
Deep Heuristic-learning in the Rubik’s Cube Domain:
an Experimental Evaluation

Robert Brunetto and Otakar Trunda

Charles University in Prague, Faculty of Mathematics and Physics
Malostranské náměstí 25, Praha, Czech Republic

robert@brunetto.cz otakar.trunda@mff.cuni.cz

Abstract: Recent successes of neural networks in solv-
ing combinatorial problems and games like Go, Poker and
others inspire further attempts to use deep learning ap-
proaches in discrete domains. In the field of automated
planning, the most popular approach is informed forward
search driven by a heuristic function which estimates the
quality of encountered states. Designing a powerful and
easily-computable heuristics however is still a challenging
problem on many domains.

In this paper, we use machine learning to construct such
heuristic automatically. We train a neural network to pre-
dict a minimal number of moves required to solve a given
instance of Rubik’s cube. We then use the trained net-
work as a heuristic distance estimator with a standard
forward-search algorithm and compare the results with
other heuristics. Our experiments show that the learning
approach is competitive with state-of-the-art and might be
the best choice in some use-case scenarios.

1 Introduction

Neural networks (NNs) have already proven to be able to
cope with noisy and unstructured data like hand-written
texts, images, sounds, classification of real-world objects
based on incomplete description, and many others.

Recently, they also succeeded in several purely combi-
natorial domains like the game of Go. Nowadays, the pro-
gram AlphaGo [15] that utilizes a deep neural net can beat
top-class human players which was impossible just two
years ago. No other approach is currently known to be
able to play Go on such level. NNs are also a key compo-
nent of the best Poker engine DeepStack [12] and several
attempts have been made to use them for solving instances
of Travelling Salesman Problem and other combinatorial
problems [2].

In planning, the machine learning approaches are al-
ready being used in several ways, for example to select
the best search algorithm, preprocess the problem or to
promote searching of promising areas. See International
Planning Competition - Learning Track 1 for more details.

Some attention has also been dedicated to heuris-
tic learning, where the task is to automatically induce
a heuristic function from training samples using a machine
learning model. Models typically used in this area are very

1http://www.cs.colostate.edu/~ipc2014/

simple (like a decision tree or a shallow NN) and are not
fine-tuned for the specific problem. In most cases, the are
only used as a black box.

With recent rapid development of deep learning mod-
els, many new possibilities are now available in this area.
Learning algorithms now exist for efficient training of
deep feed-forward networks and also many other types
of NNs have been developed and successfully used. For
example, there are Deep Recurrent Networks like LSTM,
Deep Convolutional Networks, Neural Turing Machines
and others 2. Using the CUDA framework, it is now pos-
sible to train such networks much faster on specialized
graphic cards.

In this paper, we try to utilize some of such more com-
plex models to learn an efficient heuristic function for
solving the Rubik’s cube puzzle. We work with the stan-
dard 3x3x3 cube, but our approach is in principle applica-
ble to larger cubes as well.

1.1 Motivation

Our main motivation is to correct the error that heuristics
make when estimating the distance. Admissible heuristics
are often quite accurate near a goal state, but on states that
are far from any goal state they significantly underestimate
the real value [8]. The network should be able to find out in
which situations such underestimation occurs and correct
it appropriately.

Assuming that a set of admissible heuristics will be used
as features, the network will play the role of a judge decid-
ing which heuristics are trustworthy and which are not (in
various circumstances).

Unlike in similar papers on heuristics learning, we in-
clude a simplified description of the state among the input
features. Existing approaches only learn the goal-distance
of the state using a few precomputed features that don’t
contain state description but mostly only heuristic esti-
mates. We believe, that state description is important so
that the network could distinguish between different types
of states. Identifying types of states is crucial for the net-
work to find out in which kinds of states the given heuris-
tics underestimate and by how much.

