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Abstract. We address the problem of analysing the joint coherence of
a number of concepts with respect to a background ontology. To address
this problem, we explore the applicability of Paul Thagard’s computa-
tional theory of coherence, in combination with semantic similarity be-
tween concepts based on a generalisation operator. In particular, given
the input concepts, our approach computes maximally coherent subsets
of these concepts following Thagard’s partitioning approach, whilst re-
turning a number of possible generalisations of these concepts as justifi-
cation of why these concepts cohere.

1 Introduction

In this paper, we aim at showing how Thagard’s computational theory of coher-
ence [15] could serve as an analytical tool to analyse the coherence of concepts
that are inconsistent w.r.t. a background ontology. In [14], Thagard suggested
to use coherence as a model for the closely related cognitive process of con-
ceptual combination, where the focus is primarily on language compositionality
such as noun-noun or adjective-noun combinations [11]. Kunda and Thagard,
for instance, show how conceptual coherence can be used for describing how we
reason with social stereotypes [5].

Building upon Thagard’s intuitions and principles for modelling coherence,
we propose a formalisation of Thagard’s notion of conceptual coherence for con-
cepts represented in the description logic ALC [1], and further explore its appli-
cability to justify why a selection of concepts, even when jointly inconsistent, can
be seen to cohere. But instead of interpreting coherence or incoherence on the
basis of statistical correlations or causal relations (i.e., on frequencies of positive
or negative association), we determine coherence and incoherence as dependent
on the semantic similarity between concepts.

Given a set of input concepts, our approach computes maximally coherent
subsets of these concepts following Thagard’s computational model for coherence
as a constraint satisfaction problem. We show how these maximising partitions
not only suggest which of the input concepts can jointly cohere, but also how



inconsistent concepts can be repaired using generalisations, letting them become
consistent w.r.t. the background ontology.

To generalise these concepts, we propose a generalisation refinement opera-
tor which is inductively defined over the structure of ALC concept descriptions.
Generalising DL concepts have been addressed in the DL literature in the con-
text of the non-standard reasoning tasks of finding the least common subsumer
of different concepts [2]. Finding a least common subsumer is a challenging re-
search question, but, in practice, a common generalisation, w.r.t. the finite set of
subformulas generated from the axioms contained in a (finite) TBox will suffice.

2 Thagard’s Theory of Coherence

Thagard addresses the problem of determining which pieces of information to
accept and which to reject based on how they cohere and incohere among them,
given that, when two elements cohere, they tend to be accepted together or
rejected together; and when two elements incohere, one tends to be accepted
while the other tends to be rejected [15].

This can be reformulated as a constraint satisfaction problem as follows.
Pairs of elements that cohere between them form positive constraints, and pairs
of elements that incohere between them form negative constraints. If we partition
the set of pieces of information we are dealing with into a set of accepted elements
and a set of rejected elements, then a positive constraint is satisfied if both
elements of the constraint are either among the accepted elements or among
the rejected ones; and a negative constraint is satisfied if one element of the
constraint is among the accepted ones and the other is among the rejected ones.
The coherence problem is to find the partition that maximises the number of
satisfied constraints.

Note that in general we may not be able to partition a set of elements as to
satisfy all constraints, thus ending up accepting elements that incohere between
them or rejecting an element that coheres with an accepted one. The objective
is to minimise these undesired cases. The coherence problem is known to be
NP-complete, though there exist algorithms that find good enough solutions of
the coherence problem while remaining fairly efficient.

Depending on the kind of pieces of information we start from, and on the way
the coherence and incoherence between these pieces of information is determined,
we will be dealing with different kinds of coherence problems. So, in explanatory
coherence we seek to determine the acceptance or rejection of hypotheses based
on how they cohere and incohere with given evidence or with competing hypothe-
ses; in deductive coherence we seek to determine the acceptance of rejection of
beliefs based on how they cohere and incohere due to deductive entailment or
contradiction; in analogical coherence we seek to determine the acceptance or
rejection of mapping hypotheses based on how they cohere or incohere in terms
of structure; and in conceptual coherence we seek to determine the acceptance or
rejection of concepts based on how they cohere or incohere as the result of the
positive or negative associations that can be established between them. Thagard
discusses these and other kinds of coherence.



