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Abstract

Wireless Sensor Networks (WSNs) serve as the basis for today’s Internet of Things applications. A
WSN consists of a number of spatially distributed sensor nodes, which cooperatively monitor physical
or environmental conditions. In order to ensure the dependability of WSN functionalities, several
reliability and security requirements have to be fulfilled. By applying a Satisfiability Modulo Theories
(SMT) formalization for WSNs, a sleep/wake-up scheduling that respects those requirements can be
generated by using SMT solvers. It is also important to prolong the lifetime of a WSN as much as
possible. The recent success of Optimization Modulo Theories (OMT) approaches makes us able to
generate for a WSN a sleep/wake-up scheduling that is optimal in terms of energy efficiency. This
makes this kind of WSN optimization an excellent application for OMT solvers. To the best of our
knowledge, no scientific work has ever reported any usage of OMT solvers for WSN optimization. In
this paper, we introduce an OMT formalization of the aforementioned optimization problem for WSNs,
provide a single-hop WSN simulation environment with one of the most common wireless sensor node
types, propose several OMT benchmarks extracted from the WSN simulation, and report experiments
with three different OMT solvers: Z3, OptiMathSAT, and Symba.

1 Introduction
In today’s Internet of Things (IoT) applications, Wireless Sensor Networks (WSNs) provide
a rapid and flexible solution for accessing information in many real-world applications. A
WSN deploys a large number of small, inexpensive, self-powered devices that can sense their
environment and gather local information used to make global decisions. Although research on
WSNs was originally motivated by military applications, other applications have also become
feasible as the corresponding technology is getting more and more accessible by the public.
Such applications [5] are, for instance, (1) infrastructure security to provide early detection
of any potential threat in critical facilities such as power plants, oil refineries, airports, etc.,
(2) environmental and habitat monitoring to study the response of vegetation and fauna to
climatic changes, (3) traffic monitoring to control traffic lights and to plan alternatives routes
in order to avoid traffic jams and accidents.

In order to ensure the dependability of WSN functionalities, several reliability and security
requirements have to be fulfilled. The most researched requirement of that kind is the coverage
problem which addresses the question of how well the sensors observe the physical environment.
Two main types of coverage are distinguished in literature: (1) area coverage to cover a given
area of interest; (2) point coverage to cover a set of target points. Point coverage is sometimes
even used to simulate area coverage by using points that approximate an area.

In many cases, especially in military applications or in critical systems, a WSN is deployed in
a hostile environment, which makes it necessary for a WSN to fulfill various additional security
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requirements, besides coverage, in order to increase the dependability of WSN functionalities.
For instance, WSN deployment may require a sensor node not to monitor the same target point
for a long time, otherwise the sensor node is easier to damage, detect or attack. Examples for
such additional requirements known from literature are the partial coverage [12], the evasive
constraint [3], and the moving target constraint [9].

Since sensor devices are self-powered and, therefore, have limited power supply, it is crucial
to apply energy efficient protocols to the sensor nodes by synchronizing their operations. To save
energy, a sensor node might eventually enter the sleep mode, in which its power consumption
is typically the fraction of that in the active mode. However, coverage (and other security
constraints) should be maintained during the entire lifetime of the WSN, therefore we typically
want to generate a sleep/wake-up scheduling which does not violate any of those constraints at
any time and provides a maximal lifetime for the WSN.

Most of the previous works on lifetime maximization for WSNs model the problem as an
optimization problem and solve it using some heuristic algorithms [16, 6, 5]. They usually scale
up to a few hundreds of sensor nodes [16] and a few tens of target points [6], which sometimes
comes with the price of losing 100% precise coverage. Most importantly, most of the existing
works focus on the coverage problem without giving any special attention to dependability
or any of the aforementioned additional security constraints [9]. It seems even infeasible to
incorporate those constraints into the existing algorithms.

