
Cost-efficient web service composition for
processes with distributed retrieval queries:

Position paper

Irma Sofia Espinosa Peraldi and Ralf Möller
Hamburg University of Technology
Software Systems Institute (STS)

Hamburg, Germany
sofia.espinosa@tuhh.de, r.f.moeller@tuhh.de

1 Problem description

In the near future, description logic reasoning services will be offered as web
services and initial versions of, for instance, OWL QL web services have already
been developed (e.g., [1]). Due to the high acceptance of web service technolo-
gies to support processes across heterogeneous architectures, the amount of web
service offering similar functionality is proliferating. Thus, the problem of select-
ing a particular service binding in order to minimize resource consumption in a
web service composition has emerged. In particular we investigate optimization
strategies for web service compositions that define large-scale inference processes
with query correlation. Due to the business logic behind the process, there is
an implicit knowledge about the enquired domain, the processing order of the
queries and if a query subsumes another. Furthermore, the web service partners
of such a composition provide reasoning services over (possibly heterogeneous)
ontologies. Thus, the optimization criteria we are interested in is very much
service-dependent, where reasoning tasks with query subsumption, optimization
techniques with Abox indexing and KB availability are being considered.

2 Approach

The optimization problem is expressed in terms of a configuration problem in
which the web service partners (DL reasoners) become objects to be combined
such that they satisfy the given criteria. The optimization algorithm was de-
signed such that it can handle multiple criteria expressed as constraints, which



are hard criteria that can not be relaxed, and objectives with no total order, of
which a minimum or maximum number should not be violated. Furthermore,
the considered criteria have dynamic values, due to the exposure of the web
services partners to other (competing) calls for instance retrieval. Thus, it is
not possible to a priori determine an execution plan. Therefore, we pursued
an approach proposed by [3] using the notion of Pareto dominance, for local
optimization, where for each invocation step in the composition, the set of given
web service partners are being compared against the multiple objectives along
the dimensions. A relaxation process is applied in case of over constraining. For
details on the implementation see [4].

3 Contribution

Until now no solution has been presented to optimize large-scale inference pro-
cesses (represented as web service compositions), where on the one side, the
correlation of the process’s queries is being considered, and on the other side,
reasoning tasks and optimization techniques offered by several DL reasoning ser-
vices (representing the web service partners of the composition), is being used
as criteria for optimizing resource consumption. In the current implementation
only RacerPro[2] reasoners can be used to obtain required information about
loaded Tboxes and Aboxes, about Abox index structures being computed, about
whether a new query is subsumed by another query already answered by some
server etc. However, since web service architecture are more and more accepted,
current proposals for DL reasoner communication languages such as DIG might
be extended with corresponding facilities in the future.

References

[1] J. Galinski, A. Kaya, and R. Möller. Development of a server to support the formal
semantic web query language OWL-QL. In I. Horrocks, U. Sattler, and F. Wolter,
editors, Proc. International Workshop on Description Logics, 2005.

[2] Racer Systems GmbH & Co. KG. Racerpro 1.9. WWW page, March 2005.
http://www.racer-systems.com (10.03.06).

[3] D. Navinchandra. Exploration and innovation in Design. Towards a Computational
Model. Springer-Verlag, 1 edition, 1991.

[4] I. S. Espinosa Peraldi. Cost-efficient web service compositions. Master thesis, TU
Hamburg-Harburg, June 2005.