2http://www.asimovinstitute.org/neural-network-zoo/

J. Hlaváčová (Ed.): ITAT 2017 Proceedings, pp. 57–64
CEUR Workshop Proceedings Vol. 1885, ISSN 1613-0073, c© 2017 R. Brunetto, O. Trunda

2 Background

2.1 Rubik’s Cube

The famous puzzle - Rubik’s cube may serve as an exam-
ple of a planning problem. The task is to find a sequence
of actions leading form given initial state to specified goal
state.

From a search perspective, the number of unique states
of the standard 3x3x3 cube is 8!∗38 ∗12!∗212 ∗ 1

12 which
is about 4∗1019. Every state can be solved optimally in at
most 26 quarter-moves. There is a single goal state and the
branching factor is 12 when using a symmetry breaking
representation. We consider a model using quarter-moves
meaning that it is allowed to rotate layers only by 90◦.
The half-move representation allows sides to be rotated
by 180◦ in a single move.

To be able to describe some other properties of the cube,
we first need to define a few additional notions. The 3x3x3
cube consists of 27 little cubes which we call cubies. Some
faces of these cubies are colored, or more precisely they
carry colored stickers. In the goal state, all faces of the
large cube contains only stickers of the same color.

If we disassembled the cube, we would get 8 corner-
cubies, each of which carrying 3 colored stickers, 12 edge-
cubies, each with 2 stickers on them and 6 central-cubies
each having 1 sticker.

A cube of any size can easily be solved suboptimally
using a simple algorithm that runs in time O(n2), where
n is the size of the cube. Finding optimal solutions seems
to be much harder, although the complexity class of this
task has long been unknown. It has only recently been
proven that solving Rubik’s cube optimally is indeed NP-
hard [4, 5].

Current state-of-the-art approaches for finding optimal
or near-optimal solutions often utilize forward state space
search using a pattern database as a heuristic [11, 16].
Pattern databases (PDBs) are precomputed solutions to
smaller problems which are created from the original by
abstracting-away some of its features. For example, if
we only consider the 8 corner cubies of a standard 3x3x3
cube, we will get a 2x2x2 cube which is much easier to
solve. The whole state space of this smaller problem may
be enumerated, solved optimally for each state and stored
in a database. For each state of the standard cube, we can
then project it on the pattern by ignoring everything ex-
cept the corners, look-up this state in the database and use
its evaluation as a lower bound on the length of the plan.
The set of features that we consider in the smaller problem
is called pattern and features that are not included in the
pattern are ignored.

A single pattern never contains all cubies. Using it as
a heuristic leads to a state where all cubies contained in
the pattern are correctly placed but others are not. In such
states, the heuristic value is 0 and the algorithm has a hard
time finding the goal state since it has no further guid-
ance. For efficient searching it is necessary to combine

several PDBs with different patterns or to combine PDB
with other types of heuristics. There are many ways of
combining the heuristics, from simple ones, like taking
maximum, to more complex ones like additive PDBs or
cost partitioning [10].

2.2 Heuristic Learning

The task of heuristic learning is to automatically create
a heuristic function for given problem based on some train-
ing data. The learning is typically done a priory, where
the training data are provided before the search. Heuris-
tic can also be learned on-the-fly, where previous attempts
to solve the problem serve as training data to learn future
search strategy [7].

Several attempts have been made to utilize NNs for the
heuristic learning task [1, 2, 14, 3, 17]. In the typical
setting, a set of features is computed for every state in
the training set as well as the optimal distance-to-go to
the nearest goal state, and the network is then used to
learn a mapping from features to distance estimate. Af-
ter the learning process is finished, the network is used as
a heuristic distance estimator together with an informed
forward search algorithm like A* or IDA*.

Heuristics that are learned in this way provide no guar-
antees on admissibility. The goal of learning is so that
the heuristic would be close to the real value but not nec-
essarily always admissible - i.e. smaller than the real
distance-to-go. Since search with an inadmissible heuris-
tic doesn’t typically guarantee finding optimal solutions,
this approach is only suitable in cases where close-to-
optimal solutions are sufficient. It is however possible to
guarantee optimality even with an inadmissible heuristic
by modifying the search strategy [9].

