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Abstract: This paper compares traditional averages-
based model with other various age estimation models
in the range from the simplest to the advanced ones,
and introduces novel Tabular Constrained Multiple-linear
Regression (TCMLR) model. This TCMLR model has
similar complexity as traditional averages-based model
(it can by evaluated manually), but improves the mean
absolute error in average about 0.30 years (approx.
3.6 months) for males, and 0.18 years (approx. 2.2
months) for females, respectively. For all models, the
chronological age of an individual is estimated from
mineralization stages of dentition. This study was based
on a sample of 976 orthopantomographs taken of 662 boys
and 314 girls of Czech nationality aged between 2.7 and
20.5 years.

1 Introduction

For age estimation of children and adolescents one of the
most stable markers for age estimation is the development
of dentition. There are various limitations for age
estimation from dental remains, for review see [1, 2].
There are various methods for calculating the age of an
individual from mineralization stages of dentition (e.g.[3–
5]) which are traditional, easy to use and provide a
decent level of accuracy. A number of authors developed
modifications of these methods in order to increase the
accuracy, adjust the tables for specific populations or to
develop a more complex approach (e.g. [6–8]). The goal
of this paper is to investigate the question if sophisticated
methods provide an improvement of results at such level
that they are worth engaging in forensic practice.

2 Material and Methods

The study sample consists of 662 boys and 314 girls of
Czech nationality with the age distribution as shown by
histograms in the Figure 1.

Development of each tooth was divided into 14 sub-
stages, and each stage was assigned a numerical value
ranging from 1 to 14 [3]. "Initial cusp formation" was
denoted as stage 1, the "Coalescence of cusps" as stage 2
and so forth until the last stage "Apical closure complete"
as stage 14. Stage 0 was used when no data was available.
Table 1 summarizes tooth development stages.

Figure 1: Age distribution histograms

Table 1: Tooth development stages
Meaning Coding

single-rooted
teeth

multi-rooted
teeth

Initial cusp formation 1 1
Coalescence of cusps 2 2
Cusp outline complete 3 3
Crown 1

2 complete 4 4
Crown 3

4 complete 5 5
Crown complete 6 6
Initial root formation 7 7
Initial cleft formation – 8
Root length 1

4 8 9
Root length 1

2 9 10
Root length 3

4 10 11
Root length complete 11 12
Appex 1

2 closed 12 13
Apical closure complete 13 14

Figure 2 illustrates development stages for single-rooted
and multi-rooted teeth, as well as, the position of single-
rooted and multi-rooted teeth in maxilla and mandible.

The correlation matrix is visualized in Figure 3 for
males and in Figure 4 for females, respectively. The first
row/column represents chronological age, the subsequent
16 rows/columns represent left and right teeth coming
from mandible; and next subsequent 16 rows/columns
represent left and right teeth coming from maxilla. The
ordering of teeth is as follows: I1, I2, C, P1, P2, M1,
M2 and M3. The minimum value in correlation matrix
is 0.32 for males, and 0.61 for females. The correlation
coefficient between chronological age and development
stages of various teeth range from 0.71 to 0.93 for males,
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Figure 2: Tooth development stages and the position of
single-rooted and multi-rooted teeth

Figure 3: Correlation matrix for males

and from 0.82 to 0.95 for females. From these matrices,
we can observe strong correlation between corresponding
left and right teeth for both mandible and maxilla, and
tendency of higher correlation between neighboring teeth.

In the rest of the paper the subscript ’d’ stands for
mandible, ’x’ for maxilla, ’Sin’ for sinistra and ’Dx’ for
dexter. The correlation coefficient between development
stage to the chronological age for the most correlated
teeth for males is as follows: P2x,Dx : 0.93, P2x,Sin : 0.93,
M2x,Dx : 0.92, M2x,Sin : 0.92, M2d,Dx : 0.92, P1x,Dx : 0.92,
P1x,Sin : 0.92, M2d,Sin : 0.92, P2d,Sin : 0.89, P1d,Dx : 0.89,
P2d,Dx : 0.89 and P1d,Sin : 0.89. Similarly, for females:
M2x,Dx : 0.95, P2x,Dx : 0.95, P2x,Sin : 0.95, P1x,Dx : 0.95,
P1x,Sin : 0.95, P1d,Dx : 0.95, P1d,Sin : 0.95, Cx,Sin : 0.94,
Cx,Dx : 0.94, P2d,Sin : 0.94, M2x,Sin : 0.94 and P2d,Dx : 0.94.