Although Thagard provides a clear technical description of the coherence
problem as a constraint satisfaction problem, and enumerates concrete principles
that characterise different kinds of coherences, he does not clarify the actual
nature of the coherence and incoherence relations that arise between pieces of
information, nor does he suggest a precise formalisation of the principles he
discusses. In [4], a concrete formalisation and realisation of deductive coherence
was proposed in order to tackle the problem of norm adoption in normative
multi-agent system. In this paper, we shall focus on the problem of conceptual
coherence and its applicability to analyse the coherence of ALC concepts.

3 Preliminaries

3.1 Coherence Graphs

In this section we give precise definitions of the concepts intuitively introduced
in the previous section.

Definition 1. A coherence graph is an edge-weighted, undirected graph of the
form G = 〈V,E,w〉, where:

1. V is a finite set of nodes representing pieces of information.
2. E ⊆ V (2) (where V (2) = {{u, v} | u, v ∈ V }) is a finite set of edges rep-

resenting the coherence or incoherence between pieces of information. Edges
of coherence graphs are also called constraints.

3. w : E → [−1, 1]\{0} is an edge-weighted function that assigns a value to the
coherence between pieces of information.

When we partition the set V of vertices of a coherence graph (i.e., the set of pieces
of information) into the sets A and R = V \A of accepted and rejected elements
respectively, then we can say when a constraint—an edge between vertices—is
satisfied or not by the partition.

Definition 2. Given a coherence graph G = 〈V,E,w〉, and a partition (A,R)
of V , the set of satisfied constraints C(A,R) ⊆ E is given by:

C(A,R) =
{
{u, v} ∈ E

∣∣∣ u ∈ A iff v ∈ A, whenever w({u, v}) > 0
u ∈ A iff v ∈ R, whenever w({u, v}) < 0

}
All other constraints (i.e., those in E \ C(A,R)) are said to be unsatisfied.

The coherence problem is to find the partition of vertices that satisfies as many
constraints as possible, i.e., to find the partition that maximises the coherence
value as defined as follows, which makes coherence to be independent of the size
of the coherence graph.

Definition 3. Given a coherence graph G = 〈V,E,w〉, the coherence of a par-
tition (A,R) of V is given by:

κ(G, (A,R)) =

∑
{u,v}∈C(A,R)

|w({u, v})|

|E|



Notice that there may not exist a unique partition with a maximum coher-
ence value. In fact, at least two partitions have the same coherence value, since
κ(G, (A,R)) = κ(G, (R,A)) for any partition (A,R) of V .

3.2 Generalising ALC Descriptions

To generalise ALC concept descriptions, we propose a generalisation refinement
operator that extends our previous work in [3].

Roughly speaking, a generalisation operator takes a concept C as input and
returns a set of descriptions that are more general than C by taking a Tbox T
into account. In order to define a generalisation refinement operator for ALC,
we need some auxiliary definitions. In the following, we assume the TBox and
set of concepts NC to be finite.3

Definition 4. Let T be a ALC TBox with concept names NC . The set of non-
trivial subconcepts of T is given as

sub(T ) = {>,⊥} ∪
⋃

CvD∈T

sub(C) ∪ sub(D)

where sub is defined over the structure of concept descriptions as follows:

sub(A) = {A}
sub(⊥) = ∅
sub(>) = ∅

sub(¬A) = {¬A,A}
sub(C uD) = {C uD} ∪ sub(C) ∪ sub(D)

sub(C tD) = {C tD} ∪ sub(C) ∪ sub(D)

sub(∀R.C) = {∀R.C} ∪ sub(C)

sub(∃R.C) = {∃R.C} ∪ sub(C)

Based on sub(T ), we define the upward and downward cover sets of atomic
concepts. In the following, we will assume that complex concepts C are re-
written into negation normal form, and that thus negation only appears in front
of atomic concepts. For the following definition, sub(T ) (Definition 4) guarantees
the upward and downward cover sets to be finite. Intuitively, the upward set
of A collects the most specific subconcepts found in the Tbox T that are more
general (subsume) A; conversely, the downward set of A collects the most general
subconcepts from T that are subsumed by A. The downcover is only needed for
the base case of generalising a negated atom.

