
Adaptive Doubly Trained Evolution Control
for the Covariance Matrix Adaptation Evolution Strategy
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Abstract: An area of increasingly frequent applications of
evolutionary optimization to real-world problems is con-
tinuous black-box optimization. However, evaluating real-
world black-box fitness functions is sometimes very time-
consuming or expensive, which interferes with the need
of evolutionary algorithms for many fitness evaluations.
Therefore, surrogate regression models replacing the orig-
inal expensive fitness in some of the evaluated points have
been in use since the early 2000s. The Doubly Trained
Surrogate Covariance Matrix Adaptation Evolution Strat-
egy (DTS-CMA-ES) represents a surrogate-assisted ver-
sion of the state-of-the-art algorithm for continuous black-
box optimization CMA-ES. The DTS-CMA-ES saves ex-
pensive function evaluations through using a surrogate
model. However, the model inaccuracy on some functions
can slow-down the algorithm convergence. This paper in-
vestigates an extension of DTS-CMA-ES which controls
the usage of the model according to the model’s error.
Results of testing an adaptive and the original version of
DTS-CMA-ES on the set of noiseless benchmarks are re-
ported.

1 Introduction

Evolutionary algorithms have become very successful in
continuous black-box optimization. That is, in optimiza-
tion where no mathematical expression of the optimized
function is available, neither an explicit nor implicit one,
and it is necessary to empirically evaluate the fitness func-
tions through series of measurements or simulations.

Considering real-world applications, the evaluation of
a black-box function can be very time-consuming or ex-
pensive. Taking into account this property, the optimiza-
tion method should evaluate as small amount of points as
possible and still reach the target distance to the function
optimal value.

The Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) [4] is considered to be the state-of-the-art op-
timization algorithm for continuous black-box optimiza-
tion. On the other hand, the CMA-ES can consume many

evaluations to find the optimum of the expensive fitness
function. This property resulted in the development of
several surrogate-assisted versions of the CMA-ES (an
overview can be found in [11]), where a part of evalua-
tions is performed by a regression surrogate model instead
of the original fitness function.

The local meta-model CMA-ES (lmm-CMA-ES), pro-
posed in [7] and later improved in [1], builds a quadratic
regression model for each point using a set of points
already evaluated by the fitness function. The conver-
gence of the algorithm is speeded-up by using a control
of changes in population ranking after the fraction of the
offspring is evaluated by the original fitness.

A different surrogate-assisted approach, utilizing an or-
dinal SVM to estimate the ranking of the fitness function
values, called s∗ACM-ES, has been introduced in [8] and
later improved in BIPOP-s∗ACM-ES-k [9] to be more ro-
bust against premature convergence to local optima. The
parameters of the SVM surrogate model are themselves
optimized using the CMA-ES algorithm.

In 2016, the Doubly Trained Surrogate CMA-ES (DTS-
CMA-ES) algorithm, using the ability of Gaussian pro-
cesses to provide the distribution of predicted points, was
introduced in [10]. The algorithm employs uncertainty cri-
teria to choose the most promising points to be evaluated
by the original fitness.

Results obtained with the three above-mentioned
surrogate-assisted algorithms on noiseless functions [11]
suggest that on some fitness functions (e. g., attractive sec-
tor function) the surrogate model happens to suffer from
a loss of accuracy. Whereas the first of these algorithms
controls the number of points evaluated by the original fit-
ness function to prevent the model from misleading the
search, the DTS-CMA-ES has the amount of evaluated
points fixed. Therefore, some control of the amount of
points evaluated by the original fitness in each generation
could speed-up the DTS-CMA-ES convergence.

