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Abstract. In this work we tackle the problem of checking strong equiv-
alence of logic programs that may contain local auxiliary atoms, to be
removed from their stable models and to be forbidden in any external
context. We call this property projective strong equivalence (PSE). It
has been recently proved that not any logic program containing auxil-
iary atoms can be reformulated, under PSE, as another logic program or
formula without them – this is known as strongly persistent forgetting.
In this paper, we introduce a conservative extension of Equilibrium Logic
and its monotonic basis, the logic of Here-and-There, in which we deal
with a new connective ‘|’ we call fork. We provide a semantic charac-
terisation of PSE for forks and use it to show that, in this extension,
it is always possible to forget auxiliary atoms under strong persistence.
We further define when the obtained fork is representable as a regular
formula.

1 Introduction

Answer Set Programming (ASP [1]) has become an established problem-solving
paradigm for Knowledge Representation and Reasoning (KRR). The reasons
for this success derive from the practical point of view, with the availability
of efficient solvers [2, 3] and application domains [4], but also from its solid
theoretical foundations, rooted in the stable models [5] semantics for normal logic
programs that was later generalised to arbitrary propositional [6], first-order [7,
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8] and infinitary [9] formulas. An important breakthrough that supported these
extensions of ASP has been its logical characterisation in terms of Equilibrium
Logic [6] and its monotonic basis, the intermediate logic of Here-and-There (HT).
Despite its expressiveness, a recent result [10] has shown that Equilibrium Logic
has limitations in capturing the representational power of auxiliary atoms, which
cannot always be forgotten. To illustrate this point, take the following problem.

Example 1. Two individuals, mother and father, both carrying alleles a and b,
procreate an offspring. We want to generate all the possible ways in which the
offspring may inherit its parents’ genetic information.

According to Mendelian laws, we should obtain three possible combinations
that, ignoring their frequency, correspond to the sets of alleles {a}, {b} and {a, b}.
The straightforward way to generate these three stable models is to encode an
inclusive disjunction with the following 3 rules:

a ∨ ¬a b ∨ ¬b ⊥ ← ¬a ∧ ¬b (P1)

A drawback of this representation is that it does not differentiate the information
coming from each parent, possibly becoming a problem of elaboration tolerance.
For instance, if only the mother’s information were available, one would expect to
obtain the stable models {a} and {b} but not {a, b}, as there is no evidence of that
combination without further information about the father. So, the mother alone
would be better represented by a regular disjunction a ∨ b. However, we cannot
represent each parent as an independent disjunction like that, since (a∨b)∧(a∨b)
just amounts to (a∨b) and the combination {a, b} is not obtained. A simple way
to represent these two disjunctions separately is using auxiliary atoms to keep
track of alleles from the mother (ma ∨mb) and the father (fa ∨ fb). This leads
to program P2:

ma ∨mb a← ma b← mb (Pm)
fa ∨ fb a← fa b← fb (Pf )

consisting of the mother’s contribution Pm and the father’s contribution Pf .
Four stable models are obtained from P2, {ma, fa, a}, {mb, fb, b}, {ma, fb, a, b}
and {mb, fa, a, b}, but if we project them on the original vocabulary V = {a, b}
(i.e. we remove auxiliary atoms), they collapse to three {a}, {b} and {a, b} as
expected. Note that, although auxiliary atoms in this example have a meaning
in the real world (they represent the effective sources of each inherited allele)
they were not part of the original alphabet V = {a, b} of Example 1, which
does not distinguish between the same effect {a, b} but due to different sources
{ma, fb, a, b} and {mb, fa, a, b}.

As we have seen, P1 and P2 are “V -equivalent” in the sense that they yield the
same stable models when projected to alphabet V = {a, b}. A natural question
is whether this also holds in any context, that is, if P1 ∪Q and P2 ∪Q also yield
the same V -projected stable models, for any context Q in the target alphabet V
(since we want to keep auxiliary atoms local or hidden). This is obviously a kind
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of strong equivalence relation [11] – in fact it is one of the possible generalisations1

of strong equivalence studied in [12]. In this paper, we will just call it projective
strong equivalence (PSE) with respect to V , or V -strong equivalence for short.
The PSE relation has also been used in the literature for comparing a program P
and some transformation tr(P ) that either extends the vocabulary with new
auxiliary atoms [13] (called there strong faithfulness) or reduces it for forgetting
atoms as in [10] (called there strong persistence).

