
Evolution Strategies for Deep Neural Network Models Design

Petra Vidnerová, Roman Neruda

Institute of Computer Science, The Czech Academy of Sciences
petra@cs.cas.cz

Abstract: Deep neural networks have become the state-of-
art methods in many fields of machine learning recently.
Still, there is no easy way how to choose a network ar-
chitecture which can significantly influence the network
performance.

This work is a step towards an automatic architecture
design. We propose an algorithm for an optimization of a
network architecture based on evolution strategies. The al-
gorithm is inspired by and designed directly for the Keras
library [3] which is one of the most common implementa-
tions of deep neural networks.

The proposed algorithm is tested on MNIST data set
and the prediction of air pollution based on sensor mea-
surements, and it is compared to several fixed architectures
and support vector regression.

1 Introduction

Deep neural networks (DNN) have become the state-of-
art methods in many fields of machine learning in recent
years. They have been applied to various problems, in-
cluding image recognition, speech recognition, and natural
language processing [8, 10].

Deep neural networks are feed-forward neural networks
with multiple hidden layers between the input and output
layer. The layers typically have different units depending
on the task at hand. Among the units, there are traditional
perceptrons, where each unit (neuron) realizes a nonlin-
ear function, such as thesigmoid function, or the rectified
linear unit (ReLU).

While the learning of weights of the deep neural net-
work is done by algorithms based on the stochastic gradi-
ent descent, the choice of architecture, including a number
and sizes of layers, and a type of activation function, is
done manually by the user. However, the choice of archi-
tecture has an important impact on the performance of the
DNN. Some kind of expertise is needed, and usually a trial
and error method is used in practice.

In this work we exploit a fully automatic design of
deep neural networks. We investigate the use of evolu-
tion strategies for evolution of a DNN architecture. There
are not many studies on evolution of DNN since such ap-
proach has very high computational requirements. To keep
the search space as small as possible, we simplify our
model focusing on implementation of DNN in the Keras
library [3] that is a widely used tool for practical applica-
tions of DNNs.

The proposed algorithm is evaluated both on benchmark
and real-life data sets. As the benchmark data we use the
MNIST data set that is classification of handwritten digits.
The real data set is from the area of sensor networks for
air pollution monitoring. The data came from De Vito et
al [21, 5] and are described in detail in Section 5.1.

The paper is organized as follows. Section 2 brings an
overview of related work. Section 3 briefly describes the
main ideas of our approach. In Section 4 our algorithm
based on evolution strategies is described. Section 5 sum-
marizes the results of our experiments. Finally, Section 6
brings conclusion.

2 Related Work

Neuroevolution techniques have been applied successfully
for various machine learning problems [6]. In classical
neuroevolution, no gradient descent is involved, both ar-
chitecture and weights undergo the evolutionary process.
However, because of large computational requirements the
applications are limited to small networks.

There were quite many attempts on architecture opti-
mization via evolutionary process (e.g. [19, 1]) in previous
decades. Successful evolutionary techniques evolving the
structure of feed-forward and recurrent neural networks
include NEAT [18], HyperNEAT [17] and CoSyNE [7] al-
gorithms.

On the other hand, studies dealing with evolution of
deep neural networks and convolutional networks started
to emerge only very recently. The training of one DNN
usually requires hours or days of computing time, quite
often utilizing GPU processors for speedup. Naturally,
the evolutionary techniques requiring thousands of train-
ing trials were not considered a feasible choice. Never-
theless, there are several approaches to reduce the overall
complexity of neuroevolution for DNN. Still due to limited
computational resources, the studies usually focus only on
parts of network design.

For example, in [12] CMA-ES is used to optimize hy-
perparameters of DNNs. In [9] the unsupervised convo-
lutional networks for vision-based reinforcement learning
are studied, the structure of CNN is held fixed and only a
small recurrent controller is evolved. However, the recent
paper [16] presents a simple distributed evolutionary strat-
egy that is used to train relatively large recurrent network
with competitive results on reinforcement learning tasks.