This paper extends the original DTS-CMA-ES with an
online adaptation of the number of the points evaluated
by the original fitness. This extended version of DTS-
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Algorithm 1 DTS-CMA-ES [10]
Input: λ (population-size), ytarget (target value),

f (original fitness function), α (ratio of original-
evaluated points), C (uncertainty criterion)

1: σ ,m,C←CMA-ES initialize
2: A←∅ {archive initialization}
3: while minimal yk from A > ytarget do
4: {xk}λ

k=1 ∼N (m,σ2C) {CMA-ES sampling}
5: fM1← trainModel(A,σ ,m,C) {model training}
6: (ŷ,s2) ← fM1([x1, . . . ,xλ ]) {model evaluation}
7: Xorig←select ⌈αλ⌉ best points accord. to C(ŷ,s2)
8: yorig← f (Xorig) {original fitness evaluation}
9: A=A∪{(Xorig,yorig)} {archive update}

10: fM2← trainModel(A,σ ,m,C) {model retrain}
11: y← fM2([x1, . . . ,xλ ]) {2nd model prediction}
12: (y)k ← yorig,i for all original-evaluated yorig,i ∈ yorig
13: σ ,m,C← CMA-ES update
14: end while
15: xres← xk from A where yk is minimal
Output: xres (point with minimal y)

CMA-ES is compared with the original version as well
as with the other two above mentioned surrogate mod-
els on the noiseless part of the Comparing-Continuous-
Optimisers (COCO) platform [5, 6] in the expensive sce-
nario and compares it to the original CMA-ES, lmm-
CMA-ES, s∗ACM-ES, and original DTS-CMA-ES. Sec-
tion 2 describes the original DTS-CMA-ES in more de-
tail. Section 3 defines the adaptivity employed to improve
the original DTS. Section 4 contains the experimental part.
Section 5 summarizes the results and concludes the paper.

2 Doubly Trained Surrogate CMA-ES

The DTS-CMA-ES, introduced in [10], is outlined in Al-
gorithm 1. The algorithm utilizes the ability of GP to es-
timate the whole probability distribution of fitness to se-
lect individuals out of the current population using some
uncertainty criterion. The selected individuals are subse-
quently reevaluated with the original fitness and incorpo-
rated into the set of points utilized for retraining the GP
model. The CMA-ES strategy parameters (σ , m, C, etc.)
are calculated using the original CMA-ES algorithm.

3 Adaptivity for the DTS-CMA-ES

In this section, we propose a simple adaptation mechanism
for the DTS-CMA-ES. In DTS-CMA-ES, the number of
points evaluated by the original fitness function in one gen-
eration is controlled by the ratio α . The higher values of
α , the more points are evaluated by the original fitness. As
a consequence, more training points are available for the
surrogate model around the current CMA-ES mean m. In
addition, the CMA-ES is less misled by a smaller amount

Algorithm 2 Adaptive DTS-CMA-ES
Input: λ (population-size), ytarget (target value),

f (original fitness function), β (update rate),
α0, αmin, αmax (initial, minimal, and maximal ratio
of original-evaluated points), C (uncertainty criterion),E(0), Emin, Emax (initial, minimal, and maximal error)

1: σ ,m,C,g←CMA-ES initialize
2: A←∅ {archive initialization}
3: while minimal yk from A > ytarget do
4: {xk}λ

k=1 ∼N (m,σ2C) {CMA-ES sampling}
5: fM1← trainModel(A,σ ,m,C) {model training}
6: (ŷ,s2) ← fM1([x1, . . . ,xλ ]) {model evaluation}
7: Xorig←select ⌈αλ⌉ best points accord. to C(ŷ,s2)
8: yorig← f (Xorig) {fitness evaluation}
9: A=A∪{(Xorig,yorig)} {archive update}

10: fM2← trainModel(A,σ ,m,C) {model retrain}
11: y← fM2([x1, . . . ,xλ ]) {2nd model prediction}
12: (y)k ← yorig,i for all original-evaluated yorig,i ∈ yorig
13: ERDE←RDEµ(ŷ, y) {model’s error estimation}
14: E(g)← (1−β)E(g−1)+βERDE {exponen. smooth}
15: α ← update using linear transfer function in Eq.(2)
16: σ ,m,C,g← CMA-ES update
17: end while
18: xres← xk from A where yk is minimal
Output: xres (point with minimal y)

of points evaluated by the model. On the other hand, the
lower values of α imply less evaluations by the original
fitness and possibly a faster convergence of the algorithm.
The ratio α can be controlled according to the surrogate
model precision. Taking into account that the CMA-ES is
dependent only on the ordering of the µ best individuals
from the current population, we suggest to use the Ranking
Difference Error described in the following paragraph.