As we will see later, programs P1 and P2 are indeed V -strongly equivalent, so
they express the same combined knowledge obtained from both parents. How-
ever, if we want to keep program Pm alone capturing the mother’s contribution,
there is no possible {a, b}-strongly equivalent representation in Equilibrium Logic
(the same happens with Pf ). In other words, we cannot forget atoms ma and
mb in Pm and get a program preserving PSE. This impossibility follows from a
recent result in [10] that shows that forgetting atoms under strong persistence is
sometimes impossible. In practice, this means that auxiliary atoms in ASP are
more than ‘just’ auxiliary, as they allow one to represent problems that cannot
be captured without them. A natural idea is to consider an extension of ASP in
which forgetting auxiliary atoms is always possible.

In this paper, we extend logic programs to include a new construct ‘ | ’ we
call fork whose intuitive meaning is that the stable models of P | P ′ corre-
spond to the union of stable models from P and P ′ in any context2 Q, that
is SM [(P | P ′) ∧Q] = SM [P ∧Q] ∪ SM [P ′ ∧Q]. Using this construct, we can
represent Example 1 as the conjunction of two forks (a | b) ∧ (a | b), one per each
parent. This conjunction of forks is not idempotent but will actually amount to
(a | b | a ∧ b). We will show that forgetting is always possible in forks but some
of them, such as (a | b), cannot be represented in Equilibrium Logic unless we
allow the introduction of auxiliary atoms.

The rest of the paper is organised as follows. Section 2 recalls basic definitions
of HT and Equilibrium Logic. Section 3 introduces an alternative characterisa-
tion of HT in terms of T -supports. The next section extends the syntax with the
fork connective and generalises the semantics to sets of T -supports (so-called
T -views). In Section 5 we characterise PSE for forks and relate this property to
forgetting. Finally, Section 6 discusses related work and concludes the paper.

2 Preliminaries

We begin by recalling some basic definitions and results related to HT. Let At
be a set of atoms called the propositional signature. A (propositional) formula ϕ
is defined using the grammar:

ϕ ::= ⊥
∣∣∣∣∣∣ p

∣∣∣∣∣∣ ϕ ∧ ϕ
∣∣∣∣∣∣ ϕ ∨ ϕ

∣∣∣∣∣∣ ϕ→ ϕ

1 It corresponds to relativised strong equivalence (with respect to V ) with projection
(with respect to V ).

2 For simplicity, we understand programs as the conjunction of their rules.
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where p is an atom. We will use Greek letters ϕ,ψ, γ and their variants to stand
for formulas. We define the derived operators ¬ϕ def= (ϕ→ ⊥) and > def= ¬⊥ and
ϕ↔ ψ def= (ϕ→ ψ) ∧ (ψ → ϕ). Given a formula ϕ, by At(ϕ) ⊆ At we denote the
set of atoms occurring in ϕ. For simplicity, we consider finite theories under-
stood as the conjunction of their formulas. The extension to infinite theories is
straightforward.

A classical interpretation T is a set of atoms T ⊆ At. We write T |= ϕ to
stand for the usual classical satisfaction of a formula ϕ. An HT-interpretation is a
pair 〈H,T 〉 (respectively called “here” and “there”) of sets of atoms H ⊆ T ⊆ At;
it is said to be total when H = T . The fact that an interpretation 〈H,T 〉 satisfies
a formula ϕ, written 〈H,T 〉 |= ϕ, is recursively defined as follows:
– 〈H,T 〉 6|= ⊥
– 〈H,T 〉 |= p iff p ∈ H
– 〈H,T 〉 |= ϕ ∧ ψ iff 〈H,T 〉 |= ϕ and 〈H,T 〉 |= ψ

– 〈H,T 〉 |= ϕ ∨ ψ iff 〈H,T 〉 |= ϕ or 〈H,T 〉 |= ψ

– 〈H,T 〉 |= ϕ→ ψ iff both (i) T |= ϕ→ ψ and (ii) 〈H,T 〉 6|= ϕ or 〈H,T 〉 |= ψ

By abuse of notation, we use ‘|=’ both for classical and for HT-satisfaction:
the ambiguity is removed by the form of the left interpretation (a single set T
for classical and a pair 〈H,T 〉 for HT). It is not difficult to see that, for total
interpretations, 〈T, T 〉 |= ϕ amounts to classical satisfaction T |= ϕ.

Proposition 1. Any HT-interpretation 〈H,T 〉 and any formula ϕ satisfy that
〈H,T 〉 |= ϕ implies 〈T, T 〉 |= ϕ (i.e. T |= ϕ classically).