In [14] automated method for optimizing deep learning
architectures through evolution is proposed, extending ex-

J. Hlaváčová (Ed.): ITAT 2017 Proceedings, pp. 159–166
CEUR Workshop Proceedings Vol. 1885, ISSN 1613-0073, c© 2017 P. Vidnerová, R. Neruda

isting neuroevolution methods. Authors of [4] sketch a
genetic approach for evolving a deep autoencoder network
enhancing the sparsity of the synapses by means of special
operators. Finally, the paper [13] presents two version of
an evolutionary and co-evolutionary algorithm for design
of DNN with various transfer functions.

3 Our Approach

In our approach we use evolution strategies to search
for optimal architecture of DNN, while the weights are
learned by gradient based technique.

The main idea of our approach is to keep the search
space as small as possible, therefore the architecture spec-
ification is simplified. It directly follows the implementa-
tion of DNN in Keras library, where networks are defined
layer by layer, each layer fully connected with the next
layer. A layer is specified by number of neurons, type of
an activation function (all neurons in one layer have the
same type of an activation function), and type of regular-
ization (such as dropout).

In this paper, we work only with fully connected feed-
forward neural networks, but the approach can be further
modified to include also convolutional layers. Then the
architecture specification would also contain type of layer
(dense or convolutional) and in case of convolutional layer
size of the filter.

4 Evolution Strategies for DNN Design

Evolution strategies (ES) were proposed for work with
real-valued vectors representing parameters of complex
optimization problems [2]. In the illustration algorithm
bellow we can see a simple ES working withn individuals
in a population and generatingm offspring by means of
Gaussian mutation. The environmental selection has two
traditional forms for evolution strategies. The so called
(n+m)-ES generates new generation by deterministically
choosingn best individuals from the set of(n+m) par-
ents and offspring. The so called(n,m)-ES generates new
generation by selecting fromm new offspring (typically,
m > n). The latter approach is considered more robust
against local optima premature convergence.

Currently used evolution strategies may carry more
meta-parameters of the problem in the individual than just
a vector of mutation variances. A successful version of
evolution strategies, the so-calledcovariance matrix adap-
tation ES (CMA-ES) [12] uses a clever strategy to approx-
imate the fullN×N covariance matrix, thus representing
a generalN-dimensional normal distribution. Crossover
operator is usually used within evolution strategies.

In our implementation(n,m)-ES (see Alg. 1) is used.
Offspring are generated using both mutation and crossover
operators. Since our individuals are describing network
topology, they are not vectors of real numbers. So our
operators slightly differ from classical ES. The more detail
description follows.

Algorithm 1 (n,m)-Evolution strategy optimizing real-
valued vector and utilizing adaptive variance for each pa-
rameter

procedure(n,m)-ES
t← 0
Initialize populationPt n by randomly generated

vectors~xt = (xt
1, . . . ,x

t
N ,σ t

1, . . . ,σ
t
N)

Evaluate individuals inPt

while not terminating criterion do
for i← 1, . . . ,m do

choose randomly a parent~xt
i ,

generate an offspring~yt
i

by Gaussian mutation:
for j← 1, . . . ,N do

σ ′j ← σ j · (1+α ·N(0,1))
x′j← x j +σ ′j ·N(0,1)

end for
insert~yt

i to offspring candidate populationP′t
end for
Deterministically choosePt+1 asn best individ-

uals fromP′t
DiscardPt andP′t
t← t +1

end while
end procedure

4.1 Individuals

Individuals are coding feed-forward neural networks im-
plemented as Keras modelSequential. The model imple-
mented asSequential is built layer by layer, similarly an
individual consists of blocks representing individual lay-
ers.

I = ([size1,drop1,act1,σ size
1 ,σdrop

1]1, . . . ,

[sizeH ,dropH ,actH ,σ size
H ,σdrop

H]H),

where H is the number of hidden layers,sizei

is the number of neurons in corresponding layer
that is dense (fully connected) layer,dropi is the
dropout rate (zero value represents no dropout),
acti ∈ {relu,tanh,sigmoid,hardsigmoid,linear}
stands for activation function, andσ size

i and σdrop
i are

strategy coefficients corresponding to size and dropout.
So far, we work only with dense layers, but the individ-

ual can be further generalized to work with convolutional
layers as well. Also other types of regularization can be
considered, we are limited to dropout for the first experi-
ments.