The Ranking Difference Error (RDEµ ), is a normalized
version of the error measure used by Kern in [7]. It is the
sum of differences of rankings of the µ best points in the
population of size λ , normalized by the maximal possible
such error for the respective µ,λ (ρ(i) and ρ̂(i) are the
ranks of the i-th element in vectors y and ŷ respectively,
where y’s ranking is expected to be more precise)

RDEµ(ŷ,y)= ∑i∶ρ(i)≤µ ∣ρ̂(i)−ρ(i)∣
maxπ ∈Permutationsof(1,...,λ)∑i∶π(i)≤µ ∣ i−π(i)∣ .

(1)
The adaptive DTS-CMA-ES (aDTS-CMA-ES), de-

picted in Algorithm 2, differs from the original DTS-
CMA-ES in several additional steps (lines 13–15) pro-
cessed after the surrogate model fM2 is retrained using the
new original-evaluated points from the current generation
(line 10). First, the quality of the model is estimated using
the RDEµ(ŷ,y) measured between the first model’s pre-
diction ŷ and the vector y which is composed of the avail-
able original fitness values (from yorig) and the retrained
model’s predictions for the points which are not original-
evaluated. Due to noisy observation of the model’s error
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ERDE, we have employed exponential smoothing of the
measured error using the update rate β (line 14). As the
next step (line 15), α is calculated via linear transfer func-
tion of E(g)

α =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

αmin E(g) ≤ Emin

αmin+ E(g)−EminEmax−Emin
(αmax−αmin) E(g) ∈ (Emin,Emax)

αmax E(g) ≥ Emax

,

(2)
where Emin and Emax are lower and upper bounds for satu-
ration to the values of αmin and αmax respectively.

Having analyzed the RDEµ error measures on the CO-
CO/BBOB testbed, we observed that the measured RDE
error E(g) depends on the ratio α and the dimension D:

Emin = f Emin(α,D), Emax = f Emax(α,D). (3)

Especially dependence on α is not surprising: from the
definition of RDEµ follows that the more reevaluated
points, the higher number of summands in nominator of
(1) and hence the higher RDEµ value. Due to mutual de-
pendence of the parameters E and α , the calculation of α
in each generation is performed in a cycle until conver-
gence of α:

(1) calculate error thresholds Emin, Emax using the last
used ratio α – either from the previous iteration, or
from the previous generation (see equation (3))

(2) calculate new ratio α using newly calculated Emin,Emax (see equation (2))

In our implementation, the functions f Emin and f Emin are re-
sults of multiple linear regression – see section 4.1 for the
details of these linear models. The remaining parts of the
algorithm are similar to the original DTS-CMA-ES.

4 Experimental Evaluation

In this section, we compared the performances of the
aDTS-CMA-ES to the original DTS-CMA-ES [10], the
CMA-ES [4], and two other surrogate-assisted versions of
the CMA-ES, the lmm-CMA-ES [1, 7] and the s∗ACM-
ES [9], on the noiseless part of the COCO/BBOB frame-
work [5, 6].

4.1 Experimental Setup

The considered algorithms were evaluated using the
24 noiseless COCO/BBOB single-objective bench-
marks [5, 6] in dimensions D = 2,3,5 and 10 on 15
different instances per function. The functions were di-
vided into three groups according to the difficulty of their
modeling with a GP model, where two groups were used
for tuning aDTS-CMA-ES parameters and the remaining
group was utilized to test the results of that tuning. The
method of dividing the functions into those groups will be

described below in connection with the aDTS-CMA-ES
settings. The experiment stopping criteria were reaching
either the maximum budget of 250 function evaluations
per dimension (FE/D), or reaching the target distance
from the function optimum ∆ fT = 10−8. The following
paragraphs summarize the parameters of the compared
algorithms.