3 To avoid any confusion, we point out that we use = and 6= between ALC concepts
to denote syntactic identity and difference, respectively.



Definition 5. Let T be an ALC TBox with concept names from NC . The up-
ward cover set of an atomic concept A ∈ NC ∪{>,⊥} with respect to T is given
as:

UpCov(A) := {C ∈ sub(T ) | A vT C (1)

and there is no C ′ ∈ sub(T )

such that A @T C
′ @T C}

The downward cover set of an atomic concept A ∈ NC ∪ {>,⊥} with respect to
T is given as:

DownCov(A) := {B ∈ NC ∪ {>,⊥} | B vT A (2)

and there is no B′ ∈ NC ∪ {>,⊥}
such that B @T B

′ @T A}

We can now define our generalisation refinement operator for ALC as follows.

Definition 6. Let T be an ALC TBox. We define the generalisation refinement
operator γ inductively over the structure of concept descriptions as:

γ(A) = UpCov(A)

γ(¬A) =

{
{¬B | B ∈ DownCov(A)} if DownCov(A) 6= {⊥}
{>} otherwise.

γ(>) = {>}
γ(⊥) = UpCov(⊥)

γ(C uD) =

{
{C ′uD|C ′ ∈ γ(C)}∪{CuD′|D′ ∈ γ(D)}∪{C,D} if C or D 6= >
{>} otherwise.

γ(C tD) =

{
{C ′ tD | C ′ ∈ γ(C)} ∪ {C tD′ | D′ ∈ γ(D)} if C and D 6= >
{>} otherwise.

γ(∀R.C) =

{
{∀R.C ′ | C ′ ∈ γ(C)} if C 6= >
{>} otherwise.

γ(∃R.C) =

{
{∃R.C ′ | C ′ ∈ γ(C)} if C 6= >
{>} otherwise.

Lemma 1. γ is a finite operator; i.e., for any given complex ALC concept C,
the set γ(C) is finite.

Given a generalisation refinement operator γ, ALC concepts are related by re-
finement paths as described next.

Definition 7. A finite sequence C1, . . . , Cn of ALC concepts is a generalisation

path C1
γ−→ Cn from C1 to Cn of the generalisation refinement operator γ iff

Ci+1 ∈ γ(Ci) for all i : 1 ≤ i < n. Then:



– γ∗(C) denotes the set of all concepts that can be reached from C by means
of γ in zero or a finite number of steps.

– λ(C
γ−→ D) denotes the minimal number of generalisations to be applied in

order to generalise C to D when D ∈ γ?(C).

The repeated application of the generalisation refinement operator allows us to
find descriptions that represent the properties that two or more ALC concepts
have in common. This description is a common generalisation of ALC concepts.

For the sake of this paper, we are interested in common generalisations that
have minimal distance from the concepts, or in case their distance is equal, the
ones that are far from >.

Definition 8. An ALC concept description G is a common generalisation of C1

and C2 if G ∈ γ∗(C1) ∩ γ∗(C2) and, furthermore, G is such that for any other
G′ ∈ γ∗(C1) ∩ γ∗(C2) with (G′ 6= G) we have:

– λ(C1
γ−→ G) + λ(C2

γ−→ G) < λ(C1
γ−→ G′) + λ(C2

γ−→ G′), or

– λ(C1
γ−→ G) + λ(C2

γ−→ G) = λ(C1
γ−→ G′) + λ(C2

γ−→ G′) and

λ(G
γ−→ >) ≥ λ(G′

γ−→ >)

At this point we should notice that common generalisations, as per the above
definition, are not unique. However, for any two common generalisations G and

G′ of C1 and C2, λ(C1
γ−→ G) + λ(C2

γ−→ G) = λ(C1
γ−→ G′) + λ(C2

γ−→ G′) and

λ(G
γ−→ >) = λ(G′

γ−→ >). Any one of them will result in the same value for our
generalisation-based similarity measure between concepts, and therefore in the
same coherence or incoherence judgements. In the following, we denote C1NC2

a common generalisation of C1 and C2; C1NC2 is a concept that always exists.

3.3 Concept Similarity

The common generalisation of two concepts C and D can be used to measure the
similarity between concepts in a quantitative way. To estimate the quantity of
information of any description C we take into account the length of the minimal
generalisation path that leads from C to the most general term >.

