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ABSTRACT
Modern in-memory column-stores employ lightweight data
compression to tackle the growing gap between processor
speed and main memory bandwidth. However, the com-
pression of intermediate results has not been investigated
sufficiently although accessing intermediates is as expensive
as accessing the base data in these systems. Therefore, we
introduce our vision of a balanced query processing based on
compressed intermediates to improve query performance. In
this paper, we provide an overview of the important research
challenges on the way to this goal, present our contributions
so far, and give an outlook on our remaining steps.

1. INTRODUCTION
With increasingly large amounts of data being collected in

numerous areas ranging from science to industry, the impor-
tance of online analytical processing (OLAP) workloads in-
creases constantly. OLAP queries typically address a small
number of columns, but a high number of rows and are,
thus, most efficiently processed by column-stores. The sig-
nificant developments in the main memory domain in recent
years have rendered it possible to keep even large datasets
entirely in main memory. Consequently, modern column-
stores follow a main memory-centric architecture. These
systems have to face some new architectural challenges.

Firstly, they suffer from the new bottleneck between main
memory and the CPU caused by the contrast between in-
creasingly fast multi-core processors and the comparably low
main memory bandwidth. To address this problem, column-
stores make extensive use of data compression. The reduced
data sizes achievable through compression result in lower
transfer times, a better utilization of the cache hierarchy,
and less TLB misses. However, classical heavyweight com-
pression algorithms such as Huffman [10] or Lempel Ziv [20]
are too slow for in-memory systems. Therefore, numerous
lightweight compression algorithms such as differential cod-
ing [14, 16] and null suppression [1, 16] have been proposed,
which are much faster and, thus, suitable for in-memory
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column-stores. Furthermore, especially for lightweight com-
pression algorithms, many operators can directly process the
compressed data without prior decompression.

Secondly, in main memory-centric column-stores, access-
ing the intermediate results during query processing is as
expensive as accessing the base data, since both reside in
main memory. Thus, intermediates offer a great potential
for performance improvement, which can be exploited in two
orthogonal ways: (1) intermediates should be avoided when-
ever possible [12, 15], or (2) intermediates should be repre-
sented in a way that facilitates efficient query processing.

In this thesis, we focus on the second approach by inves-
tigating lightweight compression of intermediates in main
memory-centric column-stores. This direction has not been
investigated sufficiently in the literature so far. Existing sys-
tems usually keep the data compressed only until an opera-
tor cannot process the compressed data directly, whereupon
the data is decompressed, but not recompressed – due to the
resulting computational overhead. However, using modern
hardware and state-of-the-art lightweight compression algo-
rithms, this computational overhead can be outweighed by
the benefits of compressed data. Thus, our vision is a bal-
anced query processing based on compressed intermediates.
That is, in a query execution plan of compression-aware
physical operators, every intermediate result shall be rep-
resented using a suitable lightweight compression algorithm
which is selected in a compression-aware query optimization
such that the benefits of compression outweigh its costs. To
achieve this goal, this thesis addresses three aspects of the
problem: the structural aspect on the basics of lightweight
compression (Section 2), the operational aspect on physical
operators for compressed data (Section 3), and the opti-
mization aspect on compression-aware optimization strate-
gies (Section 4). These aspects are designed to build upon
each other, as will become clear in the following sections.

2. STRUCTURAL ASPECT
The structural aspect lays the foundations of this thesis by

focusing on the basics of lightweight compression algorithms
and on efficient transformations between the compressed for-
mats of different algorithms. Thereby, our primary focus is
on integer sequences due to their outstanding importance in
column-stores: Other fixed-width data types, such as dec-
imals, can be stored as integers and variable-width data
types, such as strings, usually need to be represented by
fixed-width integer codes from a dictionary to enable effi-
cient processing. We have already completed our planned
research in this aspect of the thesis.



