160 pixels. Afterwards, the sample was augmented using random square
128 pixel-wide random crops (of 9 possible kinds of crops: 4 corners, 4 edges
and center). Validation and test images were simply resized to fit the 128x128
dimensions. For all cases, images’ pixel RGB values were normalized with the



formula n(v) = v/128.0 − 1, thus sitting in the range [-1, 1]. In the training
phase, a Gaussian noise of standard deviation 0.05 was applied over the input,
yielding the noisy sample x̃.

2.2.3 Network Training Details The network was trained through stochas-
tic gradient descent, by minimizing the mean squared error between the input
x and the output x′, using the Adam optimizer [11]. A sparse representation
was achieved with two mechanisms: first, since the final encoding activation is
ReLU, negative outputs from the previous layer are zeroed. Second, an absolute
value penalization was applied to z, thus adding the extra minimization goal of
keeping the code sum small. The final decoder loss function was therefore:

L(E,D) =
1

2r

r∑
i=0

(xi − x′i)
2
+Ω(z)

where

Ω(z) = s×max

(
0,

z∑
zi

zi − t

)

is the sparsity penalty function, r = 128×128 is the number of pixels in the input
images, and x represents the original input without synthesized noise. t and s
are, respectively, the penalization threshold and the sparsity coefficient hyper-
parameters, which we left defined as t = 1 and s = 0.0001. At the final training
iteration, 73% of extracted features from the training set were zeros on average.
Sparser representations are possible by adjusting these hyperparameters.

The model was trained over 20600 steps, which is approximately 8 epochs, with a
mini-batch size of 64. The autoencoder’s loss evolved according to Figure 2. The
base learning rate was 0.005, but the first 50 steps used a “warm-up” learning rate
of 0.001 to prevent the initial loss values from producing extreme activations,
which could make the network harder to converge (a similar procedure was done
in [6]). The learning rate was multiplied by 0.2 every 5140 steps (± two epochs),
to facilitate convergence.

TensorFlow [1] with GPU support was used to train the neural network and
retrieve the latent codes of each image in the three datasets. A custom version
between 1.1.0 and 1.2.0 was used (specifically, the commit hash 163b1c078d in
the official GitHub repository1) in order to have early access to the gradient im-
plementation of the max-pooling layer with arg-max propagation. TensorBoard
[1] was used during the development for monitoring and visualization. Training
took approximately 22 hours to complete on one of the GPUs of an NVIDIA
Tesla K80 graphics card in an Ubuntu server machine.

1 https://github.com/tensorflow/tensorflow

https://github.com/tensorflow/tensorflow


Fig. 2: Autoencoder loss evolution over the steps of the training process.

2.3 Concept Classification Perceptron

For each representation learned, a simple classification model was applied to the
resulting features. Aiming for low complexity and classification speed, the three
sets of classifiers were perceptrons trained using stochastic gradient descent over
the training set.

In the first run submitted (#1 ), the learning rate was configured to slowly decay
during the training process (µ(t) = 1

αt+1 ) where an L2 regularization term with
coefficient α = 0.005 was included. The last two runs submitted (#2 and #3 )
had slight changes in hyperparameters, which appeared to yield better outcomes
when considering a small sample of biomedical concepts. A constant learning rate
of 1.0 was used instead, and classes were balanced so that the weight of each
class was the inverse of its frequency in the set, thus aiming to penalize the
presence of false negatives through higher losses. While run #2 used the SIFT
bags of words, run #3 used the latent features from the autoencoder.

Due to computational time constraints, the number of gradient descent epochs
was relatively limited: 50 iterations for the SIFT bags of words and 20 for the
autoencoder features. Biomedical concepts’ identifiers were sorted by their total
number of occurrences in the training set. With this list, the 1000 most frequent
concepts in the training set were retrieved and a perceptron model was trained
for each. With more time and computational resources, this approach can be
linearly scaled to cover all labelled concepts.

Once trained, the models’ performance was evaluated with the validation set, in
terms of precision, recall, and mean F1 score. The same model was then used
to predict the concept list of each image in the testing set. Other than this final
prediction phase, neither the feature extractors nor the trained classifiers have
ever been fed with samples from the testing set. Moreover, no other sources of
data were used in the full process.



3 Results

Table 3 shows metrics obtained on the validation and test sets. The validation F1
metric, which was obtained from evaluating the model against the validation set,
only assumes the existence of the 1000 most frequent concepts in the training set.
Nonetheless, these metrics were deemed acceptable for a quantitative comparison
among local runs, and have indeed defined the same ranking order as the final
test metrics’.

Tbl. 3: Results obtained from the three submissions to the ImageCLEF 2017
concept detection task.

# ImageCLEF Run File Kind Val. Recall Val. F1 Test F1
1 DET_0503192045.txt SIFT-BoW 0.166286 0.022324 0.0488
2 DET_0504234124-0.txt SIFT-BoW 0.630096 0.020586 0.0463
3 DET_0505041340-0.txt AE 0.553397 0.013764 0.0414

Unlike our previous expectations, the hyperparameter changes applied in runs
#2 and #3 appeared to slightly cripple the model’s performance, regardless of
the extracted features. Applied modifications may also benefit from additional
classifier training steps for a better convergence.

The autoencoder designed for this challenge exhibited the worst performance
among submitted runs, while demanding more computational resources for train-
ing and feature extraction. However, given its known and recently well studied
milestones in image analysis, this does not invalidate the use of deep convo-
lutional neural networks in general. Rather, it suggests that some difficulty in
model training for this domain was experienced, and proper concept detection
learning would likely require further tweaking of the network’s hyperparameters
and more iterations.

Even after reducing the problem to a feature vector instead of the original input,
the number of annotated concepts was too large (over 20 thousand) to train a
good classifier for each concept. Higher numbers of annotated concepts imply
higher computational costs, and available compute power was limited. In order
to deal with this tradeoff, we decided to follow an approach of tackling the most
frequent concepts, thus mitigating computational costs, but with the drawback
of not providing any results for the remaining concepts.

4 Conclusion

This paper describes our proposal to solve the concept detection sub-task of the
ImageCLEFcaption task, resting on the hypothesis that a sufficiently powerful



representation of images can enable a medical imaging archive to automatically
detect biomedical concepts with some level of certainty and efficiency. Results
are presented for the three submitted runs, with the first two being based on a
BoWs approach, whereas the third one is based on a deep convolutional sparse
autoencoder.

First and foremost, it is important to mention that extreme variability was
experienced in this challenge. Regarding obtained test results, a mean F1 score
of 0.0488 and 0.0414 was obtained for the best run using BoW and for the
autoencoder, respectively.

Attaining better feature representations is a major step that can have significant
impact in the end results. Due to the major breakthroughs already originated
by deep learning techniques, we believe that further research in representation
learning should be carried out, as it will allow us to determine improved ways of
training neural networks for this purpose, and evaluate a wider variety of feature
learning solutions.
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