HT-models can also be computed using Ferraris’ reduct [14], ϕT , defined
as the result of replacing by ⊥ those maximal subformulas of ϕ that are not
(classically) satisfied by interpretation T . As an example, given ϕ = (¬a → b)
we have the reducts ϕ∅ = ⊥, ϕ{a} = (⊥ → ⊥), ϕ{b} = (¬⊥ → b) and ϕ{a,b} =
(⊥ → b). The correspondence with HT-satisfaction is given by:

Proposition 2 (Lemma 1, [14]). Given H ⊆ T : 〈H,T 〉 |= ϕ iff H |= ϕT .

A total interpretation 〈T, T 〉 is an equilibrium model of a formula ϕ iff
〈T, T 〉 |= ϕ and there is no H ⊂ T such that 〈H,T 〉 |= ϕ. If so, we say that
T is a stable model of ϕ. By Proposition 2 this means that T is a stable model
of ϕ iff it is a minimal classical model of ϕT . We write SM[ϕ] to stand for the
set of stable models of ϕ. Moreover, we represent their projection onto some
vocabulary V as SMV [ϕ] def= {T ∩ V | T ∈ SM[ϕ] }.

Definition 1 (projective strong entailment/equivalence). Let ϕ and ψ
be formulas and V some vocabulary (set of atoms). We say that ϕ V -strongly
entails ψ, written ϕ |∼V ψ if SMV [ϕ ∧ γ] ⊆ SMV [ψ ∧ γ] for any formula γ such
that At(γ) ⊆ V . We further say that ϕ and ψ are V -strongly equivalent, written
ϕ �V ψ, if both ϕ |∼V ψ and ψ |∼V ϕ, that is, SMV [ϕ∧ γ] = SMV [ψ ∧ γ] for any
formula γ such that At(γ) ⊆ V .
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When the vocabulary V ⊇ At(ϕ) ∪ At(ψ) contains the original language
of ϕ and ψ, the projection has no relevant effect and the previous definitions
amount to regular (non-projective) strong entailment and strong equivalence. In
this case, we simply drop the V subindex in the previous notations. The following
results, respectively proved in [11] and [15], characterise non-projective strong
equivalence and entailment in terms of HT:

Proposition 3 (From [11] and [15]). Let ϕ,ψ be a pair of formulas. Then
(i) ϕ � ψ iff ϕ and ψ are equivalent in HT.

(ii) ϕ |∼ ψ iff both ϕ classically entails ψ and, for any H, if 〈H,T 〉 |= ψ and
T |= ϕ then 〈H,T 〉 |= ϕ.

In the case of projected strong entailment and equivalence, a semantic char-
acterisation was provided in [12], although limited to the case of disjunctive
logic programs. We will provide later a characterisation of strong entailment
and equivalence for fork formulas that, for the particular case in which the fork
operator does not occur, will also constitute an extension of [12] to arbitrary
propositional formulas.

3 T -supports

In this section we consider an alternative characterisation of HT-semantics that
relies on the idea of support for a given classical interpretation T .

Definition 2 (T -support). Given a set T of atoms, a T -support H is a set of
subsets of T , that is H ⊆ 2T , satisfying T ∈ H if H , ∅.

To increase readability of examples, we will just write a support as a sequence
of interpretations between square brackets. For instance, possible supports for
T = {a, b} are [{a, b} {a}], [{a, b} {b} ∅] or the empty support [ ].

Intuitively, H will be used to capture the set of “here” components H that
support the “there” world T as a model of a given formula ϕ, that is, the set of
H’s such that 〈H,T 〉 |= ϕ. When H is empty [ ], there is no support for T , so
〈T, T 〉 6|= ϕ and thus, T is not even a classical model. If H is not empty, this
means we have at least some model 〈H,T 〉 and, by Proposition 1, 〈T, T 〉 must
be a model too; this is why we require T ∈ H in the set. When not empty, the
fewer models in H, the more supported is T , since it is closer to being stable.
Accordingly, the most supported H would precisely be H = [ T ] corresponding
to a stable model. This ordering relation is formally defined below.

Definition 3. Given a set T ⊆ At of atoms and two T -supports H and H′ we
write H �T H′ iff either H = [ ] or H ⊇ H′ , [ ].

We usually write H � H′ instead of H �T H′ when clear from the context.
As an example, the classical interpretation T = {a, b} is more supported in
H1 = [{a, b} {a}] than in H2 = [{a, b} {a} {b} ∅], that is H2 � H1, because H2
contains additional interpretations and is further from being stable. We write
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HT to stand for the set of all possible T -supports. (HT ,�) forms a poset whose
bottom and top elements are [ ] and [ T ] respectively. Given a T -support H, we
define its complementary support H as:

H def=
{

[ ] if H = 2T
[ T ] ∪ {H ⊆ T | H < H} otherwise

We also define HV as the projection of every set in H to the vocabulary V , i.e.,
HV def= {H ∩V | H ∈ H}. The relation between T -supports and formulas is given
by the following definition.