2.1 Lightweight Data Compression
In the field of lossless lightweight data compression, we

distinguish between techniques, i.e., the abstract ideas of
how compression works conceptually, and algorithms, i.e.,
concrete instanciations of one or more techniques. So far,
we consider five lightweight compression techniques for se-
quences of integers: frame-of-reference (FOR) [8, 21], differ-
ential coding (DELTA) [14, 16], dictionary coding (DICT)
[1, 21], run-length encoding (RLE) [1, 16], and null suppres-
sion (NS) [1, 16]. FOR and DELTA represent each data
element as the difference to either a certain given reference
value (FOR) or to its predecessor (DELTA). DICT replaces
each value by its unique key in a dictionary. The objective of
these three well-known techniques is to represent the origi-
nal data as a sequence of small integers, which is then suited
for the actual compression using the NS technique. NS is
the most studied lightweight compression technique. Its ba-
sic idea is the omission of leading zero bits in small integers.
Finally, RLE tackles uninterrupted sequences of occurrences
of the same value, so called runs. Each run is represented
by its value and length. Obviously, these techniques exploit
different data characteristics, such as the value range, the
number of distinct values, and repeated values.

In the literature, numerous algorithms have been proposed
for these techniques, e.g., [1, 8, 14, 16, 17, 19, 21], to name
just a few examples. For our purposes of applying decom-
pression and recompression during query execution, we de-
pend on highly efficient implementations of these existing
algorithms. One way to achieve these is to use single instruc-
tion multiple data (SIMD) extensions of modern processors,
such as Intel’s SSE and AVX, which allow the application
of one operation to multiple data elements at once. In fact,
the employment of SIMD instructions has been the major
driver of the research in this field in recent years [14, 17,
19]. We have contributed to the corpus of proposed efficient
implementations, e.g., through our vectorized algorithm for
RLE [5], which is based on vectorized comparisons.

As lightweight compression algorithms are always tailored
to certain data characteristics, their behavior in terms of
performance and compression rate depends strongly on the
data. Selecting the best algorithm for a given base column
or intermediate requires a thorough understanding of the al-
gorithms’ behaviors subject to the data properties. Unfor-
tunately, a sufficient comparative analysis had been miss-
ing in the literature. Thus, we conducted an experimental
survey of several vectorized state-of-the-art compression al-
gorithms from all five techniques as well as combinations
thereof on numerous datasets, whereby we systematically
varied the data characteristics [4, 5]. Figure 1a-c provide a
sample of our results (the code was compiled using g++ -O3

and the evaluation system was equipped with an Intel Core
i7-4710MQ and 16 GB RAM). Our comparative analysis re-
vealed several new insights. For instance, we could show
how different data distributions affect the algorithms. We
found that especially outliers in the distributions lead to a
significant degradation in the performance and/or compres-
sion rate of certain algorithms. Furthermore, for fixed data
characteristics, the best algorithm regarding performance
is not necessarily the best regarding compression rate. Fi-
nally, we could show that combinations of different tech-
niques can heavily improve the compression rate and even
the (de)compression speed depending on the data. Summing
up our findings, we can state that there is no single-best
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Figure 1: Behavior of three compression algorithms
(a-c) and a SUM operator on the respective com-
pressed formats (d) for three datasets with different
characteristics, each having 100M data elements.

compression algorithm, but the choice depends on the data
properties and is non-trivial. Our extensive experimental
survey was made feasible by our benchmark framework for
compression algorithms [6], which facilitates an efficient and
organized evaluation process.

2.2 Direct Data Transformation
Assuming that the optimal compression algorithm was

selected for a column, this algorithm might become sub-
optimal if the data properties change after the decision. The
properties of the base data might change over time through
DML operations. While this case might be handled offline,
the problem is more urgent for intermediates, whose proper-
ties can change dramatically through the application of an
operator. For instance, a column containing outliers might
be stored in a format that can tolerate these, perhaps at the
price of a slow decompression. A selection operator might re-
move the outliers, making a faster non-outlier-tolerant algo-
rithm a better choice than the original one. This motivates
the need for a transformation of the compressed represen-
tation of the data in some source format to the compressed
representation in some destination format.