The original CMA-ES was tested in its IPOP-CMA-ES
version (Matlab code v. 3.61) with the following settings:
the number of restarts = 4, IncPopSize = 2, σstart = 8

3 , λ =
4+⌊3logD⌋. The remaining settings were left default.

The lmm-CMA-ES was employed in its improved ver-
sion published in [1]. The results have been down-
loaded from the COCO/BBOB results data archive 1 in its
GECCO 2013 settings.

We have used the bi-population version of the s∗ACM-
ES, the BIPOP-s∗ACM-ES-k [9]. Similarly to the lmm-
CMA-ES, the algorithm results have also been down-
loaded from the COCO/BBOB results data archive2.

The original DTS-CMA-ES was tested using the overall
best settings from [10]: the prediction variance of Gaus-
sian process model as the uncertainty criterion, the popu-
lation size λ = 8+ ⌊6logD⌋, and the ratio of points eval-
uated by the original fitness α = 0.05. The results of the
DTS-CMA-ES are slightly different from previously pub-
lished results [10, 11] due to a correction of a bug in the
original version which was affecting the selection of points
to be evaluated by the original fitness using an uncertainty
criterion.

The aDTS-CMA-ES was tested with multiple settings
of parameters. First, the linear regression models of lower
and upper bounds for the error measure Emin, Emax were
identified via measuring RDEµ on datasets from DTS-
CMA-ES runs on the COCO/BBOB benchmarks.

As a first step, we figured out six BBOB functions
which are the easiest (E) and six which are the hardest
(H) to regress by our Gaussian process model based on the
RDEµ measured on 1250 independent testsets per func-
tion in each dimension: 10 sets of λ points in each of
25 equidistantly selected generations from the DTS-CMA-
ES runs on the first 5 instances, see Table 1 for these sets of
functions and their respective errors. The functions which
were not identified as E or H form the test function set.

Using the same 25 DTS-CMA-ES “snapshots” on each
of 5 instances, we calculated medians (Q2) and the third
quartiles (Q3) of measured RDEµ on populations from
both groups of functions (E) and (H), where we used
five different proportions of original-evaluated points α ={0.04,0.25,0.5,0.75,1.00} which were available for re-
trained models and thus also for measuring models’ er-
rors E(g). These quartiles were regressed by multiple lin-
ear regression models using stepwise regression from a
full quadratic model of the ratio α and dimension D or
its logarithm log(D) (decision whether to use log(D) or D

1http://coco.gforge.inria.fr/data-archive/2013/
lmm-CMA-ES_auger_noiseless.tgz

2http://coco.gforge.inria.fr/data-archive/2013/
BIPOP-saACM-k_loshchilov_noiseless.tgz

122 Z. Pitra, L. Bajer, J. Repický, M. Holeňa



was according to the RMSE of the final stepwise models);
the stepwise regression was removing terms with the high-
est p-value > 0.05. The coefficients EQ2

min and EQ3
min of the

lower thresholds were estimated on the data from (E) and
the coefficients EQ2

max and EQ3
max of the higher thresholds on

the data from (H), which resulted in the following models:

EQ2
min(α,D) = (1 log(D) α α log(D) α2) ⋅ b1EQ3
min(α,D) = (1 D α αD α2) ⋅ b2EQ2
max(α,D) = (1 D α αD α2) ⋅ b3EQ3
max(α,D) = (1 log(D) α α log(D) α2) ⋅ b4

where

b1 =
⎛⎜⎜⎜⎜⎜⎝

0.11−0.0092−0.13
0.044
0.14

⎞⎟⎟⎟⎟⎟⎠
b2 =
⎛⎜⎜⎜⎜⎜⎝

0.17−0.00067−0.095
0.0087

0.15

⎞⎟⎟⎟⎟⎟⎠
b3 =
⎛⎜⎜⎜⎜⎜⎝

0.18−0.0027
0.44

0.0032−0.14

⎞⎟⎟⎟⎟⎟⎠
b4 =
⎛⎜⎜⎜⎜⎜⎝

0.35−0.047
0.44
0.044−0.19

⎞⎟⎟⎟⎟⎟⎠
.