Definition 4 (T -denotation). Let T ⊆ At. The T -denotation of a formula ϕ,
written ~ϕ �T , is a T -support recursively defined as follows:

~⊥ �T def= [ ]
~ p �T def= {H ⊆ T | p ∈ H}

~ϕ ∧ ψ �T def= ~ϕ �T ∩ ~ψ �T

~ϕ ∨ ψ �T def= ~ϕ �T ∪ ~ψ �T

~ϕ→ ψ �T def=
{

[ ] if T 6|= ϕ→ ψ

~ϕ �T ∪ ~ψ �T otherwise

The following proposition follows by structural induction and shows that
T -denotations can be used as an alternative semantics for the logic HT.

Proposition 4. For any interpretation 〈H,T 〉 and formula ϕ:
〈H,T 〉 |= ϕ iff H ∈ ~ϕ �T .

Corollary 1. For any set T of atoms and propositional formulas ϕ,ψ, the fol-
lowing conditions hold:
(i) T |= ϕ iff ~ϕ �T , [ ] iff T ∈ ~ϕ �T .
(ii) T is a stable model of ϕ iff ~ϕ �T = [ T ].
(iii) Given H ⊆ T : H ∈ ~ϕ �T iff H |= ϕT .

The last item asserts that the denotation ~ϕ �T can also be seen as a seman-
tic counterpart of Ferraris’ reduct ϕT . The following result is a rephrasing of
Theorem 2 in [16] under the equivalence of Proposition 4 and asserts that any
assignment of T -supports for all T ’s corresponds to (the denotation of) some
formula.

Proposition 5. Let σ be an arbitrary assignment of a support σ(T ) ∈ HT for
each T ⊆ At. Then, there exists a formula ϕ s.t. ~ϕ �T = σ(T ) for all T .

As an example, given At = {a, b}, the T -denotations of the formulas ¬a→ b
and a ∨ b are:

T ~¬a→ b �T ~ a ∨ b �T
∅ [ ] [ ]
{a} [ ∅ {a} ] [ {a} ]
{b} [ {b} ] [ {b} ]
{a, b} [{a, b} {a} {b} ∅ ] [ {a, b} {a} {b} ]
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Notice that the only stable model of ¬a→ b is {b} because ~¬a→ b �{b} =
[{b}]. Similarly, the stable models of a ∨ b are {a} and {b}. Note also that, for
all T , we always have ~¬a → b �T � ~ a ∨ b �T , that is, ¬a → b is always less
supported (further from being stable) than a∨ b. In fact, this has an interesting
consequence, as stated by the next result:

Proposition 6. For any two propositional formulas ϕ,ψ the following hold:
(i) ϕ |∼ ψ iff ~ϕ �T � ~ψ �T for every set T ⊆ At of atoms,

(ii) ϕ � ψ iff ~ϕ �T = ~ψ �T for every set T ⊆ At of atoms.

While (ii) is an immediate consequence of Proposition 4, item (i) states that
ϕ strongly entails ψ iff the former is always less supported than the latter. Note
how Proposition 6 is much more readable than Proposition 3, especially regarding
strong entailment and its relation to strong equivalence. In our example above,
Proposition 6 implies that if we replace ¬a→ b by a∨ b in any program, we will
get the same or perhaps more stable models.

4 Forks and T -views

A fork is defined using the grammar:

F ::= ⊥
∣∣∣∣∣∣ p

∣∣∣∣∣∣ F | F
∣∣∣∣∣∣ F ∧ F

∣∣∣∣∣∣ ϕ ∨ ϕ
∣∣∣∣∣∣ ϕ→ F

where ϕ is a propositional formula and p ∈ At is an atom. As we can see, the fork
operator ‘|’ cannot occur in the scope of disjunction or negation, since ¬F stands
for F → ⊥ and implications do not allow forks in the antecedent. Extending the
semantics to arbitrarily nested connectives is left for future work.

As we will see, a fork F will be always reducible to the form (ϕ1| . . . |ϕn) where
each ϕi is a formula. Thus, a natural way to define its semantics is keeping a
set of supports ∆ = {H1, . . . ,Hn} for each classical interpretation T . However,
if we have a pair of supports in ∆ such that Hi � Hj , then Hi is useless since,
according to Proposition 6 ii), if it yields a stable model, the latter is always
produced by Hj too. For this reason, we will collect sets of supports that are
�-closed, so their maximal elements become the representative ones. Formally,
given a T -support H we define the set of �-smaller supports ↓H = {H′ ∈ HT |
H′ � H}. This is usually called the ideal of H. We extend this notation to any
set of supports ∆ so that ↓∆ def=

⋃
H∈∆ ↓H = { H′ � H

∣∣ H ∈ ∆ }.
Definition 5 (T -view). A T -view is a non-empty set of T -supports ∆ ⊆ HT

that is �-closed, i.e., ↓∆ = ∆.