In order to define a similarity measure, we need to compare what is common

to C and D with what is not common. The length λ(CND
γ−→ >) estimates the

informational content that is common to C andD, and the lengths λ(C
γ−→ CND)

and λ(D
γ−→ CND) measures how much C andD are different. Then, the common

generalisation-based similarity measure can be defined as follows [9].

Definition 9. The similarity between two concepts C, D, denoted by Sλ(C,D),
is defined as:

Sλ(C,D) =


λ(CND

γ−→ >)

λ(CND
γ−→ >) + λ(C

γ−→ CND) + λ(D
γ−→ CND)

if C or D 6= >

1 otherwise.



The measure Sλ estimates the ratio between the amount of information that is
shared and the total information content. The range of the similarity function
is the interval [0, 1], where 0 represents the minimal similarity between concepts
(when their common generalisation is equal to >), and 1 represents maximal
similarity (when the concepts are equivalent).

4 Similarity-based Conceptual Coherence

Thagard characterises conceptual coherence with these principles [15]:

Symmetry: Conceptual coherence is a symmetric relation between pairs of con-
cepts.

Association: A concept coheres with another concept if they are positively
associated, i.e., if there are objects to which they both apply.

Given Concepts: The applicability of a concept to an object may be given
perceptually or by some other reliable source.

Negative Association: A concept incoheres with another concept if they are
negatively associated, i.e., if an object falling under one concept tends not
to fall under the other concept.

Acceptance: The applicability of a concept to an object depends on the appli-
cability of other concepts.

To provide a formal account of these principles we shall formalise Association
and Negative Association between concepts expressed in a description logic, since
these are the principles defining coherence and incoherence. We shall assume
coherence between two concept descriptions when they are sufficiently similar so
that “there are objects to which both apply;” and we shall assume incoherence
when they are not sufficiently similar so that “an object falling under one concept
tends not to fall under the other concept.”

In this formalisation of conceptual coherence, we determine this ‘sufficiently
similar’ condition by taking into account the minimal length of the generalisation
path from the common generalisation of two concepts to >. The intuition behind
the following definition is that similar concepts whose common generalisation is
far from > should cohere, and incohere otherwise.

Definition 10 (Coherence Relations). Given a set {C1, . . . , Cn} of ALC
concepts, we will say for each pair of concepts 〈Ci, Cj〉 (1 ≤ i, j ≤ n, i 6= j):

– Ci coheres with Cj, if Sλ(Ci, Cj) > 1− δ
– Ci incoheres with Cj, if Sλ(Ci, Cj) ≤ 1− δ

where

δ =
λ(CiNCj

γ−→ >)

max{λ(Ci
γ−→ >), λ(Cj

γ−→ >)}

In this definition, λ(CiNCj
γ−→ >) is normalised to the interval [0, 1] in order

to make it comparable with the similarity measure. This is done by considering



the range of values that λ(CiNCj
γ−→ >) can assume. Since the maximal value

corresponds to the case in which the common generalisation of Ci and Cj is >,

and the minimal value is 0, this interval is [0,max{λ(Ci
γ−→ >), λ(Cj

γ−→ >)}].
Returning to the Thargardian principles, Symmetry follows from the defini-

tion above, and Acceptance is captured by the aim of maximising coherence in
a coherence graph.

Definition 11 (Thagardian Coherence Graph). The coherence graph for
the set of ALC concepts {C1, . . . , Cn} is the edge-weighted and undirected graph
G = 〈V,E,w〉 whose vertices are C1, . . . , Cn, whose edges link concepts that ei-
ther cohere or incohere according to Definition 10, and whose edge-weight func-
tion w is given as follows:

w({C,D}) =

{
1 if C and D cohere

−1 if C and D incohere

This definition creates a concept graph in the sense of Thagard where only
binary values ‘coheres’ or ‘incoheres’ are recorded, represented by ‘+1’ and ‘-1’,
respectively. However, it should be noted that Def. 10 can give rise also to graded
versions of coherence graphs, which we will explore in future work.

5 Analysing the Coherence of Concepts

This section describes how we use coherence to analyse the joint coherence of a
number of concepts with respect to a background ontology.