4.2 Crossover

The operatorcrossover combines two parent individuals
and produces two offspring individuals. It is implemented

160 P. Vidnerová, R. Neruda

as one-point crossover, where the cross-point is on the bor-
der of a block.

Let two parents be

Ip1 = (Bp1
1 ,Bp1

2 , . . . ,Bp1
k)

Ip2 = (Bp2
1 ,Bp2

2 , . . . ,Bp2
l),

then the crossover produces offspring

Io1 = (Bp1
1 , . . . ,Bp1

cp1,B
p2
cp2+1, . . . ,B

p2
l)

Io1 = (Bp2
1 , . . . ,Bp2

cp2,B
p1
cp1+1, . . . ,B

p1
k),

wherecp1 ∈ {1, . . . ,k−1} andcp2 ∈ {1, . . . , l−1}.

4.3 Mutation

The operatormutation brings random changes to an in-
dividual. Each time an individual is mutated, one of the
following mutation operators is randomly chosen:

• mutateLayer - introduces random changes to one ran-
domly selected layer. One of the following operators
is randomly chosen:

– changeLayerSize - the number of neurons is
changed. Gaussian mutation is used, adapting
strategy parametersσ size, the final number is
rounded (since size has to be integer).

– changeDropOut - the dropout rate is changed
using Gaussian mutation adapting strategy pa-
rametersσdrop.

– changeActivation - the activation function is
changed, randomly chosen from the list of avail-
able activations.

• addLayer - one randomly generated block is inserted
at random position.

• delLayer - one randomly selected block is deleted.

Note, that the ES like mutation comes in play only when
size of layer or dropout parameter is changed. Otherwise
the strategy parameters are ignored.

4.4 Fitness

Fitness function should reflect a quality of the network
represented by an individual. To assess the generalization
ability of the network represented by the individual we use
a crossvalidation error. The lower the crossvalidation er-
ror, the higher the fitness of the individual.

Classical k-fold crossvalidation is used, i.e. the training
set is split into k-folds and each time one fold is used for
testing and the rest for training. The mean error on the
testing set overk run is evaluated.

The mean squared error is used as an error function:

E = 100
1
N

N

∑
t=1

(f (xt)− yt)2,

whereT =(x1,y1), . . . ,(xN ,yN) is the actual testing set and
f is the function represented by the learned network.

4.5 Selection

The tournament selection is used, i.e. each turn of the tour-
namentk individuals are selected at random and the one
with the highest fitness, in our case the one with the low-
est crossvalidation error, is selected.

Our implementation of the proposed algorithm is avail-
able at [20].

5 Experiments

5.1 Data Set

For the first experiment we used real-world data from the
application area of sensor networks for air pollution mon-
itoring [21, 5], for the second experiment the well known
MNIST data set [11].

The sensor data contain tens of thousands measure-
ments of gas multi-sensor MOX array devices recording
concentrations of several gas pollutants collocated with a
conventional air pollution monitoring station that provides
labels for the data. The data are recorded in 1 hour in-
tervals, and there is quite a large number of gaps due to
sensor malfunctions. For our experiments we have chosen
data from the interval of March 10, 2004 to April 4, 2005,
taking into account each hour where records with missing
values were omitted. There are altogether 5 sensors as in-
puts and 5 target output values representing concentrations
of CO, NO2, NOx, C6H6, andNMHC.

The whole time period is divided into five intervals.
Then, only one interval is used for training, the rest is uti-
lized for testing. We considered five different choices of
the training part selection. This task may be quite difficult,
since the prediction is performed also in different parts of
the year than the learning, e.g. the model trained on data
obtained during winter may perform worse during summer
(as was suggested by experts in the application area).

Table 1 brings overview of data sets sizes. All tasks have
8 input values (five sensors, temperature, absolute and rel-
ative humidity) and 1 output (predicted value). All values
are normalized between〈0,1〉.

Table 1: Overview of data sets sizes.

Task train set test set
CO 1469 5875
NO2 1479 5914
NOx 1480 5916
C6H6 1799 7192
NMHC 178 709

The MNIST data set contains 70 000 images of hand
written digits, 28×28 pixel each (see Fig. 1). 60 000 are
used for training, 10 000 for testing.