Notice that, since a T -view ∆ is not empty and �-closed, the smallest
T -support [ ] is always included in ∆. Therefore, {[ ]} is the smallest T -view
with respect to set inclusion. Analogously, if the greatest T -support [ T ] is in-
cluded in ∆, then ∆ is precisely ↓[ T ]. We are now ready to extend the concept
of T -denotation to forks.
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Definition 6 (T -denotation of a fork). Let At be a propositional signature
and T ⊆ At a set of atoms. The T -denotation of a fork F , written 〈〈F 〉〉T , is a
T -view recursively defined as follows:

〈〈⊥ 〉〉T def= {[ ]}

〈〈 p 〉〉T def= ↓~ p �T for any atom p

〈〈F ∧G 〉〉T def= ↓{ H ∩H′ ∣∣ H ∈ 〈〈F 〉〉T and H′ ∈ 〈〈G 〉〉T }

〈〈ϕ ∨ ψ 〉〉T def= ↓{ H ∪H′ ∣∣ H ∈ 〈〈ϕ 〉〉T and H′ ∈ 〈〈ψ 〉〉T }

〈〈ϕ→ F 〉〉T def=
{

{[ ]} if T |= ϕ and 〈〈F 〉〉T = {[ ]}
↓{ ~ϕ �T ∪H

∣∣ H ∈ 〈〈F 〉〉T } otherwise

〈〈F | G 〉〉T def= 〈〈F 〉〉T ∪ 〈〈G 〉〉T

It is easy to see that the fork operator ‘|’ is commutative, associative and
idempotent. We will also see later that conjunction and implication distribute
over ‘|’. As for the rest of operators, note that the definitions above also cover
propositional formulas. The following result shows that this new T -denotation
of a propositional formula ϕ as a T -view, 〈〈ϕ 〉〉T , is precisely the ideal of its
T -denotation as a T -support ~ϕ �T .

Proposition 7. Let ϕ be a propositional formula and T ⊆ At be a set of atoms.
Then, 〈〈ϕ 〉〉T = ↓~ϕ �T .

Corollary 2. Given a propositional formula ϕ, a set T ⊆ At of atoms is a stable
model of ϕ iff 〈〈ϕ 〉〉T = ↓[ T ].

Corollary 2 provides a natural way to define stable models of forks.

Definition 7. Given a fork F , we say that T ⊆ At is a stable model of F iff
〈〈F 〉〉T = ↓[ T ]. SM[F ] denotes the set of stable models of F .

The intuition behind a fork is that we can collect its stable models independently:

Proposition 8. Given forks F and G: SM[F | G] = SM[F ] ∪ SM[G].

Once SM[F ] is defined, we can immediately extend the definition of V -strong
entailment and equivalence to forks in the obvious way, i.e., using forks instead
of propositional formulas. We postpone the effect of projecting onto some vo-
cabulary V to the next section and focus on the regular, non-projected versions
|∼ and �. As in Proposition 6, |∼ and � have a simple characterisation in terms
of denotations:

Proposition 9. For any pair of forks F,G the following hold:
(i) F |∼G iff 〈〈F 〉〉T ⊆ 〈〈G 〉〉T for every set T ⊆ At,

(ii) F � G iff 〈〈F 〉〉T = 〈〈G 〉〉T for every set T ⊆ At.

This helps us to derive the following interesting properties:
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Proposition 10. Let F,G,H be arbitrary forks and ϕ a formula. Then:

(F | G) ∧H � (F ∧H) | (G ∧H) (1)
ϕ→ (F | G) � (ϕ→ F ) | (ϕ→ G) (2)

(F | G) � G if F |∼G (3)

The first two properties (1) and (2), allow us to reduce any arbitrary fork to a
normal form (ϕ1 | . . . | ϕn) where each ϕi is a propositional formula. Moreover,
(3) is a kind of subsumption property that, without loss of generality, allows
us to assume that no pair of formulas ϕi |∼ ϕj for i , j in that expression. As
an example of subsumption, take the fork (¬a → b | a ∨ b). As we saw before,
(¬a → b) |∼ (a ∨ b) because ~¬a → b �T � ~ a ∨ b �T for all T (Proposition 6).
Then, the ideal ↓~¬a→ b �T is included in ↓~ a∨ b �T which (by Proposition 7)
is the same as saying 〈〈 ¬a→ b 〉〉T ⊆ 〈〈 a ∨ b 〉〉T . But then, 〈〈 ¬a→ b | a ∨ b 〉〉T =
〈〈 ¬a→ b 〉〉T ∪ 〈〈 a ∨ b 〉〉T = 〈〈 a ∨ b 〉〉T . In other words, (¬a→ b | a ∨ b) � (a ∨ b).