For the remaining investigations, three different values
of exponential smoothing update rate were used for com-
parison β = {0.3, 0.4, 0.5}. The minimal and maximal
values of α were set to αmin = 0.04 and αmax = 1.0 be-
cause lower α values than 0.04 would yield to less than
one original-evaluated point per generation, and the aDTS-
CMA-ES has to be able to spend the whole populations
for the original evaluations in order to work well on func-
tions where GP model is poor (e. g., on f6 Attractive sec-
tor). The initial error and original ratio values were set toE(0) = 0.05 and α0 = 0.05. The rest of aDTS-CMA-ES pa-
rameters were left the same as in the original DTS-CMA-
ES settings.

4.2 Results

The results in Figures 1, 2, and 3 and in Table 3 show
the effect of adaptivity implemented in the DTS-CMA-
ES. The graphs in Figures 1, 2 and 3 depict the scaled
logarithm ∆log

f of the median ∆med
f of minimal distances

from the function optimum over runs on 15 independent
instances as a function of FE/D. The scaled logarithms of
∆med

f are calculated as

∆log
f = log∆med

f −∆MIN
f

∆MAX
f −∆MIN

f
log10 (1/10−8)+ log10 10−8

where ∆MIN
f (∆MAX

f ) is the minimum (maximum) log∆med
f

found among all the compared algorithms for the particu-
lar function f and dimension D between 0 and 250 FE/D.
Such scaling enables the aggregation of ∆log

f graphs across
arbitrary number of functions and dimensions (see Fig-
ure 3). The values are scaled to the [−8,0] interval, where−8 corresponds to the minimal and 0 to the maximal dis-
tance. This visualization has a better ability to distinguish
the differences in the convergence of tested algorithms

more than the default visualization used by the COCO/B-
BOB platform and that is why it was used in this article.

We have tested the statistical significance of differences
in algorithms’ performance on 12 COCO/BBOB test func-
tions in 10D for separately two evaluation budgets using
the Iman and Davenport’s improvement of the Friedman
test [2]. Let #FET be the smallest number of function
evaluations on which at least one algorithm reached the
target, i. e., satisfied ∆med

f ≤ ∆ fT , or #FET = 250D if no al-
gorithm reached the target within 250D evaluations. The
algorithms are ranked on each COCO/BBOB test function
with respect to ∆med

f at a given budget of function eval-
uations. The null hypothesis of equal performance of all
algorithms is rejected at a higher function evaluation bud-
get #FEs = #FET (p < 10−3), as well as at a lower budget
#FEs = #FET

3 (p < 10−3).
We test pairwise differences in performance utiliz-

ing the post-hoc Friedman test [3] with the Bergmann-
Hommel correction controlling the family-wise error in
cases when the null hypothesis of equal algorithms’ per-
formance was rejected. To illustrate algorithms’ differ-
ences, the numbers of test functions at which one algo-
rithm achieved a higher rank than the other are reported
in Table 3. The table also contains the pairwise statistical
significances.

We have compared the performances of aDTS-CMA-
ES using twelve settings differing in Emin, Emax, and β .
Table 2 illustrates the counts of the 1st ranks of the com-
pared settings according to the lowest achieved ∆med

f for
25, 50, 100, and 200 FE/D respectively. The counts are
summed across the testing sets of benchmark functions in
each individual dimension.

Although the algorithm is rather robust to exact setting
of smoothing update rate, we have found that the lower
the β , the better the performance is usually observed (see
Table 2), and thus the following experiments use the rate
β = 0.3.