The overall idea is to compute the coherence graph and the maximising par-
titions for the input concepts, and use them to decide which concepts to keep
and which ones to discard. The pairwise comparison and the maximising coher-
ence degree partitions will give us the biggest subsets of coherent input concepts.
Then, we compute the nearest common generalisations of the accepted concepts,
to convey a justification of why certain concepts were partitioned together.

Given an ALC TBox representing a background ontology, and a set of ALC
concepts {C1, . . . , Cn} as input, the process of evaluating the coherence of con-
cepts can be described as follows:

1. We form the coherence graph for the input concepts C1, . . . , Cn according
to Definition 11.

2. We compute the coherence maximising partitions according to Definition 3.
3. We use the partitions to decide which concepts to accept.
4. For each maximising partition of accepted concepts, we compute the nearest

common generalisations, and present them as justifications of why these
concepts were accepted.

Once the maximising partitions are computed, the coherence of the input con-
cepts could be measured in terms of the coherence value of the coherence-
maximising partitions. The degree of the coherence graph directly measures how
much input concepts coheres with respect of the background ontology.



White v GrayScale , Cats v Pets
Black v GrayScale , Pets v Animals
GrayScale v Colours , Black uWhite v ⊥
Integers v Numbers , Numbers v Abstract Objects
Animals v Physical Objects , Physical Objects u Abstract Objects v ⊥
Qualities u Abstract Objects v ⊥ , Primeness v Qualities
Colours v Qualities , Range(hasColour) = Colours
Domain(hasColour) = Physical Object , Range(hasQuality) = Qualities
Domain(hasQuality) = >

Fig. 1. The background ontology of Black Cats, White Cats, and Prime Numbers.

It is worth noticing that according to our definition of coherence relation,
inconsistent concepts can cohere provided that they are sufficiently similar and
their common generalisation is far from the > concept.

Example. Let us consider the ALC theory in the TBox in Figure 1 and the
following three input concepts:

Black Cats ≡ Cats u ∀hasColour.Black u ∃hasColour.Black
White Cats ≡ Cats u ∀hasColour.White u ∃hasColour.White
Prime Numbers ≡ Integers u ∃hasQuality.Primeness

Black Cats and White Cats define black cats and white cats as cats that are
coloured black and white respectively, whereas the Prime Numbers defines the
concept of prime numbers. We want to know whether these concepts cohere
together or not.

Intuitively, Black Cats and White Cats, although inconsistent according to the
background ontology, should cohere, since they “talk” about the same objects,
i.e., cats. The Prime Numbers concept, instead, should incohere with Black Cats
and White Cats, since the objects it applies to are essentially different.

The coherence graph for these three concepts is computed as follows and it
is shown in Figure 2:

– Black Cats and White Cats:
• Black Cats NWhite Cats = Cats u ∀hasColour.GrayScale u ∃hasColour.GrayScale
• λ(Black CatsNWhite Cats

γ−→ >) = 13

• λ(Black Cats
γ−→ Black CatsNWhite Cats) = 2

• λ(White Cats
γ−→ Black CatsNWhite Cats) = 2

• Sλ(Black Cats,White Cats) =
13

17
= 0.76

• δ is:
13

15
= 0.87

• Since Sλ(Black Cats,White Cats) > 1 − δ, Black Cats and White Cats
cohere.

– Black Cats and Prime Numbers
• Black Cats N Prime Numbers = >
• λ(Black CatsNPrime Numbers

γ−→ >) = 0

• λ(Black Cats
γ−→ Black CatsNPrime Numbers) = 14



Cats u ∀hasColour.Blacku
∃hasColour.Black

Cats u ∀hasColour.Whiteu
∃hasColour.White

Integers u ∃hasQuality.Primeness

+1
−1 −1

Fig. 2. The coherence graph of the Black Cats, White Cats, Prime Numbers. A red
coloured edge represents that the connected concepts are inconsistent.

• λ(Prime Numbers
γ−→ Black CatsNPrime Numbers) = 6

• Sλ(Black Cats,Prime Numbers)) = 0
• δ is: 0
• Since Sλ(Black Cats,Prime Numbers)) ≤ 1 − δ, we have that Black Cats

and Prime Numbers incohere.
– White Cats and Prime Numbers incohere (similar to the previous case).