An important consequence of conjunction-distributivity (1) is that, although
∧ is idempotent on propositional formulas, it ceases to be so when connecting
forks. Take, for instance, the formalisation of Example 1 using the expression
(a | b) ∧ (a | b). If we apply distributivity and reduce to a normal form:

(a | b) ∧ (a | b) � a ∧ (a | b) | b ∧ (a | b) distributivity (1)
� (a | a ∧ b) | (b ∧ a | b) distributivity (1), ∧ −idempotence
� a | a ∧ b | b ∧ a | b associativity of ‘|’
� a | a ∧ b | b commut. of ∧ and idempotence of ‘|’

but then, by Proposition 8, from a∧ b we get the stable model {a, b} < SM[a | b].

5 Projective strong equivalence/entailment

In this section, we provide a semantic characterisation of projective strong en-
tailment |∼V and equivalence �V for some vocabulary V ⊆ At. We say that a
T -supportH is3 V -vacuous iff there is someH ⊂ T inH satisfyingH∩V = T∩V .
The reason for the name “vacuous” is that if we take a formula ϕ with denotation
~ϕ �T = H, then T will never become stable if we can only add a context γ for
vocabulary V . To do so, we would need ~ϕ∧γ �T = [ T ] but H ⊂ T should also
belong to the support since H and T are indistinguishable for any γ over V .

Definition 8. Let V ⊆ At be a vocabulary and T ⊆ V be a set of atoms. Then,
the V -T -denotation of a fork F is a T -view defined as follows:

〈〈F 〉〉TV
def= ↓{ HV

∣∣ H ∈ 〈〈F 〉〉T ′
s.t. T ′ ∩ V = T and H is not V -vacuous }

In other words, we collect all the non-vacuous supports H that belong to any
T ′-denotation 〈〈F 〉〉T ′ such that T ′ coincides with T for atoms in V , and then we
3 This notion is analogous to condition ii) in the definition of V -SE-models that char-

acterises relativised strong equivalence [17].
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project the supports taking HV . In doing so, we can just consider maximal H’s
in 〈〈F 〉〉T ′ (and add the empty T -support [ ] to the result if necessary). As might
be expected, projecting the T -denotation of a fork F on a superset V ⊇ At(F )
of its atoms produces no effect:

Proposition 11. For any vocabulary V ⊆ At, fork F with At(F ) ⊆ V and set
T ⊆ V of atoms, 〈〈F 〉〉TV = 〈〈F 〉〉T .

More interestingly, the V -T -denotation of F can be used to precisely char-
acterise its projected stable models.

Proposition 12. For any vocabulary V ⊆ At, fork F and set T ⊆ V of atoms,
it holds that T ∈ SMV [F ] iff 〈〈F 〉〉TV = ↓[ T ].

As a main result, we naturally extend Proposition 9 to the projective case.

Theorem 1. For any vocabulary V ⊆ At, forks F,G, the following hold:
(i) F |∼V G iff 〈〈F 〉〉TV ⊆ 〈〈G 〉〉TV for every set T ⊆ V of atoms, and

(ii) F �V G iff 〈〈F 〉〉TV = 〈〈G 〉〉TV for every set T ⊆ V of atoms.

Moreover, the following result shows that we can just use a formula as a
context instead of an arbitrary fork.

Proposition 13. For any vocabulary V ⊆ At, forks F,G, the following hold:
(i) F |∼V G iff SM[F ∧ γ] ⊆ SM[G ∧ γ] for any formula γ with At(γ) ⊆ V

(ii) F �V G iff SM[F ∧ γ] = SM[G ∧ γ] for any formula γ with At(γ) ⊆ V .

As an immediate consequence we can extend the characterisation of PSE
from disjunctive logic programs in [12] to arbitrary propositional formulas.

Corollary 3. For any vocabulary V ⊆ At, formulas ϕ,ψ, the following hold:
(i) ϕ |∼V ψ iff 〈〈ϕ 〉〉TV ⊆ 〈〈ψ 〉〉TV for every set T ⊆ V of atoms, and

(ii) ϕ �V ψ iff 〈〈ϕ 〉〉TV = 〈〈ψ 〉〉TV for every set T ⊆ V of atoms.