Figure 4: Correlation matrix for females

2.1 Investigated Methods without Transformation of
Input Data

Here we describe investigated methods, which directly use
tooth development stages as an input.

Model #1: Multiple linear regression model
(MLR) [13] is based on a method that approximates
dental age by a linear equation. In this model the collinear
attributes were removed, and attribute selection using the
Akaike information metric was used to remove attributes
with the smallest standardized coefficient if this improves
the final model.

Model #2: The Support Vector Machine (SVM)
regression can be used to avoid difficulties of using linear
functions in the high dimensional feature space. The
nonlinear transformation that maps observations to a high-
dimensional space is usually referenced as a kernel. For
our analysis, a polynomial kernel with exponent set to 2.0
was used, and the value of ε was set to 0.04.

Model #3: Multilayer perceptron (MLP) is
a feedforward artificial neural network that consists
of multiple layers of nodes with each layer connected to
the next one [13]. In our analysis, a single hidden layer
network was used, consisting of 16 nodes in the input
layer (corresponding to the individual teeth), 8 neurons
in the hidden layer and 1 neuron in the output layer.
Backpropagation is used as the learning algorithm.
Neurons in the hidden layer are all sigmoid, and the
output neuron is an unthresholded linear unit.

Model #4: Radial Basis Function neural network (RBF)
has similar topology to the previous MLP, but each node
in the hidden layer is a normalized Gaussian radial basis
function. It uses the k-means clustering algorithm to
provide the basis functions. The minimum standard
deviation for the clusters was set to 0.1 and the number of
clusters was set to 20 for the merged dataset, 20 for males
and 10 for females.

Model #5: Radial Basis Function neural network with
BFGS method (RBF-BFGS) is similar to model #4. It
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is trained in a fully supervised manner by WEKA’s
Optimization class by minimizing squared error with the
BFGS (Broyden–Fletcher–Goldfarb–Shanno) method.

Model #6: K-nearest neighbors (KNN) is a simple
algorithm that stores all available data and estimates the
output value of new observations based on a similarity
measure. The brute force search algorithm is used to find
the 10 nearest neighbors and Manhattan distance is used
to measure the distance.

Model #7: KStar is, similarly to KNN, an instance-
based classifier which differs in using an entropy-based
distance function. The distance function reflects the
complexity of transforming an instance into another one.
Using entropic distance as a metric has a number of
benefits including handling of real valued attributes and
missing values.

Model #8: Regression tree (RepTree in Weka) is a
non-parametric supervised learning method which builds
regression model in the form of a tree structure.

Model #9: M5P Tree is similar to the previous
regression tree model #8. The main difference is that
leaves do not provide a piecewise constant function (one
specific value at each leaf) but rather various MLR models
as discussed above (see model #1) reflecting tooth age
estimation capabilities in various age ranges.

2.2 Investigated Methods with Transformation of
Input Data

The tooth development stage represents an ordinal
categorical variable with a nonlinear monotonic
relationship to the dental age of an individual. Therefore,
we also examined the possibility of replacing tooth
development stages by the representative median (or
average) age before creating the model. The median
(or average) age was computed from all individuals
of representative population who have the same
mineralization stage for the same tooth type. This
potentially eliminates the nonlinear relationship and
transforms the tooth development stage into a ratio-scaled
continuous variable. Models using this transformation are
referred as "tabular".

Model #10: Tabular model based on age averages,
e.g. [3, 12], is a widely-used classical method of age
estimation in forensic practice because of its simplicity.
The model uses tables containing the average age of all
individuals from a representative population who have an
equally developed specific tooth type. These tables can
be found e.g. in Smith [12]. Age estimation of unknown
individual is realized by estimating the developmental
stage of each available tooth from an X-ray image, looking
up the age for each estimated stage in the tables and
computing the average value of age. This means that each
tooth has the same contribution/weight for the final age
estimation.

Model #11: Tabular model based on age medians could
be considered as an alternative to model #10, where the
only difference is that medians are used instead of age
averages.