From the complexity perspective, the task of heuris-
tic learning in general is hard. It is known that the task
of finding optimal solutions to some planning problems
like generalized 15-puzzle, Sokoban, and many more is
NP-hard or even harder. It is also known that with an
accurate-enough heuristic, the search time may be poly-
nomial. Namely, if ∀x : (h∗(x)− h(x)) ∈ O(log(h∗(x)))
where x are states, h is heuristic and h∗ is the real goal
distance, then the search time is polynomial [13, p. 99].
It is therefore obvious that such heuristic cannot be com-
puted in polynomial time unless some complexity classes
collapse. The learned heuristic will probably not be able
to solve large problems optimally in polynomial time but
it may still outperform classic human-designed heuristics.

2.3 Notation

In the rest of the text, we use the following notation:

• S is the set of all states of the Rubik’s cube

• g ∈ S is the goal state

• h∗ : S 7→ N0 is goal-distance of states

58 R. Brunetto, O. Trunda

• F = (f1, f2, . . . , fn) is the set of real-valued features
of states, where ∀i : fi : S 7→ R
• hNN : F(S) 7→ R is the function that the neu-

ral network will approximate, where F(S) =
{(f1(s), f2(s), . . . , fn(s)) | s ∈ S}

hNN will then be used as a heuristic. When referring
to this heuristic’s value, we will write hNN(s) instead of
hNN(f1(s), f2(s), . . . , fn(s)). The goal of the learning is
that hNN(s) is close to h∗(s) for all states.

3 Getting the Training Data

There is a big issue of obtaining the training data. It is
problematic to compute the real goal distances for a large
number of training states due to enormous time complex-
ity of such task. We have tried another way of generat-
ing training samples using backward search and random
walks. This way we don’t get exact goal-distances, but the
obtained values should be close enough to them for most
states.

3.1 Generating Samples by Random Walks

This approach works as follows:

1. Run a breadth-first search (BFS) from the goal
state, store every visited state together with its goal-
distance for as long as the memory suffices.

2. From the BFS frontier select K states at random.

3. From each of these K states, run a short random walk.

4. Among the states visited by random walks, select the
desired number of states as a training set.

For the states visited by BFS, we know the exact goal
distance. We have been able to generate 107 states which
consumed about 5.5 GB of memory. This set contained
all states with goal distance of 5 or lower and some states
with goal distance of 6.

Random walks start from the BFS frontier and have
length of 19. Random walk is forbidden to re-visit a state
that it has visited previously, but two different random
walks may intersect. The estimated goal distance of a node
is then calculated as goal distance of the initial state of the
random walk + the length of the random walk before it
encountered the given state.

True goal distance of the state, where the random walk
starts is known since it lies in the BFS frontier. For the
other states that the random walk encounters, we only
have an estimate of the goal distance. We believe, that
for most states the estimate will be reasonably close to
the real value, especially for states closer to the goal (i.e.
closer to the BFS frontier) but the values are in general
over-estimated.

Length of the random walks was set to 19 so that they
could visit states that are as far as 25 from the goal state.

(The BFS expands nodes to depth 6 and then a random
walk goes for another 19 steps). The maximum distance
to the goal of every state is 26, but the number of states that
actually require 26 steps is very low so we ignore them in
the training process.

If two random walks intersect, we recompute the goal
distances of their states such that the triangle inequality
holds. I.e. if some state is visited by a shorter walk, all
its neighbours are informed of this shorter path and are
recomputed if necessary. Then the information is passed
on to their neighbours, their neighbours’ neighbours etc.
Experiments however show, that such intersections rarely
happen.

A small number of random walks returns back to the set
of states visited by BFS. Such random walks we discard
from further use.