As we mentioned in the introduction, PSE is closely related to forgetting.
Let At be a signature and V ⊆ At. Given a expression ϕ over At, a forgetting
operator is a partial function f(ϕ, V ) = ψ that assigns a new expression ψ
over4 V . Operator f is said to be strongly persistent iff ϕ �V f(ϕ, V ) for every
formula ϕ and set V ⊆ At of atoms for which it is defined. Now, imagine we
wish to apply forgetting on a fork F over At keeping atoms V ⊆ At. In light of
Corollary 3, we can start by obtaining the projected denotations 〈〈F 〉〉TV for all
T ⊆ V . This corresponds to a set of T -views that can be precisely captured by
another fork over V , as stated by the following result.

Proposition 14. Given a vocabulary V ⊆ At, and assignment σ so that σ(T ) is
some arbitrary T -view for each T ⊆ V , there exists a fork G such that At(G) ⊆ V
and 〈〈G 〉〉T = σ(T ) for all T ⊆ V .
4 Note that we are defining the forgetting operator with respect to the projected

signature instead of the forgotten atoms At \ V .
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In other words, we can always define f(F, V ) def= G by obtaining a fork G
over V s.t. 〈〈G 〉〉T = 〈〈F 〉〉TV and, by Proposition 11 and Theorem 1, G �V F .

Theorem 2. For every fork F and set V ⊆ At of atoms, there is a fork G such
that At(G) ⊆ V and F �V G. Consequently, there is a total, strongly persistent
forgetting operator over forks.

Recall from [10], that such a total operator has been shown not to exist
for HT. However, since every propositional formula is also a fork, forgetting
in HT is now possible if we allow the target language to be extended with the
fork ‘ | ’ operator – “we can always forget as a fork.” Furthermore, the following
relation between the T -denotation of forks and of formulas sheds light to the
reason why it is not possible to forget inside HT.

Proposition 15. Given sets T ⊆ V ⊆ At of atoms, then:
(i) any formula ϕ with At(ϕ) ⊆ V satisfies 〈〈ϕ 〉〉TV = ↓~ϕ �T and, thus, 〈〈ϕ 〉〉TV

has a �-maximum element;
(ii) for every T -view ∆ with a �-maximum element, there is a propositional

formula ϕ with At(ϕ) ⊆ V that satisfies 〈〈ϕ 〉〉TV = ∆ and 〈〈ϕ 〉〉T ′

V = {[ ]} for
every T ′ ⊆ V with T ′ , T .

That is, there is a one-to-one correspondence between each assignment of
T -views with some �-maximum (i.e. unique maximal) element and a formula5

modulo strong equivalence in the vocabulary V . On the other hand, there are
T -views that have more than one �-maximal element and, thus, they cannot
be represented as formulas. That is, there are more theories modulo �V than
theories over V modulo �.

As an example, consider program Pm from the introduction interpreted as
the conjunction of its rules, and assume we want to forget ma and mb. Let us
take all subsets T ′ ⊆ {a, b,ma,mb}. Since Pm is a formula, all its T ′-views will
have a �-maximum element, ~Pm �T

′ , shown in the left table of Figure 1 where,
for brevity, we only show cases of non-empty supports (i.e., when T ′ is a classical
model). Observe that none of these supports is V -vacuous because we never get a
strictly smaller H ⊂ T that coincides with T in V = {a, b}. Now, according to the
definition of 〈〈Pm 〉〉TV , for each T ⊆ V = {a, b} we must find those T ′ such that
T ′ ∩ {a, b} = T . For T = {a} the only possibility is T ′ = {ma, a} that, after re-
moving ma, yields a maximum support [{a}]. The case for T = {b} is completely
symmetric, yielding maximum support [{b}]. But for T = {a, b} we get three can-
didate interpretations, T ′

1 = {ma, a, b}, T ′
2 = {mb, a, b} and T ′

3 = {ma,mb, a, b}.
A first observation is that the support for T ′

3 = {ma,mb, a, b} is {a, b}-vacuous,
since it contains {ma, a, b} and {mb, a, b} that coincide with T ′

3 for atoms {a, b}.
After removing ma,mb in the supports of the non-vacuous candidates, T ′

