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Abstract. We report our participation to the multi-modal Spatial Role
Labeling (mSpRL) lab at CLEF 2017. The task consists in extracting
and classifying spatial relationships from textual data and associated
images. Our approach focuses on the classification part as we use a base-
line system for the extraction of the relations: we train a linear Support
Vector Machine (SVM) model to classify hand-crafted vectors represent-
ing spatial relations. We present the obtained experiments and discuss
also the effect of model parameters. Finally, we conclude the paper and
introduce ideas for future developments.
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1 Introduction

In this paper, we report our participation to the multi-modal Spatial Role La-
beling lab [8] at CLEF 2017 [4]. The task consists in extracting and classifying
spatial relationships from textual data and associated images.

The mSpRL goal is composed of three successive sub-tasks. The first one
aims at extracting spatially-related entities and annotating the text using the
following labels: Trajector, Spatial Indicator and Landmark. The second one
consists in associating the previously found entities into spatial relation triplets
r = (trajector, spatial indicator, landmark). The goal of the third sub-task is to
classify those relations. While the two first sub-tasks could be seen as a linguistic
conceptual representation (spatial role labeling), the third sub-task rather refers
to a formal semantic representation of relations (spatial qualitative labeling).
Possible labels for the relation classification are divided in three general types:

– Region RCC8 [10] (8 possible values): disconnected (DC), externally con-
nected (EC), equal (EQ), partially overlapping (PO), tangential proper part
(TPP), tangential proper part inverse (TPPi), non-tangential proper part
(NTPP), non-tangential proper part inverse (NTPPi).



– Direction (6 possible values): left, right, above, below, behind, front
– Distance (5 possible values): middle, fast, close, far, near

The mSpRL task of CLEF 2017 is built upon SemEval 2012 task 3 [5] which
was proposed several years ago. That task has been augmented with images
paired with text as additional inputs and sub-task 3 (relation classification).

The training set consists in 275 images, 600 associated sentences (several
sentences can be linked to a single image) and a total of 761 relations. Figure 1
shows an example of the task.

Fig. 1. Overview of the mSpRL task

In qualitative spatial representation and reasoning, spatial relations can be
classified precisely (for example, RCC8 is a set of topological relations between
regions). Identifying spatial relations using text only is a difficult task, due to the
variety of meaning and interpretations words and sentences can have. Exploit-
ing visual data could be paramount to recognize the spatial objects and their
relations but gives rise to multi-modal alignment issues. In the dataset, images
are segmented into annotated bounded boxes, and the spatial relations between
these boxes is given. This spatial information enables us to enrich the textual
data.

In our contribution, the extraction of spatial roles and relationships (sub-
tasks 1 and 2) was done using the winning system of previous years [11], an
implementation of this model being in a software called Saul [7]. It considers
text solely as input (ignoring images) and returns a set of trajector, spatial in-
dicator and landmark grouped into relations. Our contribution focuses on two
aspects: using provided images as a complementary source of information and
the relation classification sub-task. To do so, we handcraft a representation for
spatial relations as a vector built using multi-modal inputs: the textual triplet
and features from the associated image. We then train a SVM to classify the
spatial relation. The SVM is trained to predict both general types (region, di-
rection and distance labels) and specific values (EC, front, close, ...). Note that



the multiple labels can be associated with a single relation (as it is the case in
the example of Figure 1).

The rest of this document is organized as follows: we describe our contribu-
tion including the classification pipeline and the design of relation embeddings.
Finally, we present our experiments and the associated results.

2 Model

Our contribution mainly focuses on sub-task 3 since we used the previous state
of the art model of [11] - re-implemented in Saul [7] - to perform sub-tasks 1
and 2. Sub-task 3 is a supervised classification problem in which the available
input data is composed of 3 elements: the relation triplet, the original sentence
from which the triplet was extracted, and an associated image. We convert that
input data into a multi-modal embedding erelation that we describe in Section
2.1. We then use a linear SVM to classify the general types and specific values
of the relations, the classification part being described in Section 2.2.