A näıve approach would take two steps: (1) Apply the
decompression algorithm of the source format to the data,
thereby materialize the entire uncompressed data in main
memory. (2) Apply the compression algorithm of the des-
tination format to that uncompressed data. The advan-
tage of this approach is that it builds only upon existing
(de)compression algorithms. However, since it materializes
the uncompressed data in main memory, it is prohibitively
expensive from our point of view, since we need to transform
intermediates during query execution.



To address this issue, we introduced direct transformation
algorithms in [7]. This novel class of algorithms is capable
of accomplishing the transformation in one step, i.e., with-
out the materialization of the uncompressed data. To pro-
vide an example, we proposed a direct transformation from
RLE to 4-Wise NS. In 4-Wise NS [17], the compressed data
is a sequence of compressed blocks of four data elements
each. The direct transformation algorithm RLE-2-4WiseNS
roughly works as follows: For each pair of run value and run
length in the RLE-compressed input, it creates one block of
four copies of the run value, compresses it once, and stores
it out multiple times until it reaches the run length. That
way, it saves the intermediate store and load as well as the re-
peated block compression performed by the näıve approach.
Our experiments showed that this and other direct transfor-
mations yield significant speed ups over the näıve approach,
if the data characteristics are suitable.

3. OPERATIONAL ASPECT
In our currently ongoing work in the operational aspect,

we investigate how to integrate lightweight data compres-
sion into the query execution. Thereby, we assume that
a multitude of compression algorithms is available to the
system. We addressed the challenge of easily fulfilling this
prerequisite in [9].

3.1 Processing Model for Compressed Data
Our vision of a query processing based on compressed

intermediates can best be investigated using a processing
model that actually materializes all intermediates. Further-
more, since we focus on column-stores and since lightweight
compression algorithms are designed for sequences of val-
ues, all intermediates should use a columnar representation.
Hence, we chose column-at-a-time as the processing model.

One example of a system that uses this processing model
is MonetDB [11], which internally expresses queries in the
Monet Algebraic Language (MAL) [2]. The central data
structure of MAL is the binary association table (BAT),
which is used to represent both, base data and intermedi-
ates. Conceptually, a BAT consists of a head containing
record ids and a tail containing the actual data. However,
since the head always contains a dense sequence of integers,
it can be omitted. Thus, a BAT is essentially just an array
of data elements, making it a perfect target for lightweight
compression. MAL formally defines a set of operators that
consume and produce BATs, such as selection, join, and
projection. We decided to use MAL as the foundation of
our work, but intend to adapt MAL operators to multiple
compressed formats, which we discus in the next section.

3.2 Physical Operators for Compressed Data
When adapting MAL operators to compressed data, dif-

ferent degrees of integration are possible. Figure 2 presents
the cases we plan to investigate. In general, an operator
might consume i inputs and produce o outputs, each of
which might be represented in its individual compressed for-
mat. Figure 2a shows the baseline case of processing only
uncompressed data. In the following, we assume we want to
support n compressed formats for one operator.

A first approach to support compressed intermediates is
shown in Figure 2b. The original operator for uncompressed
data is surrounded by a wrapper, which temporarily de-
compresses the inputs and recompresses the outputs. This
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Figure 2: Integration of compression and operators.
A to C are compressed formats; U is uncompressed.

approach is called transient decompression and was pro-
posed in [3], but to the best of our knowledge, it has never
been investigated in practice. For efficiency, the decom-
pression(recompression) should not work on the entire in-
puts(outputs), but on small chunks fitting into the L1 cache.
Changing the compressed format of the intermediates is pos-
sible by configuring the wrapper’s input and output formats
accordingly. The advantage of this approach is its simplicity:
It reuses the existing operator and relies only on n already
existing (de)compression algorithms. However, it does not
exploit the benefits of working directly on compressed data.