1 and
T ′

2, the respective results are [ {a, b} {a} ] and [ {a, b} {b} ] that are not �-
comparable. Therefore, they become the two �-maximal supports in the T -view
5 A way to obtain the formula is collecting the set of HT-countermodels (those not in

the T -supports) and applying the method in [18] to get a minimal logic program.
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〈〈Pm 〉〉{a,b}V . Proposition 15 tells us that this is not representable as a proposi-
tional formula, although Proposition 14 always guarantees a representation as a
fork. In particular, this set of T -views can be captured by the fork (a | b) as we
expected from the discussion in the introduction. Analogously, forgetting fa, fb
in Pf yields a second fork (a | b). Thus, the whole program P2 = Pm ∧ Pf is
{a, b}-strongly equivalent to (a | b) ∧ (a | b) that, as we discussed in Section 4,
amounts to (a | b | a ∧ b). It is easy to see that the (non-empty) T -denotations
of this fork are:

T maximal supports in 〈〈P2 〉〉T

{a} [ {a} ]
{b} [ {b} ]
{a, b} [ {a, b} ]

as the three cases are stable models. But this means that each T -view has a
�-maximum T -support, and so, the fork is representable as a formula. Program
P1 has precisely the same T -views, so it is strongly equivalent to P2.

T ′ max. supports in 〈〈Pm 〉〉T
′

{ma, a} [ {ma, a} ]
{mb, b} [ {mb, b} ]
{ma, a, b} [ {ma, a, b} {ma, a} ]
{mb, a, b} [ {mb, a, b} {mb, b} ]
{ma,mb, a, b} [ {ma,mb, a, b}

{mb, a, b} {mb, b}
{ma, a, b} {ma, a} ]

T max. supports in 〈〈Pm 〉〉TV
{a} [ {a} ]
{b} [ {b} ]
{a, b} [ {a, b} {b} ] [ {a, b} {a} ]

Fig. 1. Forgetting ma and mb in Pm.

To illustrate a case not requiring forks, take a second example α = (¬p →
q) ∧ (¬q → p) and assume we want to forget q. The maximal (non-empty)
supports in the views of α are:

T ′ maximal supports in 〈〈α 〉〉T ′

{p} [ {p} ]
{q} [ {q} ]
{p, q} [ {p, q} {p} {q} ∅ ]

Note now that the last support is {p}-vacuous because {p} ⊂ {p, q} = T ′ but
they coincide in the truth of V = {p}. Thus, for T = {p} we only have the
non-vacuous T ′ = {p} and we get [{p}] as maximum support. For T = ∅ we have
T ′ = {q} and, after removing atom q, we obtain [∅] as maximum support. As both
views have maximum supports, this is representable as a propositional formula,
that in this case corresponds to the choice p ∨ ¬p or, if preferred, ¬¬p→ p.
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6 Related work and conclusions
We have extended the syntax and semantics of Here-and-There (HT) to deal with
a new type of construct ‘|’ called fork. We have studied the property of projective
strong equivalence (PSE) for forks: two forks satisfy PSE for a vocabulary V iff
they yield the same stable models projected on V for any context over V . We
also provided a semantic characterisation of PSE that allowed us to prove that
it is always possible to forget (under strong persistence) an auxiliary atom in a
fork, something recently proved to be false in standard HT [10].

Our work on PSE is strongly related to [12] as, in fact, PSE is one of the
cases studied in that paper, which was focused on disjunctive logic programs. The
structures used there, called certificates, correspond to our non-empty T -supports,
while allowing empty T -supports or the extension to T -views as ideals were
needed here in order to fulfill our goal of providing an algebraic semantics for
forks. Using this relation, our Corollary 3 extends the result in [12] to arbitrary
formulas in HT and this is still valid for certificates. Previous complexity results
can be used to prove that brave and cautious reasoning with forks in normal
form are ΣP

2 and ΠP
2 -complete, respectively. Similarly, checking PSE of forks in

normal form is ΠP
4 -complete. These results follow from the fact that every fork

in normal form can be replaced (under PSE) by some (log-space constructible)
propositional formula using new auxiliary atoms. We also conjecture that these
results hold for arbitrary forks, but the formal proof is left for future work.

For future work, we plan to extend these results to other characterisations of
equivalence [19] and, in particular, study the case of Projective Uniform Equiv-
alence, that is, PSE for vocabulary V where the context theories are sets of
atoms from V . Another natural extension of forks is to consider the addition of
probabilities. In that way, for instance, our example about Mendelian laws could
reflect the proportion of each possible combination, 1/4 for {a} and {b} and 1/2
for {a, b}. Doing so, we conjecture a strong formal connection to CP-logic [20],
where the use of disjunction behaves as our fork connective. Note that, although
forks do not deal with probabilities, they allow a more general syntax than CP-
logic programs, which additionally require the well-founded model to be defined
on all atoms. Similarly, we also plan a formal comparison with non-deterministic
causal laws [21].

Acknowledgements. We are especially thankful to the anonymous reviewers for
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