We generated a total of 100 000 samples evenly dis-
tributed in the state space.

3.2 Generating Samples Using an Optimal Solver

Our experiments showed that the random walks approach
is not efficient enough. It introduces a significant noise
into the training set which increases the training error of
the network.

The noise is caused by the fact that a random walk of
length k leads to a state whose real goal distance is typi-
cally smaller than k and cannot be exactly determined. Our
experiments showed that the random walk over-estimates
the goal distance by approximately 20%. The target value
associated with the sample is in this case a random vari-
able with mean of roughly 0.8∗k and a non-zero variance.
It is impossible for the network to predict the noise caused
by this variance which significantly increases the training
error.

To counter this problem, we used an optimal solver
to generate training samples with exact target values.
We used the Cube Explorer 5.13 software available on
http://kociemba.org/cube.htm. The solver is quite fast on
most inputs - it can optimally solve samples that are as far
as 15 from the goal within a few seconds. There are how-
ever no guarantees on the runtime and some samples may
require much more time to solve. For example, the super-
flip position, which is among the hardest takes more than
30 minutes to solve optimally with Cube Explorer.

We generated over 100 000 cube configurations by very
long random walks from goal state. We then used the
solver to find optimal solutions for each of these config-
urations. From the resulting optimal paths, we selected
the training samples. We selected 3-4 configurations from
every optimal path.

This way we generated a total of 345 396 training sam-
ples. Each of the samples is associated with a true goal
distance. Generating the samples took about 48 wall-clock
hours on 40 computers with 8 cores each. That gives about
15 000 CPU hours.

Deep Heuristic-learning in the Rubik’s Cube Domain: an Experimental Evaluation 59

4 Feature Selection

We use a total of 22 features for every state. Some of the
features are computed by PDB heuristics, some by other
simpler heuristics and some of them describe the state di-
rectly.

We use 8 PDB heuristics with different patterns. The
first pattern contains all 8 corner cubies and each of the
other 7 patterns is composed by a set of 6 edge cubies. Ev-
ery pattern contains different set of edge cubies and every
edge cubie is included in some pattern.

All databases together contain about 150 million en-
tries, take about 450 MB of memory and creating them
took about 15 CPU hours.

Another five features are provided by simpler heuristics.
These heuristics only count number of stickers that violate
some conditions. They don’t take into account cubies, i.e.
they pretend that we can "unstick" some colored stickers
from the cube and then stick them some place else. Heuris-
tics count the number of such unstick-stick operations nec-
essary to get the goal state of the cube. Heuristics work as
follows:

• errors: Number of stickers that are not on the correct
face. This number is then divided by 12 so that the re-
sulting heuristic is admissible. (It is possible to move
12 stickers in a single move.)

• distance: The same as previous but stickers that need
to go to the opposite face count as two because they
require at least two moves to be placed correctly. The
number is then also divided in order to be admissible.

• pairs-different: The total number of neighbouring
pairs of stickers that are not in correct place. Neigh-
bouring pair consists of two stickers on the same
face that are next to each other (i.e. touching by an
edge). Among all neighbouring pairs, we count those
in which the two stickers have different colors. The
number is then again normalized so that the estimate
is admissible.

• face-different: The same as before but we consider
every two stickers that are on the same face as a pair
even if they are not next to each other.

• face-error: This only considers one specific face and
counts how well it is completed.

The mentioned heuristics may look very similar but they
actually work differently. For example, if we use the
heuristics pairs-different and face-different to search for
a solution of 8x8x8 cube, we get a very different kinds
of states. Figures 1 and 2 show two states where the
two heuristics got stuck respectively. The pairs-different
heuristic (figure 1) created a number of connected compo-
nents of the same color on each face, while face-different
(figure 2) maximized the total number of colored stickers
that are together on each face but it didn’t create any co-
herent patterns.

Figure 1: State found by the pairDifferent heuristic with
coherent regions of the same color.