Evolution Strategies for Deep Neural Network Models Design 161

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

Figure 1: Example of MNIST data set samples.

5.2 Setup

For the sensor data the proposed algorithm was run for
100 generations for each data set, withn = 10 andm = 30.
During fitness function evaluation the network weights
are trained by RMSprop (one of the standard algorithms)
for 500 epochs. Besides the ES classical GA was imple-
mented and run on sensor data with same fitness function.

For the MNIST data set, the algorithm was run for 30
generations, withn = 5 andm = 10, for fitness evaluation
the RMSprop was run for 20 epochs.

When the best individual is obtained, the corresponding
network is built and trained on the whole training set and
evaluated on the test set.

5.3 Results

The resulting testing errors obtained by GA and ES in
the first experiment are listed in Table 3. There are av-
erage, standard deviation, minimum and maximum errors
over 10 computations. The performance of ES over GA is
slightly better, the ES achieved lower errors in 15 cases,
GA in 11 cases.

Table 4 compares ES testing errors to results obtained
by support vector regression (SVR) with linear, RBF, poly-
nomial, and sigmoid kernel function. SVR was trained us-
ing Scikit-learn library [15], hyperparameters were found
using grid search and crossvalidation.

The ES outperforms the SVR, it found best results in
17 cases.

Finally, Table 5 compares the testing error of evolved
network to error of three fixed architectures (for example
30-10-1 stands for 2 hidden layers of 30 and 10 neurons,
one neuron in output layers, ReLU activation is used and
dropout 0.2). The evolved network achieved the most (10)
best results.

Since this task does not have much training samples,
also the networks evolved are quite small. The typical
evolved network had one hidden layer of about 70 neu-
rons, dropout rate 0.3 and ReLU activation function.

The second experiment was the classification of MNIST
letters. As a baseline architecture was taken the one from
Keras examples, i.e. network with two hidden layers of
512 ReLU units each, both with dropout 0.2. This network
has a fairly good performance. It was trained 10 times

Table 2: Test accuracies on the MNIST data set.

model avg std min max
baseline 98.34 0.13 98.18 98.55
evolved by ES 98.64 0.05 98.55 98.73

and the results are listed in Table 2, together with results
obtained by the evolved network.

The evolved network had also two hidden layers, first
with 736 ReLU units and dropout parameter 0.09, the sec-
ond with 471 hard sigmoid units and dropout 0.2. The ES
found a competitive result, the evolved network achieved
better accuracy than the baseline model.

6 Conclusion

We have proposed an algorithm for automatic design of
DNNs based on evolution strategies. The algorithm was
tested in experiments on the real-life sensor data set and
MNIST dataset of handwritten digits. On sensor data set,
the solutions found by our algorithm outperforms SVR and
selected fixed architectures. The activation function dom-
inating in solutions is the ReLU function. For the MNIST
data set, the network with ReLU and hard sigmoid units
was found, outperforming the baseline solution. We have
shown that our algorithm is able to found competitive so-
lutions.

The main limitation of the algorithm is the time com-
plexity. One direction of our future work is to try to lower
the number of fitness evaluations using surrogate model-
ing or to use asynchronous evolution.

Also we plan to extend the algorithm to work also with
convolutional networks and to include more parameters,
such as other types of regularization, the type of optimiza-
tion algorithm, etc.

The gradient based optimization algorithm depends sig-
nificantly on the random initialization of weights. One
way to overcome this is to combine the evolution of
weights and gradient based local search that is another
possibility of future work.

Acknowledgment

This work was partially supported by the Czech Grant
Agency grant 15-18108S and institutional support of the
Institute of Computer Science RVO 67985807.

Access to computing and storage facilities owned by
parties and projects contributing to the National Grid In-
frastructure MetaCentrum provided under the programme
"Projects of Large Research, Development, and Innova-
tions Infrastructures" (CESNET LM2015042), is greatly
appreciated.

162 P. Vidnerová, R. Neruda

Table 3: Errors on test set for networks found by GA and ES. Theaverage, standard deviation, minimum and maximum
of 10 evaluations of the learning algorithm are listed.