Model #12: Tabular constrained multiple linear
regression model (TCMLR) is similar to MLR (model #1)
but uses the transformation of input data as described
above and only non-negative coefficients. For this model,
we compare two versions – version A and version B.
In the version A, the collinear attributes were removed
and a greedy method was used for the attribute selection
using the Akaike information metric. Moreover, the
teeth producing negative coefficients in the created model
were simply not included. This guarantees the ordering
of the model outputs with respect of increasing tooth
development stages – i.e. higher development stage results
in higher estimated age. In the version B, we use the
algorithm implemented in Matlab by lsqnonneg, which
is a function designed to solve non-negative least-squares
problem and it is based on algorithm described in [16].

Other models, namely Model #13 – #20, use the
transformation of input data into median age as described
above and are based on their non-tabular counterparts, e.g.
tabular SVM is based on SVM, etc. Model #13 is realized
in two versions – polynomial kernel with exponent equal
to 1.0 and 2.0.

Data processing and analysis were performed using
software tools Matlab [24] and Weka [25]. The mean
absolute error and root mean squared error for all
presented models (#1 – #20) was estimated by using 5-fold
cross-validation, where the models are completely build
upon the training set and no information from the testing
set is involved during the training phase. Hyperparameters
of used models were tuned on the training set only.

3 Comparison of Considered Models

A comparison of the considered models by using 5-fold
cross-validation for males and females is shown in
Table 2, where MAE means mean absolute error and
RMS means root mean squared error. All presented
models produce the estimated age of an individual as
an output. The table is ordered in four categories
from the simplest models at the top (dental age can
be easily estimated) to the most complex models at the
bottom (almost impossible to evaluate the model without
computer). The comparison shows that the conventional
model based on age averages (#10) fails in terms of age
estimation accuracy. Significantly better results provide
the Tabular multiple linear regression model (#12), M5P
tree model (#9), tabular M5P tree model (#20) and tabular
Support Vector Machine with first-order polynomial
kernel (#13), which has similar complexity as baseline
model #10 (all models are user-friendly). The mean
absolute error for all these models is under 0.7 years and
root mean squared error is about 0.9 years. The model #9
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Table 2: Comparison of considered models
Males Females

MAE /RMS MAE / RMS
Tab. age avg. (#10) 0.96 / 1.20 0.83 / 0.91
Tab. age med. (#11) 0.95 / 1.25 0.83 / 0.89
MLR (#1) 0.76 / 1.02 0.78 / 1.08
Tab. MLR, v.A (#12) 0.66 / 0.86 0.65 / 0.86
Tab. MLR, v.B (#12) 0.69 / 0.90 0.64 / 0.84
M5P tree (#9) 0.69 / 0.92 0.70 / 0.91
Tab. M5P tree (#20) 0.65 / 0.86 0.65 / 0.89
TSVM, exp=1 (#13) 0.65 / 0.86 0.64 / 0.85
Reg. tree (#16) 0.85 / 1.22 0.82 / 1.11
Tab. reg. tree (#19) 0.80 / 1.10 0.79 / 1.02
SVM (#2) 0.70 / 0.94 0.71 / 0.95
TSVM, exp=2 (#13) 0.73 / 0.96 0.83 / 1.05
MLP (#3) 0.91 / 1.16 0.84 / 1.08
Tab. MLP (#14) 0.76 / 0.98 0.80 / 1.04
RBF (#4) 0.74 / 0.99 0.80 / 1.02
Tab. RBF (#15) 0.76 / 0.99 0.77 / 1.00
RBF-BFGS (#5) 0.65 / 0.86 0.67 / 0.88
TRBF-BFGS (#16) 0.63 / 0.83 0.67 / 0.88
KNN (#6) 0.64 / 0.85 0.66 / 0.87
Tab. KNN (#17) 0.63 / 0.84 0.65 / 0.84
KStar (#7) 0.65 / 0.85 0.69 / 0.88
Tab. KStar (#18) 0.63 / 0.86 0.66 / 0.87

= very easy to evaluate manually; = easy to evaluate;
= the model size or procedure can be confusing; = the

model is hard or almost imposible to evaluate without computer.

estimates the age directly from the teeth development
stages (tree model is built upon this information), whereas
the models #12, #13 (with first-order polynomial kernel)
and #20 in the first step replace each tooth development
stage by median age. This eliminates the nonlinearity
between development stage and chronological age and
allows for great reduction of the generated M5P tree in
the model #20, which in fact collapses (after pruning)
into just one leaf. Therefore, the model #20 has become
principally equivalent to model#12. This indicates that
in this case it is fully sufficient to build only one
tabular multiple linear regression model for the whole age
range of the studied population. Slightly better accuracy
provide RBF neural network with BFGS (#5), tabular
RBF neural network with BFGS (#16), Tabular Support
Vector Machine (#13), K-nearest neighbors (#6), tabular
K-nearest neighbors (#17), KStar (#7) and tabular KStar
model (#18). Nevertheless, these models are almost
impossible to evaluate without help of computer and
models #6, #17, #7 and #18 include entire data set of all
976 orthopantomographs (data set is integral part of these
models).