Figure 2: State found by the faceDifferent heuristic with
much fewer coherent regions.

The rest of the features we use describe the state directly
by specifying relations between cubies’ current positions
and their goal positions.

There are three types of cubies as described in 2.1: cen-
tres, vertices and edges. The central cubies never change
their relative positions so we don’t use them in this phase.
For the other two types, we count every possible relation
between positions of two cubies in the cube.

For example: two corner cubies may be in four different
relative positions:

1. they are in the same place (i.e. they are both the same
cubie)

2. they are on the same edge but not the same cubie

3. they are in the same face but not on the same edge

4. they are not in the same face (i.e. opposite corners of
the cube)

In the given state, we determine the target position of
every corner-cubie and then compute relation between the
cubie’s current position and it’s target position. We then
count the number of cubies that are in relations 1, 2, 3
and 4 respectively and use these numbers as features. For
example, if we get numbers (8, 0, 0, 0), it means that in
the given state, all corners are already in their respective
correct positions.

We do the same for edge-cubies. Edges might be in
5 different relative positions, so this gives us another 5 fea-
tures. (The number of edges that are in relation of 1, . . . ,5
with their target positions.)

These features are not based on heuristics or estimat-
ing goal-distance. Instead they provide a description

60 R. Brunetto, O. Trunda

of the state. All these features combined should pro-
vide enough information such that the network recognizes
types of states in which given heuristics underestimate the
real goal-distance and will be able to correct the estimate.

5 Network Design and Training

The network consists of 6 layers in total. The input layer
contains 22 neurons that reads the 22 features we use. All
features are real numbers within range [0,20]. The four
hidden layers contain 40, 36, 36 and 10 neurons respec-
tively and all of them are feed-forward layers with tanh as
their activation function. The output layer contains 1 neu-
ron that computes the response of the network using linear
activation. The response should be roughly within [0,25]
since in all training samples the target value was inside this
interval.

The architecture and layers’ sizes were designed ac-
cording to "best practices" for the networks with similar
number of inputs. We tried several other architectures
(a cascade network, different numbers of hidden layers)
but this one achieved best results.

To create and train the network, we used Matlab Neural
Network Toolkit. We trained the network on a computer
with processor Intel Core i7 920 (4x 2.66 GHz + Hyper-
Threading), 12 GB RAM, graphic card Nvidia GeForce 210
that supports CUDA. The training took about 5 hours.

Other training parameters like batch-size, learning rate
and so on were kept on the default values suggested for
this kind of network by the framework.

5.1 Training Results

We only present training results obtained by the exact
sample-generation strategy using the optimal solver. The
strategy using random walks also works but leads to larger
training error.

The accuracy of fit is depicted in figure 3. Histogram
shows number of samples that are within a specified dis-
tance from their respective targets. Ideally, all samples
should be in the column marked 0. We see that the net-
work’s answers are slightly biased since most samples lie
in the column 1. This means that the network under-
estimates the true value.

Figure 4 shows more precisely the distribution of train-
ing error. The horizontal axis enumerates intervals and
the height of columns represents the percentage of sam-
ples whose training error (in absolute value) lies within the
specified interval. We can see that for more than 60% of
samples, the error of estimation was less than 2. The mean
absolute error was 1.94 with median of 1.22. The mean
square error on the test set was 4.8 and median square error
was 1.48. With the random walk sample-generation strat-
egy the network only achieved mean square error of 8.9.

The training results show that for most samples the net-
work was able to reasonably estimate their goal-distance

Figure 3: Histogram of accuracy of fit.

Figure 4: Distribution of training error of samples

but there is a few samples where the error is quite high.
There is almost no difference between performance on
training set and test set which suggests that the network
is not over-fitted and should be able to generalize well.

Figure 5 shows a more thorough analysis of the net-
work’s performance. On the bottom axes, there are er-
ror of the network and the target value (which is the goal-
distance of the sample). Height of the column represents
the number of samples that falls into the respective cate-
gory.