GA ES
avg std min max avg std min max

CO part1 0.209 0.014 0.188 0.236 0.229 0.026 0.195 0.267
CO part2 0.801 0.135 0.600 1.048 0.657 0.024 0.631 0.694
CO part3 0.266 0.029 0.222 0.309 0.256 0.045 0.199 0.349
CO part4 0.404 0.226 0.186 0.865 0.526 0.108 0.308 0.701
CO part5 0.246 0.024 0.207 0.286 0.235 0.025 0.199 0.277
NOx part1 2.201 0.131 1.994 2.506 2.132 0.086 2.021 2.284
NOx part2 1.705 0.284 1.239 2.282 1.599 0.077 1.444 1.685
NOx part3 1.238 0.163 0.982 1.533 1.339 0.242 1.106 1.955
NOx part4 1.490 0.173 1.174 1.835 1.610 0.164 1.435 2.041
NOx part5 0.551 0.052 0.456 0.642 0.622 0.075 0.521 0.726
NO2 part1 1.697 0.266 1.202 2.210 1.506 0.217 1.132 1.823
NO2 part2 2.009 0.415 1.326 2.944 1.371 0.048 1.242 1.415
NO2 part3 0.593 0.082 0.532 0.815 0.660 0.078 0.599 0.863
NO2 part4 0.737 0.023 0.706 0.776 0.782 0.043 0.711 0.856
NO2 part5 1.265 0.158 1.054 1.580 0.730 0.111 0.520 0.905
C6H6 part1 0.013 0.005 0.006 0.024 0.013 0.004 0.007 0.018
C6H6 part2 0.039 0.015 0.025 0.079 0.034 0.010 0.020 0.050
C6H6 part3 0.019 0.011 0.009 0.041 0.048 0.015 0.016 0.075
C6H6 part4 0.030 0.015 0.014 0.061 0.020 0.010 0.010 0.042
C6H6 part5 0.017 0.015 0.004 0.051 0.027 0.011 0.014 0.051
NMHC part1 1.719 0.168 1.412 2.000 1.685 0.256 1.448 2.378
NMHC part2 0.623 0.164 0.446 1.047 0.713 0.097 0.566 0.865
NMHC part3 1.144 0.181 0.912 1.472 1.097 0.270 0.775 1.560
NMHC part4 1.220 0.206 0.994 1.563 1.099 0.166 0.898 1.443
NMHC part5 1.222 0.126 1.055 1.447 1.023 0.050 0.963 1.116

11 15
44% 60%

Evolution Strategies for Deep Neural Network Models Design 163

Table 4: Test errors for evolved network and SVR with different kernel functions. For the evolved network the average,
standard deviation, minimum and maximum of 10 evaluations of learning algorithm are listed.

Task Evolved network SVR
avg std min max linear RBF Poly. Sigmoid

CO_part1 0.229 0.026 0.195 0.267 0.340 0.280 0.285 1.533
CO_part2 0.657 0.024 0.631 0.694 0.6140.412 0.621 1.753
CO_part3 0.256 0.045 0.199 0.349 0.314 0.408 0.377 1.427
CO_part4 0.526 0.108 0.308 0.701 1.127 0.692 0.535 1.375
CO_part5 0.235 0.025 0.199 0.277 0.348 0.2070.198 1.568
NOx_part1 2.132 0.086 2.021 2.284 1.062 1.447 1.202 2.537
NOx_part2 1.599 0.077 1.444 1.685 2.162 1.8381.387 2.428
NOx_part3 1.339 0.242 1.106 1.955 0.594 0.674 0.665 2.705
NOx_part4 1.610 0.164 1.435 2.041 0.864 0.9030.778 2.462
NOx_part5 0.622 0.075 0.521 0.726 1.632 0.730 1.446 2.761
NO2_part1 1.506 0.217 1.132 1.823 2.464 2.404 2.401 2.636
NO2_part2 1.371 0.048 1.242 1.415 2.118 2.250 2.409 2.648
NO2_part3 0.660 0.078 0.599 0.863 1.308 1.195 1.213 1.984
NO2_part4 0.782 0.043 0.711 0.856 1.978 2.565 1.912 2.531
NO2_part5 0.730 0.111 0.520 0.905 1.0773 1.047 0.967 2.129
C6H6_part1 0.013 0.004 0.007 0.018 0.300 0.511 0.219 1.398
C6H6_part2 0.034 0.010 0.020 0.050 0.378 0.489 0.369 1.478
C6H6_part3 0.048 0.015 0.016 0.075 0.520 0.663 0.538 1.317
C6H6_part4 0.020 0.010 0.010 0.042 0.217 0.459 0.123 1.279
C6H6_part5 0.027 0.011 0.014 0.051 0.215 0.297 0.188 1.526
NMHC_part1 1.685 0.256 1.448 2.378 1.718 1.6661.621 3.861
NMHC_part2 0.713 0.097 0.566 0.865 0.934 0.978 0.839 3.651
NMHC_part3 1.097 0.270 0.775 1.560 1.580 1.280 1.438 2.830
NMHC_part4 1.099 0.166 0.898 1.443 1.720 1.565 1.917 2.715
NMHC_part5 1.023 0.050 0.963 1.116 1.2380.944 1.407 2.960