In the Figure 5 and Figure 6 is illustrated the model
performance of tabular multiple linear regression model,
version A – Model #12. This model provide acceptable
accuracy while being user-friendly. Comparing to the

Figure 5: The model performance of tabular MLR model
for males, version A (Model #12)

Figure 6: The model performance of tabular MLR model
for females, version A (Model #12)

traditional age estimation model #10, the mean squared
error is reduced about 0.3 years for males, and 0.18 years
for females, respetively.

4 Description of Selected Model

We have chosen TCMLR model with non-negative
coefficients (model #12, version A) as the best candidate
for application in forensic praxis. This model is easy
to use and provides sufficient age estimation accuracy.
Tabular M5P tree model #20 provides almost identical
results because in this case M5P tree has degraded into
just one leaf, and thus it is similar to model #12. TSVM
model with exp=1.0 provides slightly better performance.
However, negative coefficients appearing in this TSVM
model cause undesirable side effects — the more the
corresponding tooth is developed, the more the estimated
age is decreased. This can be in contrast with expected
behavior of the dental age estimation model in praxis.
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Table 3: Median age table for males, mandible
Tooth
devel.

I1 I2 C P1 P2 M1 M2 M3

1 – – – – – – – 8.9
2 – – – – 3.9 – – 9.3
3 – – – 3.6 4.6 – 4.9 9.9
4 – – 3.9 4.3 4.9 – 5.3 10.5
5 2.6 3.6 4.6 5.2 5.8 – 6.1 11.5
6 3.4 4.4 5.5 5.9 6.4 2.8 6.9 12
7 4.2 4.9 6.1 6.7 7.7 3.5 7.9 13.4
8 4.8 5.6 7.2 7.9 8.6 4.2 8.8 14.7
9 5.6 6.4 8.3 9 9.8 5 9.8 15.4
10 6.7 7.5 9.5 10.2 10.7 5.9 11.1 16.6
11 7.9 8.7 10.7 11.3 12.1 7.4 12.1 17.8
12 9 9.8 12.3 13.1 14.3 8.5 13.9 19.2
13 11.3 11.8 15.2 15.7 16.3 10 15.4 20.7
14 x x x x x 12.4 16.9 22.2

Table 4: Median age table for males, maxilla
Tooth
devel.

I1 I2 C P1 P2 M1 M2 M3

1 – – – – – – – 8.3
2 – – – – 4.6 – 4.9 9.2
3 – 3.8 – – 4.9 – 4.9 9.8
4 – – 4.2 4.9 5.6 3.6 5.5 10.5
5 4.2 4.7 5.2 5.9 6.3 3.9 6.3 11.5
6 5.1 5.6 6 7 7.5 4.2 7.3 12.6
7 5.7 6.2 7 7.8 8.3 4.9 8.2 13.1
8 6.4 7.1 8 8.8 9.3 5.7 9.2 14.3
9 7.6 8.1 8.9 9.9 10.4 6.3 10.2 15.8
10 8.6 9.1 10.3 10.9 11.7 7.4 11.3 16.3
11 9.8 10.2 11.3 12.3 12.7 8.8 12.3 17.1
12 10.3 11 13.2 14.1 14.4 10 13.4 17.8
13 12.2 13.2 15.7 16.3 16.5 9.8 14.7 (18.5)
14 x x x (18.7) x 12.2 16.6 (19.2)

Comparing to a tradional averages-based model (#10),
TCMLR model follows the similar procedure, however
instead of computing the average from partial age
estimations corresponding to each individual tooth (this
corresponds to multiplying by constant ki = 1/16 = 0.0625
for all i=1, 2, ...,16), it uses multiple-linear equation with
non-negative coefficients (1) or (2) to estimate dental age
of individual.