Satisfiability Modulo Theories (SMT) is a powerful tool to solve constraint satisfaction
problems in diverse application areas including software and hardware verification, planning,
scheduling, etc. A few previous works apply SMT formalization to the aforementioned WSN
constraints and use SMT solvers to generate an appropriate sleep/wake-up scheduling for a
WSN. [11] focuses only on the coverage problem and reports experiments with the SMT solver
Z3. [9] addresses not only the coverage problem, but also the partial coverage, the evasive
constraint, and the moving target constraint. For the experiments in [9], the SMT solver Yices
is utilized, and the results show that the approach can scale up to hundreds (or, depending on
the sensing range, even up to a few thousands) of sensor nodes. Note that both [11, 9] are only
interested in generating a sleep/wake-up scheduling that fulfills the aforementioned constraints,
but none of them addresses the maximization problem of the WSN lifetime, which makes them
not as practical.

The recent success of Optimization Modulo Theories (OMT) approaches makes us able
to generate a sleep/wake-up scheduling that provides maximal lifetime for the WSN, while
keeping all the flexibility and strength of the SMT-based approaches, namely that different
dependability and security constraints can be combined on demand. This makes this kind of
WSN optimization an excellent application for OMT solvers. To the best of our knowledge, no
scientific work has ever reported any usage of OMT solvers for WSN optimization.

In this paper, we introduce an OMT formalization of the aforementioned lifetime optimiza-
tion problem for WSNs. We address the coverage as well as the evasive and the moving target
constraints. Furthermore, our model allows the sensor nodes to be heterogeneous, i.e., they can
have different sensing ranges. Note that the SMT-based approaches in [11, 9] deal only with
homogeneous sensor nodes. We perform experiments with publicly available OMT solvers such
as OptiMathSAT [14], Z3 [4], and Symba [13]. The results of our experiments can hope-
fully help the SMT community to see what performance today’s OMT solvers can provide for
WSN optimization, how scalable they are, and how that performance varies when additional
constraints, besides coverage, are involved in the optimization process as well. On the top of
that, we contribute to the SMT community with new and practical OMT benchmarks, which
we make publicly available.
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After defining some preliminaries in Sect. 2, we provide a possible way in Sect. 3 to for-
malize the aforementioned constraints as well as the optimization objective. We also give some
details in Sect. 3.1 about how to do the same in the SMT-LIB format. In Sect. 4, we report
on experiments with simulated WSNs and existing OMT solvers. We conclude and propose
directions for future work in Sect. 5.

2 Preliminaries

Satisfiability Modulo Theories (SMT) is the decision problem of checking satisfiability of logical
formulas with respect to some background theory. The most common examples for theories are
the integer numbers, the real numbers, the fixed-size bit-vectors, and the arrays. The logics that
one could use might differ from each other in the linearity or non-linearity of arithmetic, the
presence or absence of quantifiers, or in the presence or absence of uninterpreted functions. In
this paper, we are using the quantifier-free logic of linear integer arithmetic with uninterpreted
functions (QF_UFLIA). The SMT-LIB format [2], as the common input format for SMT
solvers, defines the syntax for QF_UFLIA formulas, where the most important features are
as follows:

• No quantifiers ∀ and ∃ are allowed to be used.

• Every expression must be of type integer or Boolean.

• Only the arithmetic operations addition, subtraction, multiplication, division, and com-
parison are to use.

• For the sake of linear arithmetic, expressions with multiplication are allowed to be used
only in the format c ∗ t where c is a constant.

• It is allowed to use uninterpreted function symbols, i.e., to specify only the signature for
such a function symbol.

A QF_UFLIA formula φ is satisfiable if there is an assignment of appropriate values to its
variables and uninterpreted functions under which φ evaluates to true. Most of the SMT solvers
support QF_UFLIA, such as CVC [1], MathSAT [7], Z3 [8], and Yices [10].

Many problems of interest, which can be encoded as SMT problems, may require also to find
models that are optimal with respect to some objective function [15]. Optimization Modulo
Theories (OMT) is an extension of SMT with objective functions to maximize or minimize. An
OMT problem, therefore, contains not only a formula to satisfy, but also an expressionmax : obj
or min : obj, where obj denotes the objective function. In this paper, obj can be an arbitrary
QF_UFLIA integer expression. When checking the satisfiability of a QF_UFLIA formula,
we are looking for a satisfying assignment under which the value of obj is maximal or minimal,
respectively. There exist only a few SMT solvers that provide OMT solving, to the best of our
knowledge: OptiMathSAT [14], Z3 [4], and Symba [13]. The syntax for the optimization
expression is not part of the SMT-LIB format and, therefore, is specified differently for the
different OMT solvers.