When comparing the convergence rate, the performance
of aDTS-CMA-ES with EQ2

min is noticeable lower especially
on Rosenbrock’s functions ( f8, f9) and Different powers
f14 where the RDEµ error often exceeds the lower er-
ror threshold even if a lower number of original-evaluated
points would be sufficient for higher speedup of the CMA-
ES. The adaptive control, on the other hand, helps es-
pecially on the Attractive sector f6, which has the opti-
mum in a point without continues derivatives and is there-
fore hard-to-regress by GPs, or on Shaffers’ functions f17,
f18 where the aDTS-CMA-ES is probably able to adapt
to multimodal neighbourhood around function’s optimum
and performs best of all the compared algorithms. Within
the budget of 250 FE/D, the aDTS-CMA-ES (especially
with EQ2

min) is also able to find one of the best fitness value
on regularly multimodal Rastrigin functions f3, f4 or f15
where the GP model apparently does not prevent the orig-
inal CMA-ES from exploiting the global structure of a
function.
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Figure 1: Algorithm comparison on 24 COCO/BBOB noiseless functions in 5D. εmin, εmax: minimal and maximal error,
Q2, Q3: median and third quartile.
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f24 Lunacek bi-Rastrigin 10D

Figure 2: Algorithm comparison on 24 COCO/BBOB noiseless functions in 10D. εmin, εmax: minimal and maximal error,
Q2, Q3: median and third quartile.
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Figure 3: Algorithm comparison using averaged ∆log
f values on 12 test functions from the COCO/BBOB testbed in 5D

and 10D. εmin, εmax: minimal and maximal error, Q2, Q3: median and third quartile.

Table 1: The easiest (1.–6.) and the hardest (19.–24.) to regress six COCO/BBOB functions by the Gaussian process used
in the DTS-CMA-ES (columns f ) according to the corresponding medians of RDEµ error measured in 25 generations
from 5 instances on independent testsets of size λ = 8+⌊6logD⌋ using µ = λ/2.

2D 3D 5D 10D 20D
f RDEµ f RDEµ f RDEµ f RDEµ f RDEµ

1. 5 0.00 5 0.00 5 0.00 5 0.04 5 0.04
2. 1 0.08 1 0.11 1 0.16 1 0.18 1 0.08
3. 2 0.10 2 0.13 10 0.18 10 0.26 24 0.18
4. 10 0.10 10 0.14 2 0.21 8 0.27 15 0.19
5. 11 0.10 9 0.16 11 0.23 2 0.27 19 0.20
6. 8 0.14 8 0.18 9 0.24 9 0.29 3 0.21
19. 18 0.46 23 0.43 24 0.41 21 0.40 18 0.38
20. 20 0.52 15 0.43 4 0.44 16 0.41 23 0.47
21. 24 0.53 24 0.49 23 0.45 23 0.47 6 0.48
22. 6 0.54 20 0.51 6 0.51 6 0.50 21 0.51
23. 7 0.54 6 0.52 20 0.54 20 0.54 20 0.52
24. 19 0.54 7 0.54 7 0.56 7 0.57 7 0.56

Table 2: Counts of the 1st ranks from 12 benchmark test functions from the BBOB/COCO testbed according to the lowest
achieved ∆med

f for different FE/D = {25,50,100,200} and dimensions D = {2,3,5,10}. Ties of the 1st ranks are counted
for all respective algorithms. The ties often occure when ∆ fT = 10−8 is reached (mostly on f1 and f5).