We can see that on samples that are close to the goal,
the network is very accurate, has almost zero variance and
low bias. On samples that are further from goal the net-
work’s answers became inaccurate. The variance increases
and there is a slight bias towards under-estimating the real
value.

6 Experiments

We used the trained network as a heuristic with IDA* al-
gorithm on several randomly generated Rubik’s cube in-
stances. We compared the performance with other heuris-
tics. Iterative Deepening A* (IDA*) is an algorithm similar
to A* with the difference, that breadth-first search strategy
is replaced by several cost-limited depth-first search runs.

Deep Heuristic-learning in the Rubik’s Cube Domain: an Experimental Evaluation 61

Figure 5: Distribution of training error with respect to tar-
get value.

The cost is computed in the same manner as with A* -
using a heuristic estimator, and the limit successively in-
creases until a solution is found. The algorithm provides
the same guarantees as A* while requiring significantly
less memory and slightly more time.

6.1 Experimental Setting

We generated 320 random instances of Rubik’s cube and
tried to solve them by IDA* with several heuristics. We
generated samples by random walks starting in the goal
state. We label the instances by length of the random walk
that was used. Instances that were created by short random
walks are easier because the instance is closer to the goal
state. We generate instances by random walks of lengths
10, 14, 18, 22, 26, 30, 34 and 38. We run 40 walks of each
length to get 320 instances in total.

In the experimental evaluation, we used six heuristics:

1. maximum of the five simple heuristics that we
used as features (those that count stickers), denoted
hmax(simple)

2. sum of these five heuristics, denoted hsum(simple)

3. maximum of the eight PDB heuristics mentioned ear-
lier, denoted hmax(PDB)

4. sum of these eight heuristics, denoted hsum(PDB)

5. neural network as it was trained, denoted hNN

6. neural network with a post-processing, denoted hNN+

In the post-processing, we simply take maximum of the
result of the network and the PDB heuristic, i.e. hNN+ =
max(hNN ,hmax(PDB)). Since the hmax(PDB) is admissible,
it makes no sense to estimate a value that is lower than
hmax(PDB). Furthermore, the network already has access to
PDB estimates because it takes them as its input features.

We run each heuristic on all 320 problems with time
limit of 5 minutes for each search instance. Experiments
took about 115 CPU hours and run on 20 computers.

We measured several criteria:

• time required to solve the instance (capped at
300 seconds)

• number of expanded nodes during the search

• length of solution found

• minimal heuristic value of states that the algorithm
encountered during the search

The heuristics hmax(simple) and hmax(PDB) are admissible.
The sum of PDBs is not guaranteed to be admissible in
this case and neither is the response of NN. The sumation-
based heuristics are more greedy and might be at least able
to find sub-optimal solutions quickly.

6.2 Results

A table with detailed results can be downloaded at this
link.

We present the results grouped by the length of random
walk that was used to generate the problem instance. We
call this the difficulty of the instance. The longer walk was
used, the further from goal the instance is and therefore
requires a longer sequence of actions to solve.

The number of solved instances by specific algorithms
is shown in figure 6. We can see that with increasing diffi-
culty of the problem the number of solved instances drops
rapidly. This is mostly due to relatively strict time limit of
5 minutes for solving each instance.

We can also see that NN and NN+ heuristics solved
the largest number of problems in most categories. In to-
tal, hNN solved 130 problems, hNN+ 129 problems and
hmax(PDB) 126 problems. hsum(PDB) achieved much worse
results and Simple heuristics scored the worst.

Figure 6: Number of problems solved by specific algo-
rithms.

Figure 7 shows average number of expanded nodes of
algorithms. Results are grouped by problem difficulty and

62 R. Brunetto, O. Trunda

only solved instances are considered. Simple heuristics
have the largest number of expanded nodes (on problems
that they have been able to solve) because they are the least
informed ones.