17 2 2 4
68% 8% 8% 16%

164 P. Vidnerová, R. Neruda

Table 5: Test errors for evolved network and three selected fixed architectures.

Task Evolved network 50-1 30-10-1 30-10-30-1
avg std avg std avg std avg std

CO_part1 0.229 0.026 0.230 0.032 0.250 0.023 0.377 0.103
CO_part2 0.657 0.024 0.861 0.136 0.744 0.142 0.858 0.173
CO_part3 0.256 0.045 0.261 0.040 0.305 0.043 0.302 0.046
CO_part4 0.526 0.108 0.621 0.279 0.638 0.213 0.454 0.158
CO_part5 0.235 0.025 0.283 0.072 0.270 0.032 0.309 0.032
NOx_part1 2.132 0.086 2.158 0.203 2.095 0.131 2.307 0.196
NOx_part2 1.599 0.077 1.799 0.313 1.891 0.199 2.083 0.172
NOx_part3 1.339 0.242 1.077 0.125 1.092 0.178 0.806 0.185
NOx_part4 1.610 0.164 1.303 0.208 1.797 0.461 1.600 0.643
NOx_part5 0.622 0.075 0.644 0.075 0.677 0.055 0.778 0.054
NO2_part1 1.506 0.217 1.659 0.250 1.368 0.135 1.677 0.233
NO2_part2 1.371 0.048 1.762 0.237 1.687 0.202 1.827 0.264
NO2_part3 0.660 0.078 0.682 0.148 0.576 0.044 0.603 0.069
NO2_part4 0.782 0.043 1.109 0.923 0.757 0.059 0.802 0.076
NO2_part5 0.730 0.111 0.646 0.064 0.734 0.107 0.748 0.123
C6H6_part1 0.013 0.004 0.012 0.006 0.081 0.030 0.190 0.060
C6H6_part2 0.034 0.010 0.039 0.012 0.101 0.015 0.211 0.071
C6H6_part3 0.048 0.015 0.024 0.007 0.091 0.047 0.115 0.031
C6H6_part4 0.020 0.010 0.026 0.010 0.051 0.026 0.096 0.020
C6H6_part5 0.027 0.011 0.025 0.008 0.113 0.025 0.176 0.058
NMHC_part1 1.685 0.256 1.738 0.144 1.889 0.119 2.378 0.208
NMHC_part2 0.713 0.097 0.553 0.045 0.650 0.078 0.799 0.096
NMHC_part3 1.097 0.270 1.128 0.089 0.901 0.124 0.789 0.184
NMHC_part4 1.099 0.166 1.116 0.119 0.918 0.119 0.751 0.096
NMHC_part5 1.023 0.050 0.970 0.094 0.889 0.085 0.856 0.074

10 6 4 5
40% 24% 16% 20%

Evolution Strategies for Deep Neural Network Models Design 165

References

[1] Jasmina Arifovic and Ramazan Gençay. Using genetic al-
gorithms to select architecture of a feedforward artificial
neural network.Physica A: Statistical Mechanics and its
Applications, 289(3–4):574 – 594, 2001.

[2] H.-G. Beyer and H. P. Schwefel. Evolutionary strategies:
A comprehensive introduction.Natural Computing, pages
3–52, 2002.