3 Optimal Scheduling for WSNs by OMT Solvers

The main objective is to prolong the lifetime of a WSN as much as possible, which basically
means to maximize the energy efficiency or, in other words, to minimize the overall energy
consumption. Each sensor node has a predefined sensing range which can be heterogeneous in
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our model. Given the number n ≥ 1 of the sensor nodes, let ri denote the range of the ith
sensor node. The greater the range is, the less the lifetime of the sensor node is, denoted by Li.

In this paper, we are focusing on point coverage, where the objective for the sensor nodes is
to cover a set of m ≥ 1 points of interest. The physical location of sensor nodes and points can
be neglected in our model, since it is sufficient to know the distance, taken pairwise, between
each sensor node and point, denoted by di,j for the ith sensor node and the jth point.

In order to save energy, and, analogously, to maximize the lifetime of the WSN, the sensor
nodes might eventually enter the sleep mode and wake up later on. Let wi,t be a Boolean
variable that denotes if the ith sensor node is awake at the tth time interval.

While maximizing the lifetime T of the WSN, it is crucial not to violate certain requirements.
Most importantly, for each sensor node, the number of time intervals at which the node is awake
must not exceed the node’s lifetime. This constraint is called the lifetime constraint and can
be formalized as follows:

∀i (1 ≤ i ≤ n).
T∑

t=1

wi,t ≤ Li

Another crucial requirement is the coverage constraint [5] that requires every point to be
covered by at least one sensor node at any time. In some applications, the coverage constraint
is generalized by requiring coverage by at least K sensor nodes where K ≥ 1 is a predefined
constant [9, 11]. The K-coverage constraint can be formalized as follows:

∀j, t (1 ≤ j ≤ m, 1 ≤ t ≤ T ).
∑
i∈Sj

wi,t ≥ K

where Sj = {i | di,j ≤ ri} is the set of sensor nodes which are able to cover the jth point. Fig. 1
illustrates how sleep/wake-up scheduling works with 2-coverage. The blue dots represent the
active sensor nodes, the red dots the ones in sleep mode, and the green dots the target points.
Blue circles show the sensing ranges of the active sensors. Note that in each time interval, each
target point is monitored by (at least) 2 sensor nodes.

In some applications, sensors are deployed in a hostile environment or in critical systems [9],
thus it might be important to protect the sensors from being active for too long. In such appli-
cations, the so-called evasive constraint should be respected as well, which is about prohibiting
the sensor nodes to stay active for more than E consecutive time intervals where E ≥ 1:

∀i, t (1 ≤ i ≤ n, 1 ≤ t ≤ T − E).

t+E∑
t′=t

wi,t′ ≤ E

Fig. 1 illustrates the case for E = 2. Note that sensor node 6 (in the middle) switches into sleep
mode after being active for 2 consecutive time intervals.

To improve resiliency and security, some critical points may require not to be covered by
the same sensor for more than M consecutive time intervals where M ≥ 1 [9]. This constraint
is called the moving target constraint and can be formalized as follows:

∀j ∈ CR, ∀i ∈ Sj , ∀t (1 ≤ t ≤ T −M).

t+M∑
t′=t

wi,t′ ≤M

where CR ⊆ {j | 1 ≤ j ≤ m} is the set of critical points.
As expected, the objective function to maximize is the lifetime of the WSN:

max : T
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(a) t = 0 (b) t = 1

(c) t = 2

Figure 1: Sleep/wake-up scheduling of sensor nodes for 2-coverage and evasive constraint with
E = 2. The active nodes (blue dots) are monitoring the target points (green dots).
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3.1 SMT-LIB Formalization of the Constraints
When formalizing the lifetime, the coverage, the evasive, and the moving target constraints in
the SMT-LIB format [2], one has to reasonably decide which theory and logic to apply, taking
the available solvers into consideration as well as the feasibility and the expected runtime of
the solving process.

For representing the lifetime of sensor nodes and the time intervals, the best choice is
obviously to apply the theory of integer numbers. Similarly, it is sufficient to represent the sensor
ranges and the distances between sensors nodes and points as integer numbers. Note that all the
aforementioned constraints of interest apply linear arithmetic. Avoiding the use of non-linear
arithmetic makes the solving process more feasible, so does the avoiding of quantifiers. All the
variables whose value depends on T are represented as uninterpreted functions 1. Consequently,
we have decided to apply the logic QF_UFLIA.