PDBs have systematically higher number of expansion
than both versions of neural networks. This suggests that
both hNN and hNN+ are more informed than hmax(PDB). The
effect is partially caused by the fact that evaluating hNN is
much slower than hmax(PDB) and therefore the network is
able to expand less nodes withing given time limit.

Figure 7: Expanded nodes of solved instances for specific
algorithms.

Figure 8 analyzes run-times of individual heuristics.
Problems are divided into categories according to how
much time it took to solve them. The horizontal axis rep-
resents those categories as time intervals and height of
columns shows how many problems fall into such cate-
gory.

We can see that both networks as well as PDBs have
been able to solve significant number of problems in time
lesser than 1 second (for each problem). The run-time
of hNN , hNN+ and hmax(PDB) are comparable. The time-
performance of the other three heuristics is much worse.

Figure 8: Histogram of run-time demands of problems.

Figure 9 shows average length of solution found by spe-

cific heuristics. Only solved instances are considered. The
figure shows that simple heuristics found best solutions on
average in categories 14 and 18. This is however caused
by the fact that simple heuristics were only able to solve
small problems that have shorter solutions and unsuccess-
ful attempts are not considered in the average.

hsum(PBD) exhibits the worst average quality of solu-
tions, but it has been able to solve the largest problem.
This is caused by the fact that hsum(PBD) is the most greedy
of all heuristics used. hmax(PBD) has been able to find solu-
tions with better average quality than both versions of the
network. This is not surprising, since PDBs solved very
similar set of problems as the NNs did and hmax(PBD) is
admissible so it guarantees finding optimal solutions. On
average, NN found solutions that are 8.75% longer than
optimal solutions found by PDBs. (Measured on instances
that were solved by both hNN and hmax(PDB).

Figure 9: Average length of solution of solved instances
for specific algorithms.

In figure 10 we can see the average of minimal heuristic
value of states encountered during the search. Only un-
solved instances are considered, because on solved prob-
lems the minimal heuristic value is always 0. We can see
some interesting results here. hsum(PDB) was able to find
states very close to the goal on most unsolved problems. It
exhibits the lowest overall values even though the heuris-
tic is very greedy and over-estimates the true value signif-
icantly.

On average, hNN found states with better heuristic val-
ues than hNN+. This is counter-intuitive as hNN+ is more
informed. The result is most likely caused by the fact that
hNN under-estimated the true value of some states during
the search, so it only "thought" it found close-to-goal states
but it wasn’t really the case. hNN+ is less prone to such
under-estimating.

7 Conclusion

We trained and experimentally tested a neural network
to estimate goal distances of Rubik’s cube problems.

Deep Heuristic-learning in the Rubik’s Cube Domain: an Experimental Evaluation 63

Figure 10: Average of minimal heuristic value found on
unsolved problems.

The network is competitive with state-of-the-art pattern
databases.

Our experiments show that PDBs are very fast and rea-
sonably accurate while the network’s evaluation is much
slower because it involves computing the input features.
Network therefore has lower search-speed in terms of
nodes expanded per second. The NN heuristic, however,
compensates this by being more informed than PDBs and
can solve slightly larger number of problems withing given
time limit.

On unsolved task the network seems to be able to find
states that are closer to goal than hmax(PDB). PDBs on the
other hand guarantee optimality of solutions which the net-
work does not.

We believe that the network represents an interesting
and viable way of combining several heuristics together
and for some use-case scenarios it may be the best choice.
An ideal use-case scenario for NN is situation where we
solve many problems from the same domain, there is
enough time to prepare for the search (to train the network)
and optimal solutions are not strictly required.

As a future work, we would like to find a balance be-
tween accuracy and speed of the network. By using a small
set of suitable features, it should be possible to train net-
work that is accurate and it’s evaluation is still fast.

Acknowledgement

This research was supported by SVV project number
260 453.