[3] François Chollet. Keras.
https://github.com/fchollet/keras , 2015.

[4] Omid E. David and Iddo Greental. Genetic algorithms for
evolving deep neural networks. InProceedings of the Com-
panion Publication of the 2014 Annual Conference on Ge-
netic and Evolutionary Computation, GECCO Comp ’14,
pages 1451–1452, New York, NY, USA, 2014. ACM.

[5] S. De Vito, G. Fattoruso, M. Pardo, F. Tortorella, and
G. Di Francia. Semi-supervised learning techniques in ar-
tificial olfaction: A novel approach to classification prob-
lems and drift counteraction. Sensors Journal, IEEE,
12(11):3215–3224, Nov 2012.

[6] Dario Floreano, Peter Dürr, and Claudio Mattiussi. Neu-
roevolution: from architectures to learning.Evolutionary
Intelligence, 1(1):47–62, 2008.

[7] Faustino Gomez, Juergen Schmidhuber, and Risto Miikku-
lainen. Accelerated neural evolution through cooperatively
coevolved synapses.Journal of Machine Learning Re-
search, pages 937–965, 2008.

[8] Ian Goodfellow, Yoshua Bengio, and Aaron
Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[9] Jan Koutník, Juergen Schmidhuber, and Faustino Gomez.
Evolving deep unsupervised convolutional networks for
vision-based reinforcement learning. InProceedings of
the 2014 Annual Conference on Genetic and Evolutionary
Computation, GECCO ’14, pages 541–548, New York, NY,
USA, 2014. ACM.

[10] Yann Lecun, Yoshua Bengio, and Geoffrey Hinton. Deep
learning.Nature, 521(7553):436–444, 5 2015.

[11] Yann LeCun and Corinna Cortes. The mnist database of
handwritten digits, 2012.

[12] Ilya Loshchilov and Frank Hutter. CMA-ES for hyper-
parameter optimization of deep neural networks.CoRR,
abs/1604.07269, 2016.

[13] Tomas H. Maul, Andrzej Bargiela, Siang-Yew Chong, and
Abdullahi S. Adamu. Towards evolutionary deep neural
networks. In Flaminio Squazzoni, Fabio Baronio, Claudia
Archetti, and Marco Castellani, editors,ECMS 2014 Pro-
ceedings. European Council for Modeling and Simulation,
2014.

[14] Risto Miikkulainen, Jason Zhi Liang, Elliot Meyerson,
Aditya Rawal, Dan Fink, Olivier Francon, Bala Raju,
Hormoz Shahrzad, Arshak Navruzyan, Nigel Duffy, and
Babak Hodjat. Evolving deep neural networks.CoRR,
abs/1703.00548, 2017.

[15] F. Pedregosa et al. Scikit-learn: Machine learning in
Python.Journal of Machine Learning Research, 12:2825–
2830, 2011.

[16] T. Salimans, J. Ho, X. Chen, and I. Sutskever. Evolu-
tion Strategies as a Scalable Alternative to Reinforcement
Learning.ArXiv e-prints, March 2017.

[17] Kenneth O. Stanley, David B. D’Ambrosio, and Jason
Gauci. A hypercube-based encoding for evolving large-
scale neural networks.Artif. Life, 15(2):185–212, April
2009.

[18] Kenneth O. Stanley and Risto Miikkulainen. Evolving neu-
ral networks through augmenting topologies.Evolutionary
Computation, 10(2):99–127, 2002.

[19] B. u. Islam, Z. Baharudin, M. Q. Raza, and P. Nallagown-
den. Optimization of neural network architecture using
genetic algorithm for load forecasting. In2014 5th Inter-
national Conference on Intelligent and Advanced Systems
(ICIAS), pages 1–6, June 2014.

[20] Petra Vidnerová. GAKeras.
github.com/PetraVidnerova/GAKeras, 2017.

[21] S. De Vito, E. Massera, M. Piga, L. Martinotto, and G. Di
Francia. On field calibration of an electronic nose for
benzene estimation in an urban pollution monitoring sce-
nario. Sensors and Actuators B: Chemical, 129(2):750 –
757, 2008.

166 P. Vidnerová, R. Neruda