The maximising partitions of coherence graph are A = {Black Cats, White Cats}
andR = {Prime Numbers}, and all constraints are satisfied (so κ(G, (A,R)) = 1).
These concepts can still cohere, since they can be generalised in different ways.

For instance, by generalising Black and White to GrayScale, we can obtain the
concept Cats u ∀hasColour.GrayScale u ∃hasColour.GrayScale that represents the
category of gray-coloured cats. Or, by generalising Black and White to Colours, we
can obtain the concept Cats u ∀hasColour.Colour u ∃hasColour.Colour that repre-
sents the category of coloured cats.

These generalisations, which can be obtained by applying our refinement
operator γ, are to be considered explanations of why these concepts can cohere
together. Therefore, our approach can improve the given ‘coherence claim’ by
presenting the best generalisations that let the concepts be consistent.

As far as complexity is concerned, since subsumption reasoning in ALC is
exponential, our proposed methodology stays in the same complexity class of
coherence theory as a constraint satisfaction problem, namely, NP.

6 Discussion

This paper is a preliminary work, and the obvious next step would be to test it
extensively on a number of real use cases, to verify the degree up to which our
approach agrees with human intuitions.

There exist many possible variants of our definitions of Sλ(C,D) and δ, and
there is a very rich literature about similarity measures between concepts in
ontologies [6], and especially w.r.t. Gene Ontology annotations [8].

For instance, one possible criticism of our approach (as well as of any “edge-
based” similarity measure) is that the path length λ between two concepts de-
pends on the granularity of our upward cover set: in particular, it is possible
that it contains a high number of elements along the shortest path from C to
CND (and, consequently, for the similarity between C and D to be low, and for
them to possibly be incoherent) merely because our TBox (and, therefore, our



cover set) contains many more assertions about generalisations of C than about
generalisations of CND.

It is not clear the degree up to which this is a problem in practice: for instance,
it might be possible to reply that this is working as intended, since if our TBox
contains many claims about concepts between C and CND then the differences
between these concepts are indeed particularly relevant in our context, and hence
it is appropriate for C and D to be comparatively less coherent.

In any case, if necessary, there exist ways around this: for instance, given
an ABox of facts about various entities, we might employ semantic similarity
measures such as Resnik’s [12] or Lin’s [7], which measure the similarity between
C and D by comparing the information content (in brief, the information con-
tent of a concept is the logarithm of the occurrence probability of it or of any
generalisation) of C, D and of CND. Such similarity measures could be adopted
in our approach easily enough; but there is little point in doing so unless we first
establish a baseline and a way to compare their predictions.

We leave such issues, as well as the more general question of the evaluation of
joint coherence analysis approaches, to further work. Here we contented ourselves
with establishing a first such approach, which may then be tweaked according
to its performance and to its user’s needs.

7 Conclusion and Future Perspectives

In this work, we introduced a novel approach to the problem of analysing the joint
coherence of a number of concepts with respect to a background ontology. This
paper should be seen as an attempt to (a) provide a formal account of conceptual
coherence for a particular concept representation language, and (b) to explore
its applicability for analysing the joint coherence of a number of concepts with
respect to a background ontology.

With respect to (a), a previous attempt to formalise conceptual coherence
in the AL description logic is [13], where the authors attempted to see how
coherence could be used as a tool for guiding the process of conceptual blend-
ing and for evaluating conceptual blends in the task of concept invention. Here,
we proposed a formalisation of conceptual coherence between concept descrip-
tions expressed in the ALC description logic. This is only a starting point, and
obviously this formalisation exercise should be carried out for more expressive
concept representation languages. Moreover, coherence and incoherence are not
treated only in binary terms, but it is also natural to take certain degrees of
coherence or incoherence into account. This, for instance, has also been the ap-
proach of Joseph et al. when formalising deductive coherence [4]. As already
remarked in the paper, our definitions can be extended to graded coherence and
incoherence relations, and we aim at exploring this in the future.

With respect to (b), we have only focused on how maximally coherent sets
suggest why inconsistent concepts can cohere together, and the way in which
these concepts can be generalised to steer inconsistency debugging. In the future,
we will investigate the relation of our approach to ontology debugging [10].
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