2D 3D 5D 10D ∑
FE/D 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200EQ2

min, EQ2
max, β = 0.3 1 0 0 2 1 2 2 3 0 0 0 0 0 0 0 1 2 2 2 6EQ2

min, EQ2
max, β = 0.4 0 0 0 2 1 0 0 3 0 0 0 0 0 0 0 0 1 0 0 5EQ2

min, EQ2
max, β = 0.5 2 0 0 3 0 0 0 3 0 0 0 0 0 0 0 1 2 0 0 7EQ2

min, EQ3
max, β = 0.3 2 0 1 4 1 0 0 3 0 0 2 2 0 0 0 2 3 0 3 11EQ2

min, EQ3
max, β = 0.4 0 0 1 4 0 0 0 4 0 1 2 3 0 0 3 4 0 1 6 15EQ2

min, EQ3
max, β = 0.5 1 0 0 3 0 0 0 4 0 0 0 3 0 0 0 1 1 0 0 11EQ3

min, EQ2
max, β = 0.3 1 0 3 4 4 5 5 5 5 3 3 5 7 6 3 4 17 14 14 18EQ3

min, EQ2
max, β = 0.4 1 4 1 4 1 0 1 4 5 4 0 4 1 2 3 2 8 10 5 14EQ3

min, EQ2
max, β = 0.5 1 3 1 5 0 2 2 3 1 0 1 2 3 0 0 1 5 5 4 11EQ3

min, EQ3
max, β = 0.3 0 2 2 4 1 3 3 3 0 3 3 4 0 1 2 1 1 9 10 12EQ3

min, EQ3
max, β = 0.4 0 2 3 4 3 0 3 4 1 1 0 4 0 2 0 1 4 5 6 13EQ3

min, EQ3
max, β = 0.5 3 1 2 3 0 0 1 3 0 0 1 2 1 1 1 2 4 2 5 10
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Table 3: A pairwise comparison of the algorithms on 12 test functions in 10D over the COCO/BBOB for different
evaluation budgets. The number of wins of i-th algorithm against j-th algorithm over all benchmark functions is given
in i-th row and j-th column. The asterisk marks the row algorithm being significantly better than the column algorithm
according to the Friedman post-hoc test with the Bergmann-Hommel correction at family-wise significance level α = 0.05.

111000DDD
EQ2

min,EQ2
max

EQ2
min,EQ3
max

EQ3
min,EQ2
max

EQ3
min,EQ3
max

CMA-
ES

lmm-
CMA-

ES

s∗ACM-
ES

DTS-
CMA-

ES

#FEs⁄#FET
1⁄3 1 1⁄3 1 1⁄3 1 1⁄3 1 1⁄3 1 1⁄3 1 1⁄3 1 1⁄3 1

EQ2
min, EQ2

max
— — 6 5 4 6 4 8 12 11 2 5 6 8 3 7

EQ2
min, EQ3

max 6 7 — — 3 5 5 6 11 10 2 6 7 7 2 5

EQ3
min, EQ2

max 8 6 9 7 — — 7 7 12∗ 9 4 5 8 5 3 2

EQ3
min, EQ3

max 8 4 7 6 5 5 — — 11∗ 10 4 6 9 7 4 4

CMA-ES 0 1 1 2 0 3 1 2 — — 1 1 2 4 0 1

lmm-CMA-
ES 10 7 10 6 8 7 8 6 11∗ 11 — — 10 6 7 5

s∗ACM-ES 6 4 5 5 4 7 3 5 10 8 2 6 — — 3 7

DTS-CMA-
ES 9 5 10 7 9 10 8 8 12∗ 11∗ 5 7 9 5 — —

5 Conclusions & Future work

In this paper, we have presented a work-in-progress on
adaptive version of the surrogate-assisted optimization al-
gorithm DTS-CMA-ES. The online adjustment of the ratio
between the original- and model-evaluated points accord-
ing to the error of the surrogate model is investigated. The
new adaptive version of the algorithm employs RDEµ be-
tween the fitness of current population predicted using the
first-trained model and the retrained model.

Results of parameter tunning show that lower values
of the exponential smoothing rate β provide better re-
sults. On the other hand, different combinations of slower
and more rapid update behaviours bring better CMA-ES
speedup for different kinds of functions, and choice of
this parameter could depend on the experimenter’s domain
knowledge. We found that the adaptive approach speeds
up the CMA-ES more than three other surrogate CMA-ES
algorithms, namely DTS-CMA-ES, s∗ACM-ES, and lmm-
CMA-ES, on several functions after roughly 150 FE/D.

The adaptivity of the DTS-CMA-ES is still, to a certain
extent, work in progress. A future perspective of improv-
ing aDTS-CMA-ES is to additionally investigate different
types and properties of adaptive control of the number of
points evaluated by the original fitness in each generation.
Another conceivable direction of future research can be
found in online switching between different types of sur-
rogate models suitable for the aDTS-CMA-ES.
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control for the Surrogate CMA-ES. In PPSN XIV Proceed-
ings, pages 59–68. Springer, 2016.

[11] Z. Pitra, L. Bajer, J. Repický, and M. Holeňa. Overview
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