The second approach is to adapt the operator such that
it can work directly on compressed data (Figure 2c). Exist-
ing works such as [1, 13, 18] have already proposed certain
operators on certain compressed formats. We plan to con-
tribute to this line of research by covering the formats of
recent vectorized compression algorithms. We have already
investigated a SUM operator on compressed data and Fig-
ure 1d illustrates how significantly its performance depends
on the data properties. We assume a common format for all
inputs and outputs of the operator; for arbitrary combina-
tions of formats, the operator is again wrapped. However,
in this case the wrapper utilizes the direct transformation
algorithms we developed in the structural aspect. Note that
transformations are required only for those inputs(outputs)
that are not represented in the operator’s native format.
The idea of bringing compressed inputs into a common for-
mat has already been proposed in [13], but only for joins on
dictionary encoded data – and without direct transforma-
tions. We expect this approach to yield considerable speed
ups compared to the first approach, since (i) the compressed
data inside the wrapper is smaller, and (ii) the operator
works directly on the compressed representation, such that
it might, e.g., process more data elements in parallel using
SIMD instructions. This approach requires n variants of the
operator and n2−n transformations, whereby the latter can
be reused for all other operators. Nevertheless, the existence
of a wrapper still causes a certain overhead.

The final approach tries to maximize the efficiency by
tailoring the operator to a specific combination of formats
(Figure 2d), making a wrapper unnecessary. Unfortunately,
this approach implies the highest integration effort, requir-
ing ni+o operator variants. Thus, we intend to evaluate the
potential of this approach first by considering a few promis-
ing combinations. If the results show significant improve-
ments over the second approach, we could address the high
integration effort, e.g., using code generation techniques.

The investigation of the above approaches is our current
work-in-progress. Our ultimate goal is to integrate them
into an existing column-store, most likely into MonetDB.



4. OPTIMIZATION ASPECT
There is no single-best compression algorithm, but the

decision depends on the data characteristics [5]. Thus, com-
pression must be employed wisely in a query plan to make
its benefits outweigh its computational overhead. This moti-
vates the development of compression-aware query optimiza-
tion strategies, our future work in the optimization aspect.

The query optimizer is one of the most complex compo-
nents of a DBMS. The crucial tasks it fulfills – such as al-
gebraic restructuring and mapping logical to physical oper-
ators – are still fundamental for compressed query execu-
tion. Due to the high complexity, deeply integrating our
compression-aware strategies into an existing optimizer is
beyond the scope of this thesis. Instead, we envision a sec-
ond optimization phase. This phase takes the optimal plan
output by an existing optimizer as input and enriches it with
compression by selecting an appropriate compressed format
for each intermediate and replacing the physical operators
by our derived operators for compressed data (Figure 3). In
the following, we briefly describe the research challenges we
will have to face to achieve this goal.

Local vs. global optimization. A simple approach
could be to select the best format for each intermediate in
isolation. While this implies a small search space, it might
fail to find the optimal plan, e.g., by changing the format
too often. A global optimization, on the other hand, requires
effective pruning rules to cope with the huge search space.

Creation of a cost model. Due to the complex be-
havior of lightweight compression algorithms and, therefore,
the operators based on them, the comparison of alternative
decisions should be based on a cost model. Given a set of
data properties, this model must provide estimates for, e.g.,
the compression rate and operator runtimes.

Estimation of the data characteristics. To use the
cost model effectively, the characteristics of the data must
be known. However, estimating the properties of all inter-
mediates prior to query execution is non-trivial. Erroneous
estimates might result in sub-optimal decisions. Therefore,
adaptive optimization strategies might be a solution.

5. CONCLUSIONS
Modern in-memory column-stores address the RAM-CPU-

bottleneck through lightweight data compression. However,
employing compression has not been investigated sufficiently
for intermediate results, although they offer great potential
for performance improvement. In this context, we intro-
duced our vision of a balanced query processing based on
compressed intermediates. We discussed all relevant aspects
of the problem in detail: (1) Our completed work in the
structural aspect, where we contributed (i) an extensive ex-
perimental survey of lightweight compression algorithms and
(ii) direct transformation algorithms. (2) Our ongoing work
in the operational aspect, where we contribute different vari-
ants of physical operators on compressed data. (3) Our fu-
ture work in the optimization aspect, where we will con-
tribute compression-aware query optimization strategies.
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Figure 3: Compression-aware query optimization.
Colors in the query plans stand for different com-
pressed formats; grey stands for uncompressed data.
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