2.1 Relation Embedding

A relation is defined by visual (an image) and textual data (a triplet and the
sentence from which it was extracted). We build our embedding by concatenating
a textual embedding etext and an image embedding eimage.

erelation = etext ⊕ eimage

Textual embedding. In our model, the text embedding contains information from
the triplet only, as we drop the original sentence. Indeed, we assume that the
useful information for the classification sub-task is contained in the extracted
triplet, and that using the surrounding context of the sentence would lead to
over-fitting of the model, given the small size of the training data.

We construct etext as follows:

etext = utrajector ⊕ ulandmark ⊕ 1spatial indicator

where u? is the average of the pre-trained embedding of the words that compose
?. In our experiments, we consider both Glove embeddings [9] and multi-modal
word embedding described in [1]. 1? is a one-hot encoding of the spatial-indicator
? of the relation ; we use a fixed lexicon of 77 spatial-indicators as they are lim-
ited in number. ⊕ denotes the concatenation operator. Given the small amount
of training data, ideally, etext has a small dimension to prevent over-fitting. With
that objective in mind, we project word embeddings in a space of reduced dimen-
sions ; we consider both random projections and Principal Component Analysis
(PCA) techniques conducted on the training database.



Visual embedding. Segmented images and pre-computed visual features are pro-
vided in the dataset. A label is provided for each region of the segmented image.
The given visual feature of a region is a 27-dimensional vector containing low-
level information such as region area, width and height of the region, mean
and standard deviation of height and width in the x and y axis respectively,
the boundary/area ratio, convexity, average, standard deviation and skewness
in RGB and CIE-Lab color spaces. Segmenting the images was done manually
and visual features of all the regions were computed in [3] and are included in
the dataset. We construct eimage as follows:

eimage = rtrajector ⊕ rlandmark ⊕ rspatial

where r? is the visual embedding of the region ? ; we find the matching re-
gion of a landmark or a trajector by taking the region annotated with the
most similar word (i.e. we compute cosine similarity scores on word embed-
dings). In rspatial, we encode in a one-hot vector the connectivity relations be-
tween the landmark and trajector regions: adjacent/disjoint, beside/x-aligned,
above/below/y-aligned. This information is also provided as input data. As with
textual embedding, to avoid over-fitting of the SVM classifier, we project the r?
vectors in a space of smaller dimension.

Note that the relation embeddings are hand-crafted and they remain fixed
during training. The main reason for that is to reduce over-fitting of the model
given the small size of the training dataset.

2.2 Classification

Once the embeddings of spatial relations are built (as explained in section 2.1),
we use linear Support Vector Machines for classification [2], according to three
strategies as shown in Figure 2:

– Mono-label: predicts a single label corresponding to specific values. Multi-
labels are considered as distinct classes. This gives a total of 28 classes (we
remove multi-label classes that do not occur in the training set). The general
type is simply deduced from the specific values.

– Multi-label: predicts multiple labels corresponding to the specific values.
We use the One-vs-Rest (OvR) strategy to do so, which gives a total of 19
classes. The general type is simply deduced from the specific values.

– Hierarchical Multi-label: first predicts multiple labels corresponding to
the general types, then uses appropriate classifiers (each one trained on a
particular general type) to predict multiple labels corresponding to the spe-
cific values for each of the predicted general type. That gives us a total of
4 classifiers (one to determine the general types and one for each possible
general type).



Fig. 2. Overview of the considered classification strategies

3 Experiments

3.1 Sub-tasks 1 and 2: Spatial Relation Extraction

Sub-Task 1. Identification of spatial entities. A sparse perceptron classifier is
trained for each role: Trajector, Spatial Indicator, and Landmark. The features
are designed using a set of lexical, syntactical, and contextual features (lexical
surface of the phrases, headwords phrases, POS-tags, dependency relations, sub-
categorization, etc.). Results are presented in Table 1.