References

[1] Shahab Jabbari Arfaee, Sandra Zilles, and Robert C. Holte.
Bootstrap learning of heuristic functions. In Ariel Felner
and Nathan R. Sturtevant, editors, Proceedings of the Third
Annual Symposium on Combinatorial Search, SOCS 2010.
AAAI Press, 2010.

[2] Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi,
and Samy Bengio. Neural Combinatorial Optimization

with Reinforcement Learning. In Proceedings of the
Fifth International Conference on Learning Representa-
tions, 2017.

[3] Hung-Che Chen and Jyh-Da Wei. Using neural networks
for evaluation in heuristic search algorithm. In Proceed-
ings of the Twenty-Sixth AAAI Conference on Artificial In-
telligence, 2011.

[4] E. D. Demaine, S. Eisenstat, and M. Rudoy. Solving the
Rubik’s Cube Optimally is NP-complete. ArXiv e-prints,
June 2017.

[5] Erik D. Demaine et al. Algorithms for solving rubik’s
cubes. In Camil Demetrescu and Magnús M. Halldórs-
son, editors, Proceedings of Algorithms – ESA 2011: 19th
Annual European Symposium, pages 689–700. Springer
Berlin Heidelberg, 2011.

[6] Dieter Fox and Carla P. Gomes, editors. Proceedings
of the Twenty-Third AAAI Conference on Artificial Intel-
ligence, AAAI 2008, Chicago, Illinois, USA, July 13-17,
2008. AAAI Press, 2008.

[7] Youssef Hamadi, Eric Monfroy, and Frédéric Saubion. Au-
tonomous search. Springer-Verlag, 2012.

[8] Malte Helmert and Robert Mattmüller. Accuracy of admis-
sible heuristic functions in selected planning domains. In
Fox and Gomes [6], pages 938–943.

[9] Erez Karpas and Carmel Domshlak. Optimal search with
inadmissible heuristics. In Proceedings of International
Conference on Automated Planning and Scheduling, 2012.

[10] Thomas Keller, Florian Pommerening, Jendrik Seipp, Flo-
rian Geißer, and Robert Mattmüller. State-dependent cost
partitionings for cartesian abstractions in classical plan-
ning. In Proceedings of the 25th International Joint Con-
ference on Artificial Intelligence (IJCAI 2016), 2016.

[11] Richard E. Korf. Finding optimal solutions to rubik’s cube
using pattern databases. In Proceedings of the Fourteenth
National Conference on Artificial Intelligence and Ninth
Conference on Innovative Applications of Artificial Intel-
ligence, AAAI’97/IAAI’97, pages 700–705. AAAI Press,
1997.

[12] Matej Moravčík et al. DeepStack: Expert-level artifi-
cial intelligence in heads-up no-limit poker. Science,
356(6337):508–513, 2017.

[13] Stuart J. Russell and Peter Norvig. Artificial Intelligence:
A Modern Approach. Prentice Hall, 3 edition, 2010.

[14] Mehdi Samadi, Ariel Felner, and Jonathan Schaeffer.
Learning from multiple heuristics. In Fox and Gomes [6],
pages 357–362.

[15] D. Silver, A. Huang, et al. Mastering the game of
Go with deep neural networks and tree search. Nature,
529(7587):484–489, 2016.

[16] Nathan R. Sturtevant, Ariel Felner, and Malte Helmert. Ex-
ploiting the rubik’s cube 12-edge PDB by combining par-
tial pattern databases and bloom filters. In Stefan Edelkamp
and Roman Barták, editors, Proceedings of the Seventh An-
nual Symposium on Combinatorial Search, SOCS 2014.
AAAI Press, 2014.

[17] Jordan Thayer, Austin Dionne, and Wheeler Ruml. Learn-
ing inadmissible heuristics during search. In Proceedings
of International Conference on Automated Planning and
Scheduling, 2011.

64 R. Brunetto, O. Trunda