Since the maximal lifetime of the WSN is bounded, one can unroll the constraints in order
to avoid the use of quantifiers. Due to the coverage constraint, the sum of the lifetimes of sensor
nodes can be used as a time horizon for the WSN: T̂ =

∑n
i=1 Li

The K-coverage constraint can be formalized in SMT-LIB as follows, for all target points j
and time intervals t:

(>=
(+ (boolToInt (covers0jAt t)) (boolToInt (covers1jAt t))
. . . (boolToInt (coversnjAt t)) )
K )

where the function (conversijAt t) tells if the sensor node i covers the target point j at the
time interval t.

Let us show how to formalize the evasive constraint with parameter E. The following
assertion should be added for all sensor nodes i and time intervals t ≤ T̂ − E:

(<=
(+ (boolToInt (w i t)) (boolToInt (w i t+ 1))
. . . (boolToInt (w i t+ E)) )
E )

The moving target constraint can be formalized in a similar manner.
Different OMT solvers require the optimization objective to be formalized in different ways.

For Z3, the formalization is extremely simple:

(maximize T)

We experienced that Z3 sometimes returned invalid models for our benchmarks if the translation
to Pseudo-Boolean constraints [4] was switched on. We did not investigate the causes and
decided to switch it off, as follows:

(set -option :opt.elim_01 false)

For OptiMathSAT, a lower bound and an upper bound must be specified, too, as follows:

(maximize T :local -lb 0 :local -ub T̂ )

Symba requires a completely different formalization. The objective should be written as an
implication with all the constraints of interest on the left-hand side and the following inequality
on the right-hand side:

1 Uninterpreted functions can be eliminated by introducing Ackermann constraints, which comes with the
price of quadratic growth in problem size.
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(=> $constraints (<= T TOpt) )

where TOpt, similar to T, is a variable declared by us.

4 Implementation, Benchmarks and Experiments
In this section, we describe the implementation details used to simulate WSNs and to generate
benchmarks with different sets of constraints with different parameter values. Furthermore, we
report on experiments with three available OMT solvers: OptiMathSAT, Z3, and Symba.
Since the strength of our OMT-based approach is that any constraints can be combined with
the WSN optimization problem, it makes not much sense to involve in our experiments classical
WSN optimization approaches [16, 6, 5] that can only deal with the coverage constraint.

The simulations and experiments were run on 3.60 GHz 8-core CPU with 8 GB memory.
The wall clock time limit was set to 600 seconds and the memory limit to 3 GB. The benchmarks
and log files are available at https://iot.uni-eszterhazy.hu/en/research/tools.

Our simulator and evaluator was implemented in Python language (660 lines of code).
The main goal of the experiments is to examine the impact of the different dependability and
security constraints to the WSN lifetime maximization problem, as well as the impact of critical
parameters such as the number of sensor nodes, the number of target points, the parameters
for the coverage, for the evasion and for the moving target constraints, respectively.

4.1 Simulation
For simulating WSNs, we chose an IEEE 802.15.4 compatible sensor node that is able to commu-
nicate wirelessly and has common parameters such as a 3V power supply 2. Such sensor nodes
are provided with an RF transceiver with an estimated range of 100m. To accurately define
the different ranges for different performance levels, we chose a commonly used RF transceiver,
the CC2420 3. Although, depending on the operation system of the sensor node, 32 to 256 dif-
ferent performance levels can be defined, the manufacturer of CC2420 publish data only about
8 performance levels. For sensor node simulation, we need to know the power consumption and
the sensing range for each performance level. In Tab. 1, data about those performance levels
are given, where the estimated ranges can be calculated as follows.

The output power P (d) is directly proportional with the square of the range d:

P (d) = pd2

where p is the power density. We can calculate the value of p from the maximum range
dmax = 120m and the maximum output power Pmax = 1mW as follows:

p =
Pmax

d2max

=
1

1202
≈ 6.94 · 10−5mW/m2

From this and the minimum output power Pmin = 3.16µW , one can easily calculate the mini-
mum range dmin = 6.75m.

The estimated range d for the power consumption I can be calculated as follows:

d =
dmax − dmin

Pmax − Pmin
(I − Imin) + dmin

2 A good example for such a commonly used sensor node is the MICAz mote, cf. http://www.memsic.com/
userfiles/files/Datasheets/WSN/micaz_datasheet-t.pdf.

3http://www.ti.com/lit/ds/symlink/cc2420.pdf
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PA_LEVEL Output Power Output Power Power Consumption Estimated range
(dBm) (mW ) (mA) (m)

31 0 1.000 17.4 120
27 -1 0.794 16.5 109
23 -3 0.501 15.2 92
19 -5 0.316 13.9 75
15 -7 0.200 12.5 58
11 -10 0.100 11.2 41
7 -15 0.032 9.9 25
3 -25 0.003 8.5 6.75

Table 1: Estimated ranges for the different performance levels of a sensor node equipped with
a CC2420 RF transceiver.

In our simulations, the performance level for each sensor node was set randomly in ad-
vance, and then the corresponding sensing range was used throughout the simulation, as Fig. 1
illustrates.

4.2 Benchmarks
In the WSN simulation, we generated a network grid of 600 meters by 600 meters. The physical
locations of the sensor nodes and the target points were set randomly, as well as the performance
levels of the sensor nodes. We generated two benchmark sets from the simulator:
• Harder benchmarks with 10 sensor nodes, 4 target points, 2-coverage constraint, evasive

constraint with E = 3, and moving target constraint with M = 2.
• Easier benchmarks with 10 sensor nodes, 2 target points, 1-coverage constraint, evasive

constraint with E = 2, and moving target constraint with M = 1.
Within each benchmark set, we generated (1) 20 benchmarks with all the constraints enabled,
(2) 20 benchmarks with only the moving target constraint disabled, and (3) 20 benchmarks with
only the evasive constraint disabled. Since the SMT-LIB formalization of the corresponding
optimization problem slightly differs for the different OMT solvers, we generated three variants
of each benchmark instance: one for OptiMathSAT, one for Z3, and one for Symba.

4.3 Evaluation Results
Tab. 2 provides an overview of the evaluation results for the harder benchmarks. The total
number of solved SAT/UNSAT instances is shown, as well as the number of timeouts (#TO), the
highest maximal lifetime (Opt) that was found for the given benchmark, the average runtime,
the average memory consumption, and the number of crashes (where relevant). Although Opt
is not a representative value, we use it to illustrate the magnitude of the WSN optimization
problem that the given solver is able to cope with.

The results clearly show that OptiMathSAT outperforms the other two solver on the
harder benchmarks, although it crashes on one instance with a segmentation fault. It is very
interesting that OptiMathSAT does not seem to be sensitive to what type of constraints are
involved in the WSN optimization problem, regarding the number of solved instances. On the
other hand, runtime and memory consumption decrease if one of the constraints is disabled,
especially in the case of the evasive constraint.
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Solver #SAT/UNSAT #TO Opt Time Space #Crash

All constraints on
OptiMathSAT 11/5 4 73 245.5 440.3
Z3 2/5 13 72 393.6 449.8
Symba 1/5 14 2 423.1 461.9

Moving target off
OptiMathSAT 10/5 5 74 215.8 314.8
Z3 7/5 8 73 258.2 408.3
Symba 4/5 11 60 393.5 439.1

Evasive off
OptiMathSAT 12/4 3 74 149.0 286.5 1
Z3 7/5 8 72 265.2 468.5
Symba 5/5 10 60 355.6 475.0

Table 2: Results for QF_UFLIA benchmarks with 10 sensor nodes, 4 target points, 2-coverage,
evasive constraint with E = 3, and moving target constraint with M = 2.

When all the constraint are enabled, Z3 and Symba can solve significantly fewer instances
than OptiMathSAT does. When one of the constraints is disabled, the performance of Z3
and Symba gets slightly better, although their runtime and memory consumption do not really
change. Let us note that we experienced insignificant runtimes on all the UNSAT instances by
all the solvers, this is why they can solve all the UNSAT instances, except for the case of crash.

Tab. 3 shows the evaluation results for the easier benchmarks, which consist of SAT instances
only. Here, Z3 is clearly the winner since it can solve all the instances at very moderate runtime.
Note that the greatest maximal lifetime found by the solvers is 226, therefore we find Z3’s
performance on those benchmarks quite remarkable.

Solver #SAT/UNSAT #TO Opt Time Space

All constraints on
Z3 20/0 0 226 63.1 493.1
OptiMathSAT 12/0 8 159 277.8 520.7
Symba 9/0 11 159 484.9 436.2

Moving target off
Z3 20/0 0 226 49.2 333.7
OptiMathSAT 11/0 9 130 311.3 476.1
Symba 9/0 11 159 488.8 340.0

Evasive off
Z3 20/0 0 226 50.8 300.0
Symba 19/0 1 226 324.8 334.1
OptiMathSAT 12/0 8 159 344.1 488.2

Table 3: Results for QF_UFLIA benchmarks with 10 sensor nodes, 2 target points, 1-coverage,
evasive constraint with E = 2, and moving target constraint with M = 1.

Interestingly, OptiMathSAT does not provide better results than the ones on the harder
benchmarks. On the contrarily, average runtime and memory consumption have even increased.
Surprisingly, Symba remarkably accelerates with the evasive constraint disabled. Symba not
only outperforms OptiMathSAT, but it almost reaches the performance of Z3 in terms of
solved instances, although Symba’s average runtime is still much greater than the one of Z3.

It is also an interesting question if the theory of integer numbers is the best choice. Therefore,
we decided to rerun the experiments for the easier benchmarks over real numbers (QF_UFLRA).
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The results in Tab. 4 show that Z3 and OptiMathSAT provide almost the same performance
as before, while Symba accelerates drastically and can solve almost all the instances.

Solver #SAT/UNSAT #TO Opt Time Space

All constraints on
Z3 19/0 1 226 87.7 497.1
Symba 18/0 2 226 223.4 578.5
OptiMathSAT 12/0 8 159 277.0 507.4

Moving target off
Z3 20/0 0 226 41.4 318.9
Symba 20/0 0 226 172.5 393.0
OptiMathSAT 11/0 9 130 310.6 469.9

Evasive off
Z3 20/0 0 226 36.2 284.4
Symba 20/0 0 226 128.9 340.5
OptiMathSAT 11/0 9 159 345.2 467.5

Table 4: Results for QF_UFLRA benchmarks with 10 sensor nodes, 2 target points, 1-
coverage, evasive constraint with E = 2, and moving target constraint with M = 1.

To summarize, OptiMathSAT provides the most stable performance and scales the best
for the presence/absence of different constraints, and for different parameter settings. Using Z3
is advantageous on instances with fewer target points and lower parameter values, for which it
provides amazing runtimes. Although Symba scales the worst over integer numbers, it provides
convincing performance over real numbers.

5 Conclusion

In this paper, we investigated a WSN optimization problem: how to maximize the lifetime
of the WSN while not violating certain dependability and security constraints. In the paper,
three such constraints are addressed: the K-coverage constraint, the evasive contraint, and the
moving target constraint. Most of the existing approaches focus on the maximization problem
only in combination with K-coverage, while others focus on using multiple constraints, but
not addressing the maximization problem at all. By using OMT formalism, it is possible to
combine all the aforementioned constraints as well as to specify an optimization objective.
Furthermore, an OMT-based approach can be considered extremely flexible and extendable
with other constraints on demand.

The recent success of OMT solvers, such as OptiMathSAT, Z3, and Symba, inspired us
to do experiments with all of them and investigate how they scale for the size of the WSN,
the presence/absence of different constraints, and for different parameter settings. We made
the resulting OMT benchmarks and log files publicly available. Although the results show
that today’s OMT solvers can only deal with a few tens of sensor nodes and target points,
OptiMathSAT seems scalable enough for further experiments with larger WSNs, which is part
of future work. Since OptiMathSAT and Z3 support the combination of multiple objectives,
we are planning to address the minimization of overall energy consumption while maximizing
the WSN lifetime.

We are also planning to investigate the possibility to invent an OMT solving approach which
is specialized for lifetime maximization in some sense, in order to achieve significant speedup
in optimization tasks for WSN applications.
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