Role Precision Recall F1 LCount PCount
Trajector 79.29 53.43 63.84 874 589
Spatial Indicator 97.59 61.13 75.17 95 498
Landmark 94.05 60.73 73.81 573 370
Overall 89.55 58.30 70.41 2242 1457

Table 1. Results of Saul’s baseline on test data for spatial roles prediction. LCount
stands for the count of labels in the gold data and PCount stands for the number of
predicted labels

Sub-Task 2. Identification of spatial relations. In order to classify spatial re-
lations, two binary classifiers are trained on pairs of phrases: one takes as in-
put Trajector-Spatial Indicator pairs, the other on considers Spatial Indicator-
Landmark pairs. With the perceptron assigned to Spatial Indicators, the in-
dicator candidates are found, and all possible role-indicator pairs are possible
candidates for the binary classifiers trained earlier. At the end, pairs with com-
mon indicators are the final triplets. Results are presented in Table 2.



Precision Recall F1 LCount PCount
Overall 68.33 48.03 56.41 939 660

Table 2. Results of Saul’s baseline on test data for spatial relations extraction

3.2 Sub-task 3: Spatial Relation Classification

This sub-task is the main focus of our contribution since we were interested in
using multi-modal embedding for classifying spatial relations. For this purpose,
we run two different scenarios:

– Our submitted best model (no image) which uses the mono-label classifica-
tion strategy. We have erelation = etext as eimage is ignored. Word embeddings
are projected in a space of dimension 25 with PCA (outperforming random
projection). Glove embeddings are used as they outperformed multi-modal
embeddings of [1].

– Our submitted model with image is the same than the model without image
but the relation embedding includes rspatial in addition: erelation = etext ⊕
rspatial

Overall results. Table 3 presents the obtained results for sub-task 3 for our
scenarios with respect to two baselines:

– Organizer’s baseline: The features for the type classifiers are the concatena-
tion of the features from sub-task 1 for each argument of the triplet.

– Best model which is the same model as the one submitted without image
but the word embeddings are not projected in a lower-dimensional space and
stay unchanged.

Precision Recall F1
Organizer’s baseline 47.77 23.49 27.00
Submitted model with image 56.49 39.04 43.54
Submitted model (no image) 58.74 40.72 45.64
Best model 58.66 41.39 46.29

Table 3. Global scores on test data for the specific value prediction task

Please, note that all hyper-parameters are chosen with a 5-fold cross-validation
computation on the training set. Our model, with its different settings reaches
better scores (precision, recall and F1) than the baseline by a large margin. [6]
reports comparable and slightly better results with a 10-fold cross-validation.
For more detailed results, we refer the reader to Appendix A.



Classification strategies. To refine these results, we also compare the different
classification strategies, as shown in Table 4. Mono-label classification appears
to work better than other strategies. Interestingly, hierarchical strategy gives a
higher precision but worse recall (and overall worse F1 score). A joint model,
coupling mono-label and hierarchical models, might lead to even better perfor-
mance by taking advantage of both models (best precision for Hierarchical, best
recall for Mono-label).

Classif. type Precision Recall F1
Mono-label 58.66 41.39 46.29
Multi-label 62.14 39.49 45.32
Hierarchical 62.17 40.05 45.88

Table 4. Global score on test data for the specific value prediction task, using several
classification techniques

Influence of the components of the embeddings. At a finer level, we also measure
the influence of each component of the global relation embedding vector erelation
with an ablation study. Instead of using full relation embeddings with all of their
components, we remove one or several parts of them and we report in Table 5
obtained results of classification models trained on those partial relation em-
beddings. Each line of the table contains the results of a 5-fold cross-validation
training on erelation without the ablated part, namely image, text, spatial indi-
cator, visual region embeddings. This experimentally highlights the importance
of which spatial indicator is being used and the textual embeddings for the tra-
jector and then landmark. Visual parts of the relation embedding are useless or
even harmful for the overall performance.