Agemales =0.08M1d +0.17M2d +0.13M3d +0.33P2x+

+0.21M2x +0.20M3x−1.04,
(1)

Age f emales =0.24P1d +0.16M2d +0.13I1x +0.18Cx+

+0.11P1x +0.09M1x +0.15M2x−0.53,
(2)

where the average value between sinister and dexter was
used for calculation. For instance M1d = (M1d,Sin +
M1d,Dx)/2. The value of corresponding median age in
dependency of tooth development stage can be found in
Tab. 3, Tab. 4, Tab. 5 and Tab. 6. These tables are obtained

Table 5: Median age table for females, mandible
Tooth
devel.

I1 I2 C P1 P2 M1 M2 M3

1 – – – – – – 3.9 8.8
2 – – – – – – 4.4 9.5
3 – – – – 4.6 – 4.8 9.8
4 – – 3.8 4.6 5 – 5.3 10.3
5 – 3 4.5 5 5.9 – 6.3 11.5
6 2.7 4.2 5.1 5.9 6.8 2.9 6.9 12.8
7 4.1 4.7 6.3 7 7.7 – 7.9 13.8
8 4.6 5.5 7.4 8.1 8.7 3.9 8.7 14.3
9 5.6 6.9 8.6 9.4 10.1 4.6 9.5 15.1
10 7.2 8.3 10 10.7 11.7 5.8 10.7 16.1
11 8.6 10 11.9 12.5 13.2 7.3 12.2 17.5
12 10.6 12.1 14.2 14.8 15.2 8.8 14 (18.7)
13 14.2 15.4 16.3 16.4 16.7 10.6 15.4 (20.4)
14 x x x x x 14.2 16.8 (22.2)

Table 6: Median age table for females, maxilla
Tooth
devel.

I1 I2 C P1 P2 M1 M2 M3

1 – – – – – – 4.3 –
2 – – – – – 1.8 4.8 8.8
3 – – – – 4.9 – 5.3 9.5
4 – – 4.4 5.1 5.3 – 5.4 10.4
5 4 4.6 5.1 6 6.2 3.1 6.2 11.5
6 4.5 5.1 6.2 7 7.3 4.2 7.1 12.2
7 5.2 6.2 7 7.9 8.2 4.6 8.2 13.7
8 6.3 7 8 8.8 9.2 5.2 9 14.6
9 7.4 8.2 9.1 10.1 10.5 6.1 10.2 15.6
10 8.7 9.4 10.6 11.4 11.8 7.5 11.2 16.4
11 10.4 11.1 12.3 12.6 12.8 9.1 12.2 17.9
12 12.5 13.1 14.3 14.5 14.8 10.7 13.2 19.6
13 15.4 15.6 16.2 16.3 16.4 12.7 15 (21.3)
14 x x x (18.3) x 15.5 16.7 (23.4)

from our study sample and weighted smoothing was used
to capture the relationship between tooth development and
median age. Values in the brackets were computed by the
extrapolation of the existing data.

4.1 Rules for Replacing Missing Values

In the case when all required teeth by equation (1) or (2)
are not available – M1d ,M2d ,M3d ,P2x,M2x,M3x for
males and P1d ,M2d , I1x,Cx,P1x,M1x,M2x for females,
the transformation as described in Sec. 2.2 allows for
simple rules for replacing missing values. In that case,
the missing value can be simply estimated as an average
from available data (corresponding median age from all
available teeth).

5 Conclusion

In this paper, we compared various age estimation models.
The main aim was to explore whether popular data
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mining methods provide significantly better results over
the traditional method based on age averages. The
results show that most of the complex data mining
methods included in this study (they can be evaluated
only by using computer) can improve the mean absolute
error in average about 0.32 years (approx. 3.8 months)
for males, and 0.18 years (approx. 2.2 months) for
females, comparing to traditional model used in forensic
praxis. However, the similar accuracy provide simple
linear models, for instance, TCMLR model has lower
accuracy only about 0.03 years (11 days) for males.
Moreover, the simplicity of TCMLR model is a great
benefit for real application in forensic praxis. Results
of this paper also indicate that instead of using tooth
development stages as ordinal categorical variable it
is better to replace them by ratio-scaled continuous
variable (median age) before creating the model. This
eliminates nonlinear input-output relationships and allows
for achieving higher model accuracy by using simple
linear models. Moreover, this transformation helps to
introduce simple rules for replacing missing values – no
need to estimate development stage of missing tooth, but
the average of median ages corresponding to available
teeth can be used.
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