
Solving Constraints over Bit-Vectors with
SAT-based Model Checking

Extended Abstract

Yakir Vizel1, Alexander Nadel2, and Sharad Malik1

1 Princeton University, USA
2 Intel Development Center, Haifa, Israel

Introduction

We present BVMC, a novel decision procedure for constraints over fixed-width
bit-vectors, which is based on propositional model checking (MC).

Nowadays, Satisfiability Modulo Theory (SMT) [6] solvers for the quantifier-
free fixed-width bit-vector (QF BV) logic are widely used, especially when bit-
precise reasoning is required. One subset of QF BV, which is particularly impor-
tant in formal verification of software (SW), is quantifier-free linear arithmetic
over integers modulo 2N (LIAN ). This paper presents an efficient decision pro-
cedure, BVMC, suitable for solving LIAN .

Formal verification of SW is one of the main forces driving SMT research.
SW verification usually involves reasoning about arithmetic constraints, and
in particular, linear arithmetic constraints over integers modulo 2N for some
N ∈ N. This is due to the fact that SW uses a finite representation for integers.
More precisely, arithmetic operations over integers are interpreted over the ring
Z/2NZ (“machine arithmetic”) rather than over the ring Z. As a result, efficient
bit-precise reasoning is highly desired.

In order to capture the semantics of linear arithmetic over Z/2NZ (LIAN ),
SMT solvers for the theory of fixed-width bit-vectors (BV solvers) are often used.
BV solvers, however, are not efficient when the bit-vectors are wide. Namely,
when the value of 2N is large (e.g. N = 128), solving linear arithmetic constraints
over Z/2NZ becomes intractable for BV solvers. This inefficiency is mainly due
to the way BV solvers are implemented: in most cases, the formula is reduced
to a propositional formula using bit-blasting. Therefore, as N increases, so is the
complexity of the resulting SAT formula. One way to overcome this inefficiency
is by applying a LIA solver. Unlike BV solvers, LIA solvers reason about linear
arithmetic over Z. While LIA solvers are more efficient than that of BV solvers
for this task, they are less precise. This imprecision comes from the different
semantics of LIA and LIAN . Namely, arithmetic operations over Z cannot re-
sult in an “overflow” (i.e. wrap-around). In the context of SW verification, this
may lead to unsound results. Hence, an efficient LIAN solver, which this paper
presents, should be extremely useful for SW verification.



Our Approach

Our novel decision procedure BVMC is based on a reduction of the input formula
to a safety verification problem. Namely, a formula ϕ in LIAN is transformed to
a transition system T such that the satisfiability of ϕ corresponds to whether
T is SAFE or UNSAFE. The key to our reduction lies in treating bit-vectors as
unbounded streams of bits over time. More precisely, for each input bit-vector,
the least significant bit (LSB) corresponds to time 0 in the corresponding stream,
and the k-th bit corresponds to the bit received at time k. The structure of
T captures the constraints between the bit-vector variables that appear in ϕ.
To determine if T is SAFE or UNSAFE, BVMC uses SAT-based model checking
(SATMC) [10].

One possible way to reason about T is by using Bounded Model Checking
(BMC) [2], an efficient SATMC algorithm that can show T is UNSAFE. Con-
sidering our reduction, if BMC finds a counterexample of length N in T (T is
UNSAFE), then ϕ is satisfiable over Z/2NZ. If no counterexample of length N
exists in T , then ϕ is unsatisfiable over Z/2NZ. This can be used as a decision
procedure for LIAN . However, the performance of such an approach is usually
not better then that of BV solvers [7]. BMC can either find a counterexample of
length N , or prove that counterexample of length N does not exist. In that sense,
in the context of BVMC, it can only reason about LIAN for a given N . In fact,
this approach is somewhat “equivalent” to how modern eager BV solvers are
implemented. Consequently, this approach is, in general, not superior to solving
the bit-blasted formula.

Unlike BMC, modern SATMC algorithms [8,3,9] use generalization in order
to show that no counterexample, of any length, exists, and by that they can
prove a transition system is SAFE. BVMC takes advantage of this generalization
mechanism. In case BVMC finds ϕ to be unsatisfiable over Z/2kZ, SATMC’s gen-
eralization mechanism is applied to show ϕ is unsatisfiable over Z/2NZ for every
N > k. For the case a counterexample of length k is found, we have imple-
mented an efficient procedure in BVMC that tries to extend the counterexample
to some target N (where N > k) and by that show ϕ is satisfiable over Z/2NZ.
When such a counterexample cannot be extended, BVMC blocks it and continues
the search until either a new counterexample is found (possibly longer) or until
unsatisfiability is established.

Evaluation

As discussed above, our goal in designing BVMC is to support QF BV. Currently,
we implemented a prototype which supports all bit-wise operators, as well as all
operators required to support LIAN . For evaluation, we transformed the QF LIA
subset of the SMT-COMP’16 benchmark to QF BV using fixed-width bit-vectors
of sizes 32, 64, and 128. We then compared BVMC to Boolector3 [4], and Z34 [5].

3 Version 2.4.1
4 Version 4.5.1



BVMC solved the most satisfiable instances out of the three, even for a width as
low as 32. Moreover, it was able to solve many more instances, that were not
solved by neither Boolector nor Z3.

Table 1. Number of solved instances for LIAN . Total stands for the total number of
test cases in that benchmark. The difference is due to the fact that not all LIA test
cases can be represented in LIAN for certain values of N .

Benchmark Total Status BVMC Boolector Z3 Virtual Best

LIA5 (32bit) 2647
SAT 1475 1257 1373 1539

UNSAT 784 988 881 995

LIA6 (64bit) 2784
SAT 1630 1340 1448 1781

UNSAT 680 1017 889 1023

LIA7 (128bit) 2742
SAT 1565 1233 1347 1734

UNSAT 637 1013 861 1020

Table 1 shows the number of solved instances for the different experiments of
LIAN . As can be seen from the table, BVMC has a big advantage specifically on
satisfiable instances, for all values of N . BVMC constructs a satisfying assignment,
incrementally, starting from the LSB. We believe this is the main reason for
the performance advantage of BVMC over the other methods. Figures 1-3 further
emphasize the performance advantage of BVMC on satisfiable instances. Moreover,
we can see the performance advantage of BVMC grows as the width of bit-vectors
grows.

It is important to note that the approaches are complementary as many test
cases are solved by BVMC and not by Boolector, and vice-versa. Overall, BVMC
solves 205 test cases not solved neither by Boolector nor Z3 for N = 5. For
N = 6 and for N = 7, BVMC solves 288 and 331 test cases that are not solvable
by the other solvers. When compared to Boolector, for N = 5, BVMC solves 370
test cases not solved by Boolector, and Boolector solves 331 test cases not solved
by BVMC. For N = 6 and N = 7, BVMC solves 427 and 496 test cases not solved
by Boolector, while Boolector solves 482 and 501 test cases not solved by BVMC.
In the case of Z3, for N = 5, 6, 7, BVMC solves 324, 329 and 397 cases not solved
by Z3, while Z3 solves 265, 337, 349 cases not solved by BVMC.

Related and Future Work

A closely related line of work appears in [1,7], where a reduction from a fragment
of BV, restricted to addition, shift by one and equality, to propositional model
checking has been introduced (as a by-product of studying the complexity of
bit-vector logic). The proposed method has been implemented and shown to
outperform traditional SMT solvers on crafted BV benchmarks, restricted to the
aforementioned BV fragment. Unlike the transformation applied by BVMC, the
modeling suggested in [1] only supports fixed-width bit-vectors, making SATMC
algorithms inefficient. As a result, BDD-based model checking algorithms were



0

100

200

300

400

500

600

700

800

900

0 500 1000 1500

Ru
nt
im
e	
[s
]

Boolector	32bit

Z3	32bit

LIAMC	32bit

Fig. 1. Z/25Z: Trend for satisfiable instances (32 bit).

found to be the most efficient experimentally [1]. BVMC shows how SATMC can
be applied efficiently even for the subset supported by [1]5. In addition, our
approach can handle a more extensive set of operators, which makes it applicable
to arbitrary formulas in LIAN .

Our future work in this direction includes the following:

– Extend our method to fully support QF BV, and
– Implement dedicated SATMC algorithms that can efficiently solve transition

systems originating from LIAN and from QF BV.

References

1. A. B. Andreas Fröhlich, Gergely Kovásznai. Efficiently solving bit-vector problems
using model checkers. In 11th International Workshop on Satisfiability Modulo
Theories, 2013.

2. A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu. Bounded model
checking. Advances in Computers, 58:117–148, 2003.

3. A. R. Bradley. SAT-Based Model Checking without Unrolling. In VMCAI, pages
70–87, 2011.

4. R. Brummayer and A. Biere. Boolector: An efficient SMT solver for bit-vectors
and arrays. In Tools and Algorithms for the Construction and Analysis of Systems,
15th International Conference, TACAS 2009, pages 174–177, 2009.

5 Note that throughout our experiments, the transition systems include more than
thousands of state elements, making BDD-based MC intractable.



0

100

200

300

400

500

600

700

800

900

0 500 1000 1500

Ru
nt
im
e	
[s
]

Boolector	64bit

Z3	64bit

LIAMC	64bit

Fig. 2. Z/26Z: Trend for satisfiable instances (64 bit).

5. L. M. de Moura and N. Bjørner. Z3: an efficient SMT solver. In Tools and Algo-
rithms for the Construction and Analysis of Systems, 14th International Confer-
ence, TACAS 2008, pages 337–340, 2008.

6. L. M. de Moura and N. Bjørner. Satisfiability modulo theories: introduction and
applications. Commun. ACM, 54(9):69–77, 2011.

7. G. Kovásznai, A. Fröhlich, and A. Biere. Complexity of fixed-size bit-vector logics.
Theory Comput. Syst., 59(2):323–376, 2016.

8. K. L. McMillan. Interpolation and SAT-Based Model Checking. In CAV, pages
1–13, 2003.

9. Y. Vizel and A. Gurfinkel. Interpolating property directed reachability. In CAV,
pages 260–276, 2014.

10. Y. Vizel, G. Weissenbacher, and S. Malik. Boolean satisfiability solvers and their
applications in model checking. Proceedings of the IEEE, 103(11):2021–2035, 2015.



0

100

200

300

400

500

600

700

800

900

0 500 1000 1500

Ru
nt
im
e	
[s
]

Boolector	128bit

Z3	128bit

LIAMC	128bit

Fig. 3. Z/27Z: Trend for satisfiable instances (128 bit).


	Solving Constraints over Bit-Vectors with SAT-based Model CheckingExtended Abstract