Ablated part Precision Recall F1
None 87.26 87.32 85.57
eimage 87.60 88.49 86.50
etext 71.67 45.95 28.85
rspatial 87.04 87.62 85.95
r? 85.76 86.51 84.70
1indicator 75.80 75.69 72.16
u? 74.72 73.03 70.34

Table 5. Ablation study of the influence of the different parts of the relation embedding

While it is unclear why using the visual embeddings slightly degrades the
overall performance, we note that many images do not contain areas for the
entities found by sub-task 1 in the sentence (for example "bench" is found as
trajector in the sentence "a bench in a park" but the associated image might



not contain any region labeled "bench"). Moreover, sometimes our algorithm
misses the good region: for example sub-task 1 gives the entity "head" in the
text but there is no "head" region in the image but rather "face-of-person".
Despite some handcrafted rules that we have added to account for this problem,
lots of regions are not considered. Also, even though high-level features from
the images are provided, we assume that there are not enough images in the
training set to learn something complementary from the text. Eventually, since
the classification labels of sub-task 3 are only gold labels prone to annotation
subjectivity, a human annotator would not get 100% f1-score. It would then be
interesting to know about human performance on that sub-task for a comparison
with our results.

Word embedding dimension influence. Since textual embeddings are proved to
be major components of the spatial relation representation, we evaluate the
impact of the choice of the dimension of the space in which word embeddings
are projected with PCA. We make that parameter vary while others are kept
fixed, in the experiment reported in Table 3. We can see that increasing the word
embedding dimension improves the effectiveness of our approach and our best
performing model does not project word embeddings and keep them unchanged.
Intuitively, having too high-dimension embeddings leads to more parameters and
a higher risk in over-fitting the model. For a good trade-off between performance
and limited size for relation embeddings, 50 is also a suitable choice.

Fig. 3. Influence of the word embedding dimension on the F1 score. Vertical bars are
the standard deviation of the results on 10 experiments, where each experiment is a
5-fold cross-validation

4 Conclusion and Future Work

In this work, we focused on sub-task 3 of the mSpRL lab of CLEF 2017: predict-
ing general types and specific values for relations. Our system relies on a baseline



to extract spatial roles and relations from raw textual data. We build fixed em-
beddings for spatial triplets, and a linear SVM classifies relations. Unfortunately,
we were not able to use provided visual inputs in a profitable way as our best
model ignores images. These results highlight that considering multi-modal data
for enhancing natural language processing is a difficult task and requires more
efforts in terms of model design.

As future work, we have two objectives. First, we want to use the image
data for sub-tasks 1 and 2 in an end-to-end fashion, as visual information might
be useful to disambiguate between several candidate relations. Our other goal
aims at addressing the problem of the limited quantity of training data: we
wish to explore transfer learning techniques to train spatial word embeddings on
auxiliary tasks.
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A Detailed results of the best performing model

General type Precision Recall F1 LCount PCount
Direction 65.10 43.60 52.22 445 298
Region 68.16 51.00 58.34 449 336
Distance 66.67 22.22 33.33 9 3
Region/Distance 73.91 50.00 59.65 34 23
Direction/Direction 100,00 0.00 0.00 1 0
Region/Direction 100,00 0.00 0.00 1 0
Overall 66.97 47.07 5.13 939 660

Table 6. Coarse-grained results on general type and specific value predictions for the
best model.



Specific Value Precision Recall F1 LCount PCount
left 59.83 54.26 56.91 129 117
front 78.08 56.44 65.52 101 73
right 53.06 29.55 37.96 88 49
behind 68.57 40.00 50.53 60 35
above 63.64 23.73 34.57 59 22
below 100.00 22.22 36.36 9 2
TPP 60.35 48.39 53.71 217 174
EC 45.75 50.36 47.95 139 153
DC 28.57 2.94 5.33 68 7
PO 100.00 0.00 0.00 10 0
NTPP 0.00 0.00 0.00 4 2
EQ 100.00 0.00 0.00 1 0
TPPI 100.00 0.00 0.00 1 0
Overall 58.66 41.39 46.29 894 634

Table 7. Fine-grained results on general type and specific value predictions for the